Indexes in postgres

Louise Grandjonc
Louise GrandjoncSolutions engineer at Citus Data
Indexes in Postgres
(the long story or crocodiles going to the dentist)
Louise Grandjonc
1
About me
Solutions Engineer at Citus Data
Previously lead python developer
Postgres enthusiast
@louisemeta on twitter
www.louisemeta.com
!2
What we’re going to talk about
1. What are indexes for?
2. Pages and CTIDs
3. B-Tree
4. GIN
5. GiST
6. SP-GiST
7. Brin
8. Hash
!3
First things first: the crocodiles
!4
• 250k crocodiles
• 100k birds
• 2M appointments
5
What are indexes for?
Constraints
!6
Some constraints transform into indexes.
- PRIMARY KEY
- UNIQUE
- EXCLUDE USING
"crocodile_pkey" PRIMARY KEY, btree (id)
"crocodile_email_uq" UNIQUE CONSTRAINT, btree (email)
Indexes:
"appointment_pkey" PRIMARY KEY, btree (id)
"appointment_crocodile_id_schedule_excl" EXCLUDE USING gist
(crocodile_id WITH =, schedule WITH &&)
In the crocodile table
In the appointment table
Query optimization
!7
Often the main reason why we create indexes
Why do indexes make queries faster
In an index, tuples (value, pointer) are stored.
Instead of reading the entire table for a value, you just go to the index (kind of like in an
encyclopedia)
8
Pages, heaps and their
pointers
Pages
!9
- PostgreSQL uses pages to store data from indexes or tables
- A page has a fixed size of 8kB
- A page has a header and items
- In an index, each item is a tuple (value, pointer)
- Each item in a page is referenced to with a pointer called ctid
- The ctid consist of two numbers, the number of the page (the block number) and the offset
of the item.
The ctid of the item with value 4 would be (3, 2).
10
pageinspect and gevel
Extensions to look into your index pages
pageinspect, gevel and a bit of python
!11
Page inspect is an extension that allows you to explore a bit what’s inside the pages
Functions for BTree, GIN, BRIN and Hash indexes
Gevel adds functions to GiST, SP-Gist and GIN.
Used them to generate pictures for BTree and GiST
https://github.com/louiseGrandjonc/pageinspect_inspector
12
B-Trees
B-Trees internal data structure - 1
!13
- A BTree in a balanced tree
- All the leaves are at equal distance from the root.
- A parent node can have multiple children minimizing the tree’s depth
- Postgres implements the Lehman & Yao Btree
Let’s say we would like to filter or order on the crocodile’s number of teeth.
CREATE INDEX ON crocodile (number_of_teeth);
B-Trees internal data structure - 2
Metapage
!14
The metapage is always the first page of a BTree index. It contains:
- The block number of the root page
- The level of the root
- A block number for the fast root
- The level of the fast root
B-Trees internal data structure - 2
Metapage
!15
SELECT * FROM bt_metap('crocodile_number_of_teeth_idx');
magic | version | root | level | fastroot | fastlevel
--------+---------+------+-------+----------+-----------
340322 | 2 | 290 | 2 | 290 | 2
(1 row)
Using page inspect, you can get the information on the metapage
B-Trees internal data structure - 3
Pages
!16
The root, the parents, and the leaves are all pages with the same structure.
Pages have:
- A block number, here the root block number is 290
- A high key
- A pointer to the next (right) and previous pages
- Items
B-Trees internal data structure - 4
Pages high key
!17
- High key is specific to Lehman & Yao BTrees
- Any item in the page will have a value lower or equal to the high key
- The root doesn’t have a high key
- The right-most page of a level doesn’t have a high key
And in page 575, there is no high key as it’s the
rightmost page.
In page 3, I will find crocodiles with 3 or less teeth
In page 289, with 31 and less
B-Trees internal data structure - 5
Next and previous pages pointers
!18
- Specificity of the Yao and Lehmann BTree
- Pages in the same level are in a linked list
Very useful for ORDER BY
For example:
SELECT number_of_teeth
FROM crocodile ORDER BY number_of_teeth ASC
Postgres would start at the first leaf page and thanks to the next
page pointer, has directly all rows in the right order.
B-Trees internal data structure - 6
Page inspect for BTree pages
!19
SELECT * FROM bt_page_stats(‘crocodile_number_of_teeth_idx’,
289);
-[ RECORD 1 ]-+-----
blkno | 289
type | i
live_items | 285
dead_items | 0
avg_item_size | 15
page_size | 8192
free_size | 2456
btpo_prev | 3
btpo_next | 575
btpo | 1
btpo_flags | 0
B-Trees internal data structure - 7
Items
!20
- Items have a value and a pointer
- In the parents, the ctid points to the child page
- In the parents, the value is the value of the first item in the child page
B-Trees internal data structure - 8
Items
!21
- In the leaves, the ctid is to the heap tuple in the table
- In the leaves it’s the value of the column(s) of the row
B-Trees internal data structure
To sum it up
!22
- A Btree is a balanced tree. PostgreSQL implements the Lehmann & Yao algorithm
- Metapage contains information on the root and fast root
- Root, parent, and leaves are pages.
- Each level is a linked list making it easier to move from one page to an other within the same level.
- Pages have a high key defining the biggest value in the page
- Pages have items pointing to an other page or the row.

B-Trees - Searching in a BTree
!23
1. Scan keys are created
2. Starting from the root until a leaf page
• Is moving to the right page necessary?
• If the page is a leaf, return the first item with a value
higher or equal to the scan key
• Binary search to find the right path to follow
• Descend to the child page and lock it
SELECT email FROM crocodile WHERE number_of_teeth >= 20;
B-Trees - Scan keys
!24
Postgres uses the query scan to define scankeys.
If possible, redundant keys in your query are eliminated to keep only
the tightest bounds.
The tightest bound is number_of_teeth > 5
SELECT email, number_of teeth FROM crocodile
WHERE number_of_teeth > 4 AND number_of_teeth > 5
ORDER BY number_of_teeth ASC;
email | number_of_teeth
----------------------------------------+-----------------
anne.chow222131@croco.com | 6
valentin.williams222154@croco.com | 6
pauline.lal222156@croco.com | 6
han.yadav232276@croco.com | 6
B-Trees - About read locks
!25
We put a read lock on the currently examined page.
Read locks  ensure that the  records on that page are not
modified while reading it.
There could still be a concurrent insert on a child page causing
a page split.
BTrees - Is moving right necessary?
!26
Concurrent insert while visiting the root:
SELECT email FROM crocodile WHERE number_of_teeth >= 20;
BTrees - Is moving right necessary?
!27
The new high key of child page is 19
So we need to move right to the page 840
B-Trees - Searching in a BTree
!28
1. Scan keys are created
2. Starting from the root until a leaf page
• Is moving to the right page necessary?
• If the page is a leaf, return the first item with a value
higher or equal to the scan key
• Binary search to find the right path to follow
• Descend to the child page and lock it
SELECT email FROM crocodile WHERE number_of_teeth >= 20;
BTrees - Inserting
!29
1. Find the right insert page
2. Lock the page
3. Check constraint
4. Split page if necessary and insert row
5. In case of page split, recursively insert a new
item in the parent level
BTrees -Inserting
Finding the right page
!30
Auto-incremented values:
Primary keys with a sequence for example, like the index crocodile_pkey.
New values will always be inserted in the right-most leaf page.
To avoid using the search algorithm, Postgres caches this page.
Non auto-incremented values:
The search algorithm is used to find the right leaf page.
BTrees -Inserting
Page split
!31
1. Is a split necessary?
If the free space on the target page is lower than the item’s size, then a split is necessary.
2. Finding the split point
Postgres wants to equalize the free space on each page to limit page splits in future inserts.
3. Splitting
BTrees - Deleting
!32
- Items are marked as deleted and will be ignored in future index scans until VACUUM
- A page is deleted only if all its items have been deleted.
- It is possible to end up with a tree with several levels with only one page.
- The fast root is used to optimize the search.
33
GIN
GIN
!34
- GIN (Generalized Inverted Index) 
- Used to index arrays, jsonb, and tsvector (for fulltext search) columns.
- Efficient for <@, &&, @@@ operators
New column healed_teeth (integer[])
 
Here is how to create the GIN index for this column
croco=# SELECT email, number_of_teeth, healed_teeth FROM crocodile WHERE id =1;
-[ RECORD 1 ]---+--------------------------------------------------------
email | louise.grandjonc1@croco.com
number_of_teeth | 58
healed_teeth | {16,11,55,27,22,41,38,2,5,40,52,57,28,50,10,15,1,12,46}
CREATE INDEX ON crocodile USING GIN(healed_teeth);
GIN
How is it different from a BTree? - Keys
!35
- GIN indexes are binary trees
- Just like BTree, their first page is a metapage
First difference: the keys
BTree index on healed_teeth
The indexed values are arrays
Seq Scan on crocodile (cost=…)
Filter: ('{1,2}'::integer[] <@ healed_teeth)
Rows Removed by Filter: 250728
Planning time: 0.157 ms
Execution time: 161.716 ms
(5 rows)
SELECT email FROM crocodile
WHERE ARRAY[1, 2] <@ healed_teeth;
GIN
How is it different from a BTree? - Keys
!36
- In a GIN index, the array is split and each value is an entry
- The values are unique
GIN
How is it different from a BTree? - Keys
!37
Bitmap Heap Scan on crocodile
(cost=516.59..6613.42 rows=54786 width=29)
(actual time=15.960..38.197 rows=73275 loops=1)
Recheck Cond: ('{1,2}'::integer[] <@ healed_teeth)
Heap Blocks: exact=4218
-> Bitmap Index Scan on crocodile_healed_teeth_idx
(cost=0.00..502.90 rows=54786 width=0)
(actual time=15.302..15.302 rows=73275 loops=1)
Index Cond: ('{1,2}'::integer[] <@ healed_teeth)
Planning time: 0.124 ms
Execution time: 41.018 ms
(7 rows)
Seq Scan on crocodile (cost=…)
Filter: ('{1,2}'::integer[] <@ healed_teeth)
Rows Removed by Filter: 250728
Planning time: 0.157 ms
Execution time: 161.716 ms
(5 rows)
GIN
How is it different from a BTree? Leaves
!38
- In a leaf page, the items contain a posting list of pointers to the rows in the table
- If the list can’t fit in the page, it becomes a posting tree
- In the leaf item remains a pointer to the posting tree
GIN
How is it different from a BTree? Pending list
!39
- To optimise inserts, we store the new entries in a pending list (linear list of pages)
- Entries are moved to the main tree on VACUUM or when the list is full
- You can disable the pending list by setting fastupdate to false (on CREATE or ALTER INDEX)
SELECT * FROM gin_metapage_info(get_raw_page('crocodile_healed_teeth_idx', 0));
-[ RECORD 1 ]----+-----------
pending_head | 4294967295
pending_tail | 4294967295
tail_free_size | 0
n_pending_pages | 0
n_pending_tuples | 0
n_total_pages | 358
n_entry_pages | 1
n_data_pages | 356
n_entries | 47
version | 2
GIN
To sum it up
!40
To sum up, a GIN index has:
- A metapage
- A BTree of key entries
- The values are unique in the main binary tree
- The leaves either contain a pointer to a posting tree, or a posting list of heap
pointers
- New rows go into a pending list until it’s full or VACUUM, that list needs to be
scanned while searching the index
41
GIST
GiST - keys
!42
Differences with a BTree index
- Data isn’t ordered
- The key ranges can overlap
Which means that a same value can be inserted in different pages
GiST - keys
!43
Differences with a BTree index
- Data isn’t ordered
- The key ranges can overlap
Which means that a same value can be inserted in different pages
Data isn’t ordered
GiST - keys
!44
A new appointment scheduled from
 August 14th 2014 7:30am to 8:30am
can be inserted in both pages.
CREATE INDEX ON appointment USING GIST(schedule)
Differences with a BTree index
- Data isn’t ordered
- The key ranges can overlap
Which means that a same value can be inserted in different pages
GiST - keys
!45
Differences with a BTree index
- Data isn’t ordered
- The key ranges can overlap
Which means that a same value can be inserted in different pages
A new appointment scheduled from
 August 14th 2014 7:30am to 8:30am
can be inserted in both pages.
CREATE INDEX ON appointment USING GIST(schedule)
GiST
key class functions
!46
GiST allows the development of custom data types with the appropriate access methods.
These functions are key class functions:
Union: used while inserting, if the range changed
Distance: used for ORDER BY and nearest neighbor, calculates the distance to the scan
key
GiST
key class functions - 2
!47
Consistent: returns MAYBE if the range contains the searched value, meaning that rows
could be in the page
Child pages could contain the appointments overlapping
[2018-05-17 08:00:00, 2018-05-17 13:00:00]
Consistent returns MAYBE
GiST - Searching
!48
SELECT c.email, schedule, done, emergency_level
FROM appointment
INNER JOIN crocodile c ON (c.id=crocodile_id)
WHERE schedule && '[2018-05-17 08:00:00,
2018-05-17 13:00:00]'::tstzrange
AND done IS FALSE
ORDER BY schedule DESC LIMIT 3;
1. Create a search queue of pages to explore with the root in it
2. While the search queue isn’t empty, pops a page
1. If the page is a leaf: update the bitmap with CTIDs of rows
2. Else, adds to the search queue the items where Consistent
returned MAYBE
GiST - Inserting
!49
A new item can be inserted in any page.
Penalty: key class function (defined by user) gives a number representing
how bad it would be to insert the value in the child page.
About page split:
Picksplit: makes groups with little distance
Performance of search will depend a lot of Picksplit
GiST - Inserting
!50
A new item can be inserted in any page.
Penalty: key class function (defined by user) gives a number representing
how bad it would be to insert the value in the child page.
About page split:
Picksplit: makes groups with little distance
Performance of search will depend a lot of Picksplit
To sum up
!51
- Useful for overlapping (geometries, array etc.)
- Nearest neighbor
- Can be used for full text search (tsvector, tsquery)
- Any data type can implement GiST as long as a few methods are available
52
SP-GiST
SP-GiST
Internal data structure
!53
- Not a balanced tree
- A same page can’t have inner tuples and leaf tuples
- Keys are decomposed
- In an inner tuple, the value is the prefix
- In a leaf tuple, the value is the rest (postfix)
P
L
A
Page blkno: 1
ABLO
UISE
RIAN
O
D
Page blkno: 8 Page blkno: 4
SP-GiST
Pages
!54
SELECT tid, level, leaf_value FROM spgist_print('crocodile_first_name_idx3') as t
(tid tid, a bool, n int, level int, p tid, pr text, l smallint, leaf_value text) ;
tid | level | leaf_value
----------+-------+------------
…
(4,36) | 2 | ablo
(4,57) | 2 | ustafa
(4,84) | 3 | rian
(4,153) | 3 | uise
…
Here are how the pages are
organized if we look into gevel’s
sp-gist functions for this index
SP-GiST
!55
- Can be used for points
- For text to search for prefix
- For non balanced data structures (k-d trees)
- Like GiST: allows the development of custom data types
56
BRIN
BRIN
Internal data structure
!57
- Block Range Index
- Not a binary tree
- Not even a tree
- Block range: group of pages physically adjacent
- For each block range: the range of values is stored
- BRIN indexes are very small
- Fast scanning on large tables
BRIN
Internal data structure
!58
SELECT * FROM brin_page_items(get_raw_page('appointment_created_at_idx', 2), 'appointment_created_at_idx');
itemoffset | blknum | attnum | allnulls | hasnulls | placeholder | value
------------+--------+--------+----------+----------+-------------+---------------------------------------------------
1 | 0 | 1 | f | f | f | {2008-03-01 00:00:00-08 .. 2009-07-07 07:30:00-07}
2 | 128 | 1 | f | f | f | {2009-07-07 08:00:00-07 .. 2010-11-12 15:30:00-08}
3 | 256 | 1 | f | f | f | {2010-11-12 16:00:00-08 .. 2012-03-19 23:30:00-07}
4 | 384 | 1 | f | f | f | {2012-03-20 00:00:00-07 .. 2013-07-26 07:30:00-07}
5 | 512 | 1 | f | f | f | {2013-07-26 08:00:00-07 .. 2014-12-01 15:30:00-08}
SELECT id, created_at FROM appointment WHERE ctid='(0, 1)'::tid;
id | created_at
--------+------------------------
101375 | 2008-03-01 00:00:00-08
(1 row)
BRIN
Internal data structure
!59
SELECT * FROM brin_page_items(get_raw_page('crocodile_birthday_idx', 2),
'crocodile_birthday_idx');
itemoffset | blknum | attnum | allnulls | hasnulls | placeholder | value
------------+--------+--------+----------+----------+-------------+----------------------------
1 | 0 | 1 | f | f | f | {1948-09-05 .. 2018-09-04}
2 | 128 | 1 | f | f | f | {1948-09-07 .. 2018-09-03}
3 | 256 | 1 | f | f | f | {1948-09-05 .. 2018-09-03}
4 | 384 | 1 | f | f | f | {1948-09-05 .. 2018-09-04}
5 | 512 | 1 | f | f | f | {1948-09-05 .. 2018-09-02}
6 | 640 | 1 | f | f | f | {1948-09-09 .. 2018-09-04}
…
(14 rows)
In this case, the values in birthday has no correlation with the physical
location, the index would not speed up the search as all pages would have
to be visited.
BRIN is interesting for data where the value is correlated with the
physical location.
BRIN
Warning on DELETE and INSERT
!60
SELECT * FROM brin_page_items(get_raw_page('appointment_created_at_idx', 2), 'appointment_created_at_idx');
itemoffset | blknum | attnum | allnulls | hasnulls | placeholder | value
------------+--------+--------+----------+----------+-------------+---------------------------------------------------
1 | 0 | 1 | f | f | f | {2008-03-01 00:00:00-08 .. 2018-07-01 07:30:00-07}
2 | 128 | 1 | f | f | f | {2009-07-07 08:00:00-07 .. 2018-07-01 23:30:00-07}
3 | 256 | 1 | f | f | f | {2010-11-12 16:00:00-08 .. 2012-03-19 23:30:00-07}
4 | 384 | 1 | f | f | f | {2012-03-20 00:00:00-07 .. 2018-07-06 23:30:00-07}
DELETE FROM appointment WHERE created_at >= '2009-07-07' AND created_at < ‘2009-07-08';
DELETE FROM appointment WHERE created_at >= '2012-03-20' AND created_at < ‘2012-03-25';
Deleted and then vacuum on the appointment table
New rows are inserted in the free space after VACUUM
BRIN index has some ranges with big data ranges.
Search will visit a lot of pages.
61
HASH
Hash
Internal data structure
!62
- Only useful if you have a data not fitting
into a page (8kb)
- Only operator is =
- If you use a PG version < 10, it’s just awful
Conclusion
!63
- B-Tree
- Great for <, >, =, >=, <=
- GIN
- Fulltext search, jsonb, arrays
- ADD OPERATORS
- Inserts can be slow because of unicity of the
keys
- BRIN
- Great for huge table with correlation between
value and physical location
- <, >, =, >=, <=
- GiST
- Great for overlapping
- Using key class functions
- Can be implemented for any data type
- SP-Gist
- Also using key class function
- Decomposed keys
- Can be used for non balanced data
structures (k-d trees)
- Hash
- If you have a value > 8kB
- Only for =
Questions
!64
Thanks for your attention
Go read the articles www.louisemeta.com
Now only the ones on BTrees are published,
but I’ll announce the rest on twitter
@louisemeta
Crocodiles by https://www.instagram.com/zimmoriarty/?hl=en
1 of 64

Recommended

PostgreSQL: Advanced indexing by
PostgreSQL: Advanced indexingPostgreSQL: Advanced indexing
PostgreSQL: Advanced indexingHans-Jürgen Schönig
2.7K views73 slides
Postgres index types by
Postgres index typesPostgres index types
Postgres index typesLouise Grandjonc
1.5K views45 slides
Deep dive into PostgreSQL statistics. by
Deep dive into PostgreSQL statistics.Deep dive into PostgreSQL statistics.
Deep dive into PostgreSQL statistics.Alexey Lesovsky
22.9K views53 slides
MySQL Indexing - Best practices for MySQL 5.6 by
MySQL Indexing - Best practices for MySQL 5.6MySQL Indexing - Best practices for MySQL 5.6
MySQL Indexing - Best practices for MySQL 5.6MYXPLAIN
19.9K views41 slides
PostgreSQL Database Slides by
PostgreSQL Database SlidesPostgreSQL Database Slides
PostgreSQL Database Slidesmetsarin
5.3K views124 slides
PostgreSQL Performance Tables Partitioning vs. Aggregated Data Tables by
PostgreSQL Performance Tables Partitioning vs. Aggregated Data TablesPostgreSQL Performance Tables Partitioning vs. Aggregated Data Tables
PostgreSQL Performance Tables Partitioning vs. Aggregated Data TablesSperasoft
20.2K views20 slides

More Related Content

What's hot

What is in a Lucene index? by
What is in a Lucene index?What is in a Lucene index?
What is in a Lucene index?lucenerevolution
48K views38 slides
MongoDB .local Toronto 2019: Tips and Tricks for Effective Indexing by
MongoDB .local Toronto 2019: Tips and Tricks for Effective IndexingMongoDB .local Toronto 2019: Tips and Tricks for Effective Indexing
MongoDB .local Toronto 2019: Tips and Tricks for Effective IndexingMongoDB
8.4K views211 slides
Postgresql by
PostgresqlPostgresql
PostgresqlNexThoughts Technologies
3.6K views20 slides
PostgreSQL by
PostgreSQLPostgreSQL
PostgreSQLAmazon Web Services
6.4K views30 slides
Introduction to Mongodb execution plan and optimizer by
Introduction to Mongodb execution plan and optimizerIntroduction to Mongodb execution plan and optimizer
Introduction to Mongodb execution plan and optimizerMydbops
979 views28 slides
Indexing with MongoDB by
Indexing with MongoDBIndexing with MongoDB
Indexing with MongoDBMongoDB
12.6K views24 slides

What's hot(20)

MongoDB .local Toronto 2019: Tips and Tricks for Effective Indexing by MongoDB
MongoDB .local Toronto 2019: Tips and Tricks for Effective IndexingMongoDB .local Toronto 2019: Tips and Tricks for Effective Indexing
MongoDB .local Toronto 2019: Tips and Tricks for Effective Indexing
MongoDB8.4K views
Introduction to Mongodb execution plan and optimizer by Mydbops
Introduction to Mongodb execution plan and optimizerIntroduction to Mongodb execution plan and optimizer
Introduction to Mongodb execution plan and optimizer
Mydbops979 views
Indexing with MongoDB by MongoDB
Indexing with MongoDBIndexing with MongoDB
Indexing with MongoDB
MongoDB12.6K views
Optimizing Autovacuum: PostgreSQL's vacuum cleaner by SamaySharma10
Optimizing Autovacuum: PostgreSQL's vacuum cleanerOptimizing Autovacuum: PostgreSQL's vacuum cleaner
Optimizing Autovacuum: PostgreSQL's vacuum cleaner
SamaySharma10103 views
Dynamic filtering for presto join optimisation by Ori Reshef
Dynamic filtering for presto join optimisationDynamic filtering for presto join optimisation
Dynamic filtering for presto join optimisation
Ori Reshef1.5K views
Innodb에서의 Purge 메커니즘 deep internal (by 이근오) by I Goo Lee.
Innodb에서의 Purge 메커니즘 deep internal (by  이근오)Innodb에서의 Purge 메커니즘 deep internal (by  이근오)
Innodb에서의 Purge 메커니즘 deep internal (by 이근오)
I Goo Lee.1.4K views
PostgreSQL Performance Tuning by elliando dias
PostgreSQL Performance TuningPostgreSQL Performance Tuning
PostgreSQL Performance Tuning
elliando dias4.1K views
mongodb와 mysql의 CRUD 연산의 성능 비교 by Woo Yeong Choi
mongodb와 mysql의 CRUD 연산의 성능 비교mongodb와 mysql의 CRUD 연산의 성능 비교
mongodb와 mysql의 CRUD 연산의 성능 비교
Woo Yeong Choi31.7K views
MySQL: Indexing for Better Performance by jkeriaki
MySQL: Indexing for Better PerformanceMySQL: Indexing for Better Performance
MySQL: Indexing for Better Performance
jkeriaki5.7K views
Advanced pg_stat_statements: Filtering, Regression Testing & more by Lukas Fittl
Advanced pg_stat_statements: Filtering, Regression Testing & moreAdvanced pg_stat_statements: Filtering, Regression Testing & more
Advanced pg_stat_statements: Filtering, Regression Testing & more
Lukas Fittl2.7K views
Distributed Ruby and Rails by Wen-Tien Chang
Distributed Ruby and RailsDistributed Ruby and Rails
Distributed Ruby and Rails
Wen-Tien Chang10.7K views
PostgreSQL 튜닝워크샵 (2017년8월) by DBdemy
PostgreSQL 튜닝워크샵 (2017년8월)PostgreSQL 튜닝워크샵 (2017년8월)
PostgreSQL 튜닝워크샵 (2017년8월)
DBdemy10.9K views
MySQL 상태 메시지 분석 및 활용 by I Goo Lee
MySQL 상태 메시지 분석 및 활용MySQL 상태 메시지 분석 및 활용
MySQL 상태 메시지 분석 및 활용
I Goo Lee5.9K views
Myths of Big Partitions (Robert Stupp, DataStax) | Cassandra Summit 2016 by DataStax
Myths of Big Partitions (Robert Stupp, DataStax) | Cassandra Summit 2016Myths of Big Partitions (Robert Stupp, DataStax) | Cassandra Summit 2016
Myths of Big Partitions (Robert Stupp, DataStax) | Cassandra Summit 2016
DataStax10.7K views
[Pgday.Seoul 2020] SQL Tuning by PgDay.Seoul
[Pgday.Seoul 2020] SQL Tuning[Pgday.Seoul 2020] SQL Tuning
[Pgday.Seoul 2020] SQL Tuning
PgDay.Seoul1.2K views
How does PostgreSQL work with disks: a DBA's checklist in detail. PGConf.US 2015 by PostgreSQL-Consulting
How does PostgreSQL work with disks: a DBA's checklist in detail. PGConf.US 2015How does PostgreSQL work with disks: a DBA's checklist in detail. PGConf.US 2015
How does PostgreSQL work with disks: a DBA's checklist in detail. PGConf.US 2015

Similar to Indexes in postgres

Croco talk pgconfeu by
Croco talk pgconfeuCroco talk pgconfeu
Croco talk pgconfeuLouise Grandjonc
1.2K views68 slides
Indexes in Postgres | PostgreSQL Conference Europe 2018 | Louise Grandjonc by
Indexes in Postgres | PostgreSQL Conference Europe 2018 | Louise GrandjoncIndexes in Postgres | PostgreSQL Conference Europe 2018 | Louise Grandjonc
Indexes in Postgres | PostgreSQL Conference Europe 2018 | Louise GrandjoncCitus Data
121 views68 slides
A story on Postgres index types | PostgresLondon 2019 | Louise Grandjonc by
A story on Postgres index types | PostgresLondon 2019 | Louise GrandjoncA story on Postgres index types | PostgresLondon 2019 | Louise Grandjonc
A story on Postgres index types | PostgresLondon 2019 | Louise GrandjoncCitus Data
170 views68 slides
Работа с индексами - лучшие практики для MySQL 5.6, Петр Зайцев (Percona) by
Работа с индексами - лучшие практики для MySQL 5.6, Петр Зайцев (Percona)Работа с индексами - лучшие практики для MySQL 5.6, Петр Зайцев (Percona)
Работа с индексами - лучшие практики для MySQL 5.6, Петр Зайцев (Percona)Ontico
4.1K views42 slides
MySQL innoDB split and merge pages by
MySQL innoDB split and merge pagesMySQL innoDB split and merge pages
MySQL innoDB split and merge pagesMarco Tusa
337 views36 slides
Optimal Binary Search tree ppt seminar.pptx by
Optimal Binary Search tree ppt seminar.pptxOptimal Binary Search tree ppt seminar.pptx
Optimal Binary Search tree ppt seminar.pptxssusered44c8
35 views16 slides

Similar to Indexes in postgres(20)

Indexes in Postgres | PostgreSQL Conference Europe 2018 | Louise Grandjonc by Citus Data
Indexes in Postgres | PostgreSQL Conference Europe 2018 | Louise GrandjoncIndexes in Postgres | PostgreSQL Conference Europe 2018 | Louise Grandjonc
Indexes in Postgres | PostgreSQL Conference Europe 2018 | Louise Grandjonc
Citus Data121 views
A story on Postgres index types | PostgresLondon 2019 | Louise Grandjonc by Citus Data
A story on Postgres index types | PostgresLondon 2019 | Louise GrandjoncA story on Postgres index types | PostgresLondon 2019 | Louise Grandjonc
A story on Postgres index types | PostgresLondon 2019 | Louise Grandjonc
Citus Data170 views
Работа с индексами - лучшие практики для MySQL 5.6, Петр Зайцев (Percona) by Ontico
Работа с индексами - лучшие практики для MySQL 5.6, Петр Зайцев (Percona)Работа с индексами - лучшие практики для MySQL 5.6, Петр Зайцев (Percona)
Работа с индексами - лучшие практики для MySQL 5.6, Петр Зайцев (Percona)
Ontico4.1K views
MySQL innoDB split and merge pages by Marco Tusa
MySQL innoDB split and merge pagesMySQL innoDB split and merge pages
MySQL innoDB split and merge pages
Marco Tusa337 views
Optimal Binary Search tree ppt seminar.pptx by ssusered44c8
Optimal Binary Search tree ppt seminar.pptxOptimal Binary Search tree ppt seminar.pptx
Optimal Binary Search tree ppt seminar.pptx
ssusered44c835 views
Introduction to Search Systems - ScaleConf Colombia 2017 by Toria Gibbs
Introduction to Search Systems - ScaleConf Colombia 2017Introduction to Search Systems - ScaleConf Colombia 2017
Introduction to Search Systems - ScaleConf Colombia 2017
Toria Gibbs1.3K views
"MySQL Boosting - DB Best Practices & Optimization" by José Luis Martínez - C... by CAPSiDE
"MySQL Boosting - DB Best Practices & Optimization" by José Luis Martínez - C..."MySQL Boosting - DB Best Practices & Optimization" by José Luis Martínez - C...
"MySQL Boosting - DB Best Practices & Optimization" by José Luis Martínez - C...
CAPSiDE675 views
Postgres Vision 2018: Five Sharding Data Models by EDB
Postgres Vision 2018: Five Sharding Data ModelsPostgres Vision 2018: Five Sharding Data Models
Postgres Vision 2018: Five Sharding Data Models
EDB355 views
MySQL Indexing by BADR
MySQL IndexingMySQL Indexing
MySQL Indexing
BADR120 views
It's Not You. It's Your Data Model. by Alex Powers
It's Not You. It's Your Data Model.It's Not You. It's Your Data Model.
It's Not You. It's Your Data Model.
Alex Powers149 views
Esoteric Data structures by Mugisha Moses
Esoteric Data structures Esoteric Data structures
Esoteric Data structures
Mugisha Moses1.3K views
A look inside pandas design and development by Wes McKinney
A look inside pandas design and developmentA look inside pandas design and development
A look inside pandas design and development
Wes McKinney29.5K views
Analytics: The Final Data Frontier (or, Why Users Need Your Data and How Pino... by HostedbyConfluent
Analytics: The Final Data Frontier (or, Why Users Need Your Data and How Pino...Analytics: The Final Data Frontier (or, Why Users Need Your Data and How Pino...
Analytics: The Final Data Frontier (or, Why Users Need Your Data and How Pino...
Basics in algorithms and data structure by Eman magdy
Basics in algorithms and data structure Basics in algorithms and data structure
Basics in algorithms and data structure
Eman magdy414 views

More from Louise Grandjonc

Amazing SQL your django ORM can or can't do by
Amazing SQL your django ORM can or can't doAmazing SQL your django ORM can or can't do
Amazing SQL your django ORM can or can't doLouise Grandjonc
2.3K views42 slides
Pg exercices by
Pg exercicesPg exercices
Pg exercicesLouise Grandjonc
397 views13 slides
Becoming a better developer with EXPLAIN by
Becoming a better developer with EXPLAINBecoming a better developer with EXPLAIN
Becoming a better developer with EXPLAINLouise Grandjonc
721 views60 slides
The amazing world behind your ORM by
The amazing world behind your ORMThe amazing world behind your ORM
The amazing world behind your ORMLouise Grandjonc
1K views51 slides
Conf orm - explain by
Conf orm - explainConf orm - explain
Conf orm - explainLouise Grandjonc
841 views52 slides
Meetup pg recherche fulltext ES -> PG by
Meetup pg recherche fulltext ES -> PGMeetup pg recherche fulltext ES -> PG
Meetup pg recherche fulltext ES -> PGLouise Grandjonc
872 views18 slides

More from Louise Grandjonc(6)

Recently uploaded

MK__Cert.pdf by
MK__Cert.pdfMK__Cert.pdf
MK__Cert.pdfHassan Khan
10 views1 slide
Control Systems Feedback.pdf by
Control Systems Feedback.pdfControl Systems Feedback.pdf
Control Systems Feedback.pdfLGGaming5
6 views39 slides
Update 42 models(Diode/General ) in SPICE PARK(DEC2023) by
Update 42 models(Diode/General ) in SPICE PARK(DEC2023)Update 42 models(Diode/General ) in SPICE PARK(DEC2023)
Update 42 models(Diode/General ) in SPICE PARK(DEC2023)Tsuyoshi Horigome
28 views16 slides
Saikat Chakraborty Java Oracle Certificate.pdf by
Saikat Chakraborty Java Oracle Certificate.pdfSaikat Chakraborty Java Oracle Certificate.pdf
Saikat Chakraborty Java Oracle Certificate.pdfSaikatChakraborty787148
15 views1 slide
Introduction to CAD-CAM.pptx by
Introduction to CAD-CAM.pptxIntroduction to CAD-CAM.pptx
Introduction to CAD-CAM.pptxsuyogpatil49
5 views15 slides
DevOps-ITverse-2023-IIT-DU.pptx by
DevOps-ITverse-2023-IIT-DU.pptxDevOps-ITverse-2023-IIT-DU.pptx
DevOps-ITverse-2023-IIT-DU.pptxAnowar Hossain
9 views45 slides

Recently uploaded(20)

Control Systems Feedback.pdf by LGGaming5
Control Systems Feedback.pdfControl Systems Feedback.pdf
Control Systems Feedback.pdf
LGGaming56 views
Update 42 models(Diode/General ) in SPICE PARK(DEC2023) by Tsuyoshi Horigome
Update 42 models(Diode/General ) in SPICE PARK(DEC2023)Update 42 models(Diode/General ) in SPICE PARK(DEC2023)
Update 42 models(Diode/General ) in SPICE PARK(DEC2023)
Introduction to CAD-CAM.pptx by suyogpatil49
Introduction to CAD-CAM.pptxIntroduction to CAD-CAM.pptx
Introduction to CAD-CAM.pptx
suyogpatil495 views
DevOps to DevSecOps: Enhancing Software Security Throughout The Development L... by Anowar Hossain
DevOps to DevSecOps: Enhancing Software Security Throughout The Development L...DevOps to DevSecOps: Enhancing Software Security Throughout The Development L...
DevOps to DevSecOps: Enhancing Software Security Throughout The Development L...
Anowar Hossain13 views
Literature review and Case study on Commercial Complex in Nepal, Durbar mall,... by AakashShakya12
Literature review and Case study on Commercial Complex in Nepal, Durbar mall,...Literature review and Case study on Commercial Complex in Nepal, Durbar mall,...
Literature review and Case study on Commercial Complex in Nepal, Durbar mall,...
AakashShakya1272 views
zincalume water storage tank design.pdf by 3D LABS
zincalume water storage tank design.pdfzincalume water storage tank design.pdf
zincalume water storage tank design.pdf
3D LABS5 views
Instrumentation & Control Lab Manual.pdf by NTU Faisalabad
Instrumentation & Control Lab Manual.pdfInstrumentation & Control Lab Manual.pdf
Instrumentation & Control Lab Manual.pdf
NTU Faisalabad 5 views
MSA Website Slideshow (16).pdf by msaucla
MSA Website Slideshow (16).pdfMSA Website Slideshow (16).pdf
MSA Website Slideshow (16).pdf
msaucla68 views
fakenews_DBDA_Mar23.pptx by deepmitra8
fakenews_DBDA_Mar23.pptxfakenews_DBDA_Mar23.pptx
fakenews_DBDA_Mar23.pptx
deepmitra814 views

Indexes in postgres

  • 1. Indexes in Postgres (the long story or crocodiles going to the dentist) Louise Grandjonc 1
  • 2. About me Solutions Engineer at Citus Data Previously lead python developer Postgres enthusiast @louisemeta on twitter www.louisemeta.com !2
  • 3. What we’re going to talk about 1. What are indexes for? 2. Pages and CTIDs 3. B-Tree 4. GIN 5. GiST 6. SP-GiST 7. Brin 8. Hash !3
  • 4. First things first: the crocodiles !4 • 250k crocodiles • 100k birds • 2M appointments
  • 6. Constraints !6 Some constraints transform into indexes. - PRIMARY KEY - UNIQUE - EXCLUDE USING "crocodile_pkey" PRIMARY KEY, btree (id) "crocodile_email_uq" UNIQUE CONSTRAINT, btree (email) Indexes: "appointment_pkey" PRIMARY KEY, btree (id) "appointment_crocodile_id_schedule_excl" EXCLUDE USING gist (crocodile_id WITH =, schedule WITH &&) In the crocodile table In the appointment table
  • 7. Query optimization !7 Often the main reason why we create indexes Why do indexes make queries faster In an index, tuples (value, pointer) are stored. Instead of reading the entire table for a value, you just go to the index (kind of like in an encyclopedia)
  • 8. 8 Pages, heaps and their pointers
  • 9. Pages !9 - PostgreSQL uses pages to store data from indexes or tables - A page has a fixed size of 8kB - A page has a header and items - In an index, each item is a tuple (value, pointer) - Each item in a page is referenced to with a pointer called ctid - The ctid consist of two numbers, the number of the page (the block number) and the offset of the item. The ctid of the item with value 4 would be (3, 2).
  • 10. 10 pageinspect and gevel Extensions to look into your index pages
  • 11. pageinspect, gevel and a bit of python !11 Page inspect is an extension that allows you to explore a bit what’s inside the pages Functions for BTree, GIN, BRIN and Hash indexes Gevel adds functions to GiST, SP-Gist and GIN. Used them to generate pictures for BTree and GiST https://github.com/louiseGrandjonc/pageinspect_inspector
  • 13. B-Trees internal data structure - 1 !13 - A BTree in a balanced tree - All the leaves are at equal distance from the root. - A parent node can have multiple children minimizing the tree’s depth - Postgres implements the Lehman & Yao Btree Let’s say we would like to filter or order on the crocodile’s number of teeth. CREATE INDEX ON crocodile (number_of_teeth);
  • 14. B-Trees internal data structure - 2 Metapage !14 The metapage is always the first page of a BTree index. It contains: - The block number of the root page - The level of the root - A block number for the fast root - The level of the fast root
  • 15. B-Trees internal data structure - 2 Metapage !15 SELECT * FROM bt_metap('crocodile_number_of_teeth_idx'); magic | version | root | level | fastroot | fastlevel --------+---------+------+-------+----------+----------- 340322 | 2 | 290 | 2 | 290 | 2 (1 row) Using page inspect, you can get the information on the metapage
  • 16. B-Trees internal data structure - 3 Pages !16 The root, the parents, and the leaves are all pages with the same structure. Pages have: - A block number, here the root block number is 290 - A high key - A pointer to the next (right) and previous pages - Items
  • 17. B-Trees internal data structure - 4 Pages high key !17 - High key is specific to Lehman & Yao BTrees - Any item in the page will have a value lower or equal to the high key - The root doesn’t have a high key - The right-most page of a level doesn’t have a high key And in page 575, there is no high key as it’s the rightmost page. In page 3, I will find crocodiles with 3 or less teeth In page 289, with 31 and less
  • 18. B-Trees internal data structure - 5 Next and previous pages pointers !18 - Specificity of the Yao and Lehmann BTree - Pages in the same level are in a linked list Very useful for ORDER BY For example: SELECT number_of_teeth FROM crocodile ORDER BY number_of_teeth ASC Postgres would start at the first leaf page and thanks to the next page pointer, has directly all rows in the right order.
  • 19. B-Trees internal data structure - 6 Page inspect for BTree pages !19 SELECT * FROM bt_page_stats(‘crocodile_number_of_teeth_idx’, 289); -[ RECORD 1 ]-+----- blkno | 289 type | i live_items | 285 dead_items | 0 avg_item_size | 15 page_size | 8192 free_size | 2456 btpo_prev | 3 btpo_next | 575 btpo | 1 btpo_flags | 0
  • 20. B-Trees internal data structure - 7 Items !20 - Items have a value and a pointer - In the parents, the ctid points to the child page - In the parents, the value is the value of the first item in the child page
  • 21. B-Trees internal data structure - 8 Items !21 - In the leaves, the ctid is to the heap tuple in the table - In the leaves it’s the value of the column(s) of the row
  • 22. B-Trees internal data structure To sum it up !22 - A Btree is a balanced tree. PostgreSQL implements the Lehmann & Yao algorithm - Metapage contains information on the root and fast root - Root, parent, and leaves are pages. - Each level is a linked list making it easier to move from one page to an other within the same level. - Pages have a high key defining the biggest value in the page - Pages have items pointing to an other page or the row.

  • 23. B-Trees - Searching in a BTree !23 1. Scan keys are created 2. Starting from the root until a leaf page • Is moving to the right page necessary? • If the page is a leaf, return the first item with a value higher or equal to the scan key • Binary search to find the right path to follow • Descend to the child page and lock it SELECT email FROM crocodile WHERE number_of_teeth >= 20;
  • 24. B-Trees - Scan keys !24 Postgres uses the query scan to define scankeys. If possible, redundant keys in your query are eliminated to keep only the tightest bounds. The tightest bound is number_of_teeth > 5 SELECT email, number_of teeth FROM crocodile WHERE number_of_teeth > 4 AND number_of_teeth > 5 ORDER BY number_of_teeth ASC; email | number_of_teeth ----------------------------------------+----------------- anne.chow222131@croco.com | 6 valentin.williams222154@croco.com | 6 pauline.lal222156@croco.com | 6 han.yadav232276@croco.com | 6
  • 25. B-Trees - About read locks !25 We put a read lock on the currently examined page. Read locks  ensure that the  records on that page are not modified while reading it. There could still be a concurrent insert on a child page causing a page split.
  • 26. BTrees - Is moving right necessary? !26 Concurrent insert while visiting the root: SELECT email FROM crocodile WHERE number_of_teeth >= 20;
  • 27. BTrees - Is moving right necessary? !27 The new high key of child page is 19 So we need to move right to the page 840
  • 28. B-Trees - Searching in a BTree !28 1. Scan keys are created 2. Starting from the root until a leaf page • Is moving to the right page necessary? • If the page is a leaf, return the first item with a value higher or equal to the scan key • Binary search to find the right path to follow • Descend to the child page and lock it SELECT email FROM crocodile WHERE number_of_teeth >= 20;
  • 29. BTrees - Inserting !29 1. Find the right insert page 2. Lock the page 3. Check constraint 4. Split page if necessary and insert row 5. In case of page split, recursively insert a new item in the parent level
  • 30. BTrees -Inserting Finding the right page !30 Auto-incremented values: Primary keys with a sequence for example, like the index crocodile_pkey. New values will always be inserted in the right-most leaf page. To avoid using the search algorithm, Postgres caches this page. Non auto-incremented values: The search algorithm is used to find the right leaf page.
  • 31. BTrees -Inserting Page split !31 1. Is a split necessary? If the free space on the target page is lower than the item’s size, then a split is necessary. 2. Finding the split point Postgres wants to equalize the free space on each page to limit page splits in future inserts. 3. Splitting
  • 32. BTrees - Deleting !32 - Items are marked as deleted and will be ignored in future index scans until VACUUM - A page is deleted only if all its items have been deleted. - It is possible to end up with a tree with several levels with only one page. - The fast root is used to optimize the search.
  • 34. GIN !34 - GIN (Generalized Inverted Index)  - Used to index arrays, jsonb, and tsvector (for fulltext search) columns. - Efficient for <@, &&, @@@ operators New column healed_teeth (integer[])   Here is how to create the GIN index for this column croco=# SELECT email, number_of_teeth, healed_teeth FROM crocodile WHERE id =1; -[ RECORD 1 ]---+-------------------------------------------------------- email | louise.grandjonc1@croco.com number_of_teeth | 58 healed_teeth | {16,11,55,27,22,41,38,2,5,40,52,57,28,50,10,15,1,12,46} CREATE INDEX ON crocodile USING GIN(healed_teeth);
  • 35. GIN How is it different from a BTree? - Keys !35 - GIN indexes are binary trees - Just like BTree, their first page is a metapage First difference: the keys BTree index on healed_teeth The indexed values are arrays Seq Scan on crocodile (cost=…) Filter: ('{1,2}'::integer[] <@ healed_teeth) Rows Removed by Filter: 250728 Planning time: 0.157 ms Execution time: 161.716 ms (5 rows) SELECT email FROM crocodile WHERE ARRAY[1, 2] <@ healed_teeth;
  • 36. GIN How is it different from a BTree? - Keys !36 - In a GIN index, the array is split and each value is an entry - The values are unique
  • 37. GIN How is it different from a BTree? - Keys !37 Bitmap Heap Scan on crocodile (cost=516.59..6613.42 rows=54786 width=29) (actual time=15.960..38.197 rows=73275 loops=1) Recheck Cond: ('{1,2}'::integer[] <@ healed_teeth) Heap Blocks: exact=4218 -> Bitmap Index Scan on crocodile_healed_teeth_idx (cost=0.00..502.90 rows=54786 width=0) (actual time=15.302..15.302 rows=73275 loops=1) Index Cond: ('{1,2}'::integer[] <@ healed_teeth) Planning time: 0.124 ms Execution time: 41.018 ms (7 rows) Seq Scan on crocodile (cost=…) Filter: ('{1,2}'::integer[] <@ healed_teeth) Rows Removed by Filter: 250728 Planning time: 0.157 ms Execution time: 161.716 ms (5 rows)
  • 38. GIN How is it different from a BTree? Leaves !38 - In a leaf page, the items contain a posting list of pointers to the rows in the table - If the list can’t fit in the page, it becomes a posting tree - In the leaf item remains a pointer to the posting tree
  • 39. GIN How is it different from a BTree? Pending list !39 - To optimise inserts, we store the new entries in a pending list (linear list of pages) - Entries are moved to the main tree on VACUUM or when the list is full - You can disable the pending list by setting fastupdate to false (on CREATE or ALTER INDEX) SELECT * FROM gin_metapage_info(get_raw_page('crocodile_healed_teeth_idx', 0)); -[ RECORD 1 ]----+----------- pending_head | 4294967295 pending_tail | 4294967295 tail_free_size | 0 n_pending_pages | 0 n_pending_tuples | 0 n_total_pages | 358 n_entry_pages | 1 n_data_pages | 356 n_entries | 47 version | 2
  • 40. GIN To sum it up !40 To sum up, a GIN index has: - A metapage - A BTree of key entries - The values are unique in the main binary tree - The leaves either contain a pointer to a posting tree, or a posting list of heap pointers - New rows go into a pending list until it’s full or VACUUM, that list needs to be scanned while searching the index
  • 42. GiST - keys !42 Differences with a BTree index - Data isn’t ordered - The key ranges can overlap Which means that a same value can be inserted in different pages
  • 43. GiST - keys !43 Differences with a BTree index - Data isn’t ordered - The key ranges can overlap Which means that a same value can be inserted in different pages Data isn’t ordered
  • 44. GiST - keys !44 A new appointment scheduled from  August 14th 2014 7:30am to 8:30am can be inserted in both pages. CREATE INDEX ON appointment USING GIST(schedule) Differences with a BTree index - Data isn’t ordered - The key ranges can overlap Which means that a same value can be inserted in different pages
  • 45. GiST - keys !45 Differences with a BTree index - Data isn’t ordered - The key ranges can overlap Which means that a same value can be inserted in different pages A new appointment scheduled from  August 14th 2014 7:30am to 8:30am can be inserted in both pages. CREATE INDEX ON appointment USING GIST(schedule)
  • 46. GiST key class functions !46 GiST allows the development of custom data types with the appropriate access methods. These functions are key class functions: Union: used while inserting, if the range changed Distance: used for ORDER BY and nearest neighbor, calculates the distance to the scan key
  • 47. GiST key class functions - 2 !47 Consistent: returns MAYBE if the range contains the searched value, meaning that rows could be in the page Child pages could contain the appointments overlapping [2018-05-17 08:00:00, 2018-05-17 13:00:00] Consistent returns MAYBE
  • 48. GiST - Searching !48 SELECT c.email, schedule, done, emergency_level FROM appointment INNER JOIN crocodile c ON (c.id=crocodile_id) WHERE schedule && '[2018-05-17 08:00:00, 2018-05-17 13:00:00]'::tstzrange AND done IS FALSE ORDER BY schedule DESC LIMIT 3; 1. Create a search queue of pages to explore with the root in it 2. While the search queue isn’t empty, pops a page 1. If the page is a leaf: update the bitmap with CTIDs of rows 2. Else, adds to the search queue the items where Consistent returned MAYBE
  • 49. GiST - Inserting !49 A new item can be inserted in any page. Penalty: key class function (defined by user) gives a number representing how bad it would be to insert the value in the child page. About page split: Picksplit: makes groups with little distance Performance of search will depend a lot of Picksplit
  • 50. GiST - Inserting !50 A new item can be inserted in any page. Penalty: key class function (defined by user) gives a number representing how bad it would be to insert the value in the child page. About page split: Picksplit: makes groups with little distance Performance of search will depend a lot of Picksplit
  • 51. To sum up !51 - Useful for overlapping (geometries, array etc.) - Nearest neighbor - Can be used for full text search (tsvector, tsquery) - Any data type can implement GiST as long as a few methods are available
  • 53. SP-GiST Internal data structure !53 - Not a balanced tree - A same page can’t have inner tuples and leaf tuples - Keys are decomposed - In an inner tuple, the value is the prefix - In a leaf tuple, the value is the rest (postfix)
  • 54. P L A Page blkno: 1 ABLO UISE RIAN O D Page blkno: 8 Page blkno: 4 SP-GiST Pages !54 SELECT tid, level, leaf_value FROM spgist_print('crocodile_first_name_idx3') as t (tid tid, a bool, n int, level int, p tid, pr text, l smallint, leaf_value text) ; tid | level | leaf_value ----------+-------+------------ … (4,36) | 2 | ablo (4,57) | 2 | ustafa (4,84) | 3 | rian (4,153) | 3 | uise … Here are how the pages are organized if we look into gevel’s sp-gist functions for this index
  • 55. SP-GiST !55 - Can be used for points - For text to search for prefix - For non balanced data structures (k-d trees) - Like GiST: allows the development of custom data types
  • 57. BRIN Internal data structure !57 - Block Range Index - Not a binary tree - Not even a tree - Block range: group of pages physically adjacent - For each block range: the range of values is stored - BRIN indexes are very small - Fast scanning on large tables
  • 58. BRIN Internal data structure !58 SELECT * FROM brin_page_items(get_raw_page('appointment_created_at_idx', 2), 'appointment_created_at_idx'); itemoffset | blknum | attnum | allnulls | hasnulls | placeholder | value ------------+--------+--------+----------+----------+-------------+--------------------------------------------------- 1 | 0 | 1 | f | f | f | {2008-03-01 00:00:00-08 .. 2009-07-07 07:30:00-07} 2 | 128 | 1 | f | f | f | {2009-07-07 08:00:00-07 .. 2010-11-12 15:30:00-08} 3 | 256 | 1 | f | f | f | {2010-11-12 16:00:00-08 .. 2012-03-19 23:30:00-07} 4 | 384 | 1 | f | f | f | {2012-03-20 00:00:00-07 .. 2013-07-26 07:30:00-07} 5 | 512 | 1 | f | f | f | {2013-07-26 08:00:00-07 .. 2014-12-01 15:30:00-08} SELECT id, created_at FROM appointment WHERE ctid='(0, 1)'::tid; id | created_at --------+------------------------ 101375 | 2008-03-01 00:00:00-08 (1 row)
  • 59. BRIN Internal data structure !59 SELECT * FROM brin_page_items(get_raw_page('crocodile_birthday_idx', 2), 'crocodile_birthday_idx'); itemoffset | blknum | attnum | allnulls | hasnulls | placeholder | value ------------+--------+--------+----------+----------+-------------+---------------------------- 1 | 0 | 1 | f | f | f | {1948-09-05 .. 2018-09-04} 2 | 128 | 1 | f | f | f | {1948-09-07 .. 2018-09-03} 3 | 256 | 1 | f | f | f | {1948-09-05 .. 2018-09-03} 4 | 384 | 1 | f | f | f | {1948-09-05 .. 2018-09-04} 5 | 512 | 1 | f | f | f | {1948-09-05 .. 2018-09-02} 6 | 640 | 1 | f | f | f | {1948-09-09 .. 2018-09-04} … (14 rows) In this case, the values in birthday has no correlation with the physical location, the index would not speed up the search as all pages would have to be visited. BRIN is interesting for data where the value is correlated with the physical location.
  • 60. BRIN Warning on DELETE and INSERT !60 SELECT * FROM brin_page_items(get_raw_page('appointment_created_at_idx', 2), 'appointment_created_at_idx'); itemoffset | blknum | attnum | allnulls | hasnulls | placeholder | value ------------+--------+--------+----------+----------+-------------+--------------------------------------------------- 1 | 0 | 1 | f | f | f | {2008-03-01 00:00:00-08 .. 2018-07-01 07:30:00-07} 2 | 128 | 1 | f | f | f | {2009-07-07 08:00:00-07 .. 2018-07-01 23:30:00-07} 3 | 256 | 1 | f | f | f | {2010-11-12 16:00:00-08 .. 2012-03-19 23:30:00-07} 4 | 384 | 1 | f | f | f | {2012-03-20 00:00:00-07 .. 2018-07-06 23:30:00-07} DELETE FROM appointment WHERE created_at >= '2009-07-07' AND created_at < ‘2009-07-08'; DELETE FROM appointment WHERE created_at >= '2012-03-20' AND created_at < ‘2012-03-25'; Deleted and then vacuum on the appointment table New rows are inserted in the free space after VACUUM BRIN index has some ranges with big data ranges. Search will visit a lot of pages.
  • 62. Hash Internal data structure !62 - Only useful if you have a data not fitting into a page (8kb) - Only operator is = - If you use a PG version < 10, it’s just awful
  • 63. Conclusion !63 - B-Tree - Great for <, >, =, >=, <= - GIN - Fulltext search, jsonb, arrays - ADD OPERATORS - Inserts can be slow because of unicity of the keys - BRIN - Great for huge table with correlation between value and physical location - <, >, =, >=, <= - GiST - Great for overlapping - Using key class functions - Can be implemented for any data type - SP-Gist - Also using key class function - Decomposed keys - Can be used for non balanced data structures (k-d trees) - Hash - If you have a value > 8kB - Only for =
  • 64. Questions !64 Thanks for your attention Go read the articles www.louisemeta.com Now only the ones on BTrees are published, but I’ll announce the rest on twitter @louisemeta Crocodiles by https://www.instagram.com/zimmoriarty/?hl=en