Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

квадрат тэгшитгэл

1,128 views

Published on

Published in: Sports, Business
  • Be the first to comment

квадрат тэгшитгэл

  1. 1. Êâàäðàò òýãøèòãýë áîäîõDef; ax 2 + bx + c = 0 õýëáýðèéí òýãøèòãýëèéã êâàäðàò òýãøèòãýë ãýæ íýðëýíý. ¯¿íä: õ –õóâüñàã÷, a,b,c -ºãºãäñºíòîîíóóä ( a ≠ 0 )Def; Õýðýâ êâàäðàò òýãøèòãýëèéí b,c –êîýôôèöèåíò¿¿äèéí ÿäàæ íýã íü 0 –òýé òýíö¿¿ áîë ò¿¿íèéã ã¿éöýä áèø êâàäðàòòýãøèòãýë ãýíý. ÿéöýä áèø êâàäðàò òýãøèòãýë äàðààõ õýëáýð¿¿äòýé áàéæ áîëîõ áà ò¿¿íèéã õýðõýí áîäîõ òàëààð àâ÷¿çüå. 1. ax 2 = 0 áîë x = 0 2. ax 2 + bx = 0 áîë ò¿¿íèéã áîäîõäîî åðºíõèé ¿ðæèãäýõ¿¿í õààëòíààñ ãàðãààä ¿ðæâýð òóñ á¿ðèéã 0 –òýé  x1 = 0 x = 0 x = 0 òýíö¿¿ëæ áîäíî. ª.õ x( ax + b ) = 0 ⇒  ⇒ ⇒ b ãýñýí 2 øèéäòýé ax + b = 0 ax = −b  x2 = −   a  c  x1 = − c a c c 3. ax 2 + c = 0 áîë ò¿¿íèéã áîäîõäîî ax = −c ⇒ x = − ⇒  ýíä − ≥ 0 áàéíà. Õýðýâ − < 0 áîë 2 2 a  c a a  x2 = −  a êâàäðàò òýãøèòãýë øèéäã¿é.Æèøýý íü: 47 − x(3 x + 4) = 2(17 − 2 x) − 62 òýãøèòãýë áîä.Áîäîëò: 47 − 3 x 2 − 4 x = 34 − 4 x − 62 ⇒ 47 − 3x 2 − 4 x − 34 + 4 x + 62 = 0  x1 = 25 = 5− 3x 2 + 75 = 0 ⇒ −3 x 2 = −75 ⇒ x 2 = 25 ⇒   x2 = − 25 = −5 Def; Õýðýâ ax 2 + bx + c = 0 êâàäðàò òýãøèòãýëèéí a,b,c –êîýôôèöèåíò¿¿ä á¿ãä 0 –ýýñ ÿëãààòàé áîë ò¿¿íèéã ã¿éöýäêâàäðàò òýãøèòãýë ãýíý. Îäîî ã¿éöýä êâàäðàò òýãøèòãýëèéã õýðõýí áîäîõ òàëààð àâ÷ ¿çüå. Áîäîõäîî: 1. D = b 2 − 4ac ¿¿íèéã êâàäðàò òýãøèòãýëèéí äèñêðèìèíàíò ãýæ íýðëýíý. Õýðýâ a. D > 0 áîë 2 øèéäòýé b. D = 0 áîë äàâõàöñàí øèéäòýé áóþó 1 øèéäòýé c. D < 0 áîë øèéäã¿é áóþó öààø áîäîõ øààðäëàãàã¿é  −b + D −b± D  x1 = 2a 2. x1, 2 = ⇒ ãýæ áîäíî. 2a  −b− D  x2 =  2aÆèøýý íü: x 2 + 2 x − 8 = 0 òýãøèòãýë áîä.Áîäîëò: Ýíäýýñ êâàäðàò òýãøèòãýëèéí x 2 –èéí ºìíºõ êîýô áóþó a=1, õ –èéí ºìíºõ êîýô áóþó b=2, ñóë ãèø¿¿í áóþó c=-8áàéíà.
  2. 2. D = b 2 − 4ac = ( 2 ) − 4 ⋅ 1 ⋅ ( − 8) = 4 + 32 = 36 . Ýíä äèñêðèìèíàíò íü 0 –ýýñ èõ ó÷èð 2 øèéäòýé áàéíà. Òýäãýýðèéã 2  −2+6 4 − b + D − 2 ± 36 − 2 ± 6  x1 = 2 = 2 = 2îëú¸ x1, 2 = = = ⇒ áîëíî. 2a 2 ⋅1 2  x = − 2 − 6 = − 8 = −4  2  2 2Æèøýý íü: 2 x 2 − 9 x − 5 = 0 òýãøèòãýë áîä.Áîäîëò: Ýíäýýñ êâàäðàò òýãøèòãýëèéí x 2 –èéí ºìíºõ êîýô áóþó a=2, õ –èéí ºìíºõ êîýô áóþó b=-9, ñóë ãèø¿¿í áóþó c=-5áàéíà.D = b 2 − 4ac = ( − 9 ) − 4 ⋅ 2 ⋅ ( − 5) = 81 + 40 = 121 áàéíà. Ýíä äèñêðèìèíàíò íü 0 –ýýñ èõ ó÷èð 2 øèéäòýé áàéíà. 2Òýäãýýðèéã îëú¸.  9 + 11 20 x = = =5 − b + D 9 ± 121 9 ± 11  1 4 4x1, 2 = = = ⇒ áîëíî. 2a 2⋅2 4  x = 9 − 11 = − 2 = − 1  2  4 4 2Ñàíàìæ: Êâàäðàò òýãøèòãýë áîäîõ ÿâöàä –b îëîõäîî b êîýôôèöèåíòèéã ýñðýã òýìäýãòýé òîîãîîð àâ÷ áîäíî.Áèå äààæ áîäîõ áîäëîãóóä:I.Äàðààõ ã¿éöýä áèø êâàäðàò òýãøèòãýë¿¿äèéã áîä.3x 2 − 4 x = 0 − 5x2 + 6x = 0 6b 2 − b = 0 4x2 − 9 = 0 − x2 + 3 = 0 1y2 − =0 6 x 2 + 24 = 0 7 a − 14a 2 = 0 1 − 4x2 = 0 9( 2 x − 1)( 2 x + 1) = x( 2 x + 3) ( 3x + 2) 2 = ( x + 2)( x − 3) ( x + 3)( 3x − 2) = ( 4 x + 5)( 2 x − 3)4 x 2 + 6 x = 9 x 2 − 15 x x( x − 15) = 3(108 − 5 x ) 8 .5 x − 3 x 2 = 3 .5 x + 2 x 2 5x2 + 9 4x2 − 9 13x 2 − 3 9 x 2 − 5( x − 7 )( x + 3) + ( x − 1)( x + 5) = 102 − =3 + =3 6 5 5 4II.Äàðààõ ã¿éöýä êâàäðàò òýãøèòãýë¿¿äèéã áîä.x2 − 4x + 3 = 0 x 2 + 3 x − 10 = 0 x 2 + 9 x + 14 = 0 x 2 − 2 x − 35 = 0x 2 − 5x − 6 = 0 x 2 + 8 x − 20 = 0 x2 − 6x + 8 = 0 x2 + x − 6 = 0x2 + 4x + 3 = 0 2 x 2 − 9 x + 10 = 0 x 2 + 14 x + 50 = 0 5 x 2 + 14 x − 3 = 03 x 2 − 14 x + 16 = 0 x 2 − 22 x − 23 = 0 x 2 − 10 x − 24 = 0 15 y 2 − 22 y − 37 = 010 x 2 − x + 1 = 0 4 x 2 − 8x + 3 = 0 5 x 2 + 3x − 8 = 0 5x 2 = 9x + 2x 2 = 3 x + 40 14 = x 2 + 5 x z − 5 = z 2 − 25 0 .7 x 2 = 1 .3 x + 2( x + 4) 2 = 3x + 40 ( 2 x − 3) 2 = 11x − 19 4( x + 3) = ( x − 5) 2 2 ( 3x − 1)( x + 2) = 20
  3. 3. 3 − y y − 2 ( y − 2) 2x2 + 1 x2 + 3 x + 4 x2 − 4 2x + 3 −x=2 − =5 − =1 = + 2 6 3 8 5 5 4 3( x − 1) 2 − x + 4 = 2 x − 2 ( x + 2)( x − 5) − 11x + 12 = 2 − x − 2 5 6 3 3 10 3III.Íýìýëò ìàòåðèàë: Ñóðàõ áè÷ãèéí ¹188-193; ¹205-214

×