Advertisement

Diabetes presentation 1 complete one

May. 14, 2014
Advertisement

More Related Content

Advertisement

Diabetes presentation 1 complete one

  1. What is diabetes? Diabetes is a chronic disease that arises when the pancreas does not produce enough insulin, or when the body cannot effectively use the insulin it produces. So what is insulin? Insulin is a hormone synthesized in significant quantities in beta cells in the pancreas. Insulin enables cells to take in glucose from the blood and use it for energy. Figure 1: pancreatic islets contain beta cells which produces insulin.
  2. Why is diabetes a serious concern? Global overview: •At present 2014, it is estimated 285 million people. •The diabetic population is expected to explode to 438 million by 2030. •Currently the age group most affected is 40 – 59 years. • By 2030 it is expected that the age group 60-79 years are most likely to be affected the most. •The worlds largest diabetic population is in India. (estimated at 50.8 million) • 70% of diabetic cases exist in poorer countries (with low incomes). Add pic of old lady
  3. Global Diabetes Epidemic (From 2000 to 2030 - in millions) Lifestyle disorders such as obesity are fuelling the incidence of diabetes on a global scale.
  4. Two main types of diabetes? Type 1 Type 2 Pix of diabtese graphs Figure 2: diagram showing the difference of type 1 and type 2 diabetes
  5. Causes of type 1 diabetes: Genetic susceptibility Autoimmune destruction of beta cells Environmental factors Viruses and Infections Infant feeding practices
  6. Causes of type 2 diabetes: Genetic susceptibility Obesity and Physical inactivity Insulin resistance Abnormal glucose production by the liver Beta cell dysfunction
  7. Major symptoms of Diabetes •Excessive thirst and increased urination. •Fatigue •Weightloss •Blurred vision •Slow healing sores •Tingling hands and feet •Red swollen tender gums TAKE YOUR BODY’S HINTS SERIOUSLY!
  8. Major symptoms of Diabetes http://www.google.co.za/imgres?imgurl=&imgrefurl=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDiabetes_mellitus_type_1&h=0&w=0&tbnid=pnSffV LDc_wZNM&zoom=1&tbnh=227&tbnw=222&docid=4W4PgW185htkiM&tbm=isch&ei=-OdPU6-1M6SH0AWZjoGQBA&ved=0CAIQsCUoAA
  9. Complications •Eye complications •Foot complications •Skin complications •Heart problems •Hypertension •Mental health •Hearing loss •Gum disease •Neuropathy •Nephropathy •PAD (peripheral arterial disease) •Stroke •Erectile dysfunction •Healing of wounds
  10. Controlling Diabetes: Treatment •Diabetes type 1 lasts a lifetime, there is no known cure. •Type 2 usually lasts a lifetime, however, some people have managed to get rid of their symptoms without medication, through a combination of exercise, diet and body weight control. •Type 1 diabetes is usually treated with regular insulin injections, as well as a special diet and exercise. •Type 2 diabetes is usually treated with tablets, exercise and a special diet, but sometimes insulin injections are also required.
  11. Molecular action of insulin drugs Figure 3:Insulin action in the cell. Insulin exerts multiple effects in the cell. Insulin action is mediated by the binding of insulin to its receptor, and the subsequent phosphorylation of the receptor and other substrates by the receptor tyrosine kinase.
  12. Prevention •Control your weight •Exercise regularly •Eat a balanced diet •Avoid sugary foods •Try and avoid smoking •Alcohol may help now and again
  13. Summary •Diabetes is a complex group of diseases with a variety of causes. Scientists believe genes and environmental factors interact to cause diabetes in most cases. •People with diabetes have high blood glucose, also called high blood sugar or hyperglycemia. Diabetes develops when the body doesn’t make enough insulin or is not able to use insulin effectively, or both. •Insulin is a hormone made by beta cells in the pancreas. Insulin helps cells throughout the body absorb and use glucose for energy. If the body does not produce enough insulin or cannot use insulin effectively, glucose builds up in the blood instead of being absorbed by cells in the body, and the body is starved of energy. •The two main types of diabetes are type 1 diabetes and type 2 diabetes.. •Type 1 diabetes is caused by a lack of insulin due to the destruction of insulin-producing beta cells. In type 1 diabetes—an autoimmune disease—the body’s immune system attacks and destroys the beta cells. •Type 2 diabetes develops when the body can no longer produce enough insulin to compensate for the impaired ability to use insulin.
  14. Scientists discover new causes of diabetes Flanagan,S.E., De Franco,E.,Allen,H.L.,Zerah,M.,Abdul-Rasoul,M.M.,Edge,J.A.,Stewart,H.,Alamiri,E., Hussain,K.,Wallis,S.,de Vries,L.,Rubio Cabezas,O.,Houghton,J.A.L.,Edghill,E.L.,Patch,A.M., Ellard,S., and Hattersley,A.T.(2014). Analysis of Transcription Factors Key for Mouse Pancreatic Development Establishes NKX2-2and MNX1 Mutations as Causes of Neonatal Diabetes in Man. Cell Metabolism 19, 146–154.
  15. This article provides further insights on how the insulin-producing beta cells are formed in the pancreas. Aim: To perform a comprehensive search for recessive mutations in genes encoding transcription factors known to be critical for pancreatic development in mice in a large collection of PNDM patients born to consanguineous parents. Tested mutations in homozygous regions encompassing known transcription factor genes independently of the clinical features to avoid the possible bias introduced when clinical features guide candidate gene testing.
  16. Brief introduction: •Transcriptional regulation of pancreatic development is required to advance current efforts in developing beta cell replacement therapies for patients with diabetes. •To date, mutations in eight different pancreatic transcription factor genes(PDX1, PTF1A, GLIS3, PAX6, RFX6, NEUROD1, NEUROG3, GATA6) have been identified in patients with neonatal diabetes •Neonatal diabetes is diagnosed when a child is less than six months old, and some of these patients have added complications such as muscle weakness and learning difficulties with or without epilepsy. •Neonatal diabetes is caused by a change in a gene which affects insulin production. This means that levels of blood glucose (sugar) in the body rises dangerously high.
  17. Experimental procedures Cohort Exclusion of Nontranscription factor mutations in PDNM Detecting mutations of pancreatic transcription factor genes Genome- wide SNP analysis to localize etiological gene by linkage Sequencing of pancreatic transcription factor genes Patient phenotype assessment
  18. Results •88 % patients with known genetic etiology had homozygous mutations. •This confirms that neonatal diabetes in the offspring of consanguineous families is usually recessive. •Nonsense homozygous NKX2-2 mutations were identified in 3 patients from two families. •These mutations are pathogenic. •All 3 patients were found to have severe defects in insulin secretion and show normal exocrine function. •This has been show to be similar to mice that are homozygous for a targeted disruption of Nkx2-2 and die after birth due to severe hypergylcemia. They also have normal exocrine function however but lack beta cells. •Patients found with NKX2-2 mutations were found to have severe developemental delay, thus affecting motor and intellectual function. Other features are cortical blindness and hearing impairment. •This is consistant as the same neurological features have been seenin the Nkx2-2 knockout mouse, with Nkx2-2 being important for hindbrain development, ventral neuronal patterning and oligodendrocyte differentiation. •Discovered that mutations in two specific genes which are important for development of the pancreas can cause the disease
  19. Figure 4: Partial pedigrees of two families in which NKX2-2 mutations were identified. Below each pedigree is an electropherogram depicting the homozygous mutation identified in each patient. N/A, not available
  20. Figure 5: Partial pedigrees of two families with MNX1 mutations. Below each pedigree is an electropherogram depicting the homozygous mutation identified in each patient.
  21. Results •Two patients were found to have homozygous missense mutations in MNX1. •p.F248L and p.F272L •Homeodomain Figure 6: The highly conserved sequence of the homeobox domain within MNX1 is provided for various species. An arrow points to the residues found to be mutated in the two probands with permanent neonatal diabetes.
  22. •Both patients in this study showed severe intrauterine growth retardation and have been diagnosed with diabetes in infancy. Showing no evidence of exocrine pancreatic dysfunction. •A similar scenario was seen in Mnx1 null mice, where these mice are much smaller as compared to normal size mice, have reduced number of beta cells but a normal exocrine function. •Patient 1 was found to have extrapancreatic developmental features which includes growth retardation, difficulties swallowing, severe constipation, and neurological complications. •This patient died at 10 months due to respiratory failure. •Mnx1 null mice are difficult to study since they die at birth due to respiratory paralysis. •Patient 2 didn’t show any extrapancreatic developmental features. •Further studies are required to investigate the variability in phenotype between the two patients.
  23. Limitations •The minimum prevalence of transcription factor mutations in our cohort of patients with consanguineous PDNM was 7.5 % but the true prevalence may be slightly higher since heterozygous or compound heterozygous mutations would have been missed as a result of the study design. •Limited information on pancreatic development is provided since patients with the two mutations have severe developmental delay suggesting that in depth studies of pancreatic development and neurological function isnt possible.
  24. Conclusion •Results confirm that the consequence of inactivation of pancreatic transcription factor genes in humans is similar to the phenotype observed in knockout mice. •Mutations in NKX2-2 and MNX1 cause neonatal diabetes. •Confirms a key role for NKX2-2 and MNX1 in human pancreatic development. •This study validates the use of knockout mice for understanding beta cell development in humans.
  25. Future prospects •Parents will now have answers for their children with this rare condition. •This study will help scientists understand how the pancreas develops. •Knowing the cause of diabetes will result in improved treatment. •Will provide insight to people with future pregnancies. •Knowing the which mutations of etiological genes are responsible for diabetes, can potentially serve as a platform for future research and create therapeutic drugs that can prevent these mutations from occuring. •However further research is needed
  26. References
Advertisement