Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Formulario Cálculo

3,517 views

Published on

Published in: Career
  • Be the first to comment

Formulario Cálculo

  1. 1. Fórmulas de Cálculo Diferencial e Integral (Página 1 de 3) http://www.geocities.com/calculusjrm/ Jesús Rubí M.Fórmulas de ( a + b ) ⋅ ( a − ab + b ) = a + b 2 2 3 3 Gráfica 4. Las funciones trigonométricas inversas arcctg x , arcsec x , arccsc x : sin α + sin β = 2sin 1 1 (α + β ) ⋅ cos (α − β ) ( a + b ) ⋅ ( a3 − a 2 b + ab 2 − b3 ) = a 4 − b 4 2 2Cálculo Diferencial HIP CO 4 1 1 sin α − sin β = 2 sin (α − β ) ⋅ cos (α + β ) ( a + b ) ⋅ ( a 4 − a 3b + a 2 b 2 − ab3 + b 4 ) = a 5 + b5e Integral ACTUALIZADO AGO-2007 θ 3 2 2 ( a + b ) ⋅ ( a5 − a 4 b + a 3b 2 − a 2 b3 + ab 4 − b5 ) = a 6 − b 6 1 1 CA cos α + cos β = 2 cos (α + β ) ⋅ cos (α − β )Jesús Rubí Miranda (jesusrubim@yahoo.com) 2 2 2Móvil. Méx. DF. 044 55 13 78 51 94 1 1 ⎛ ⎞ cos α − cos β = −2 sin (α + β ) ⋅ sin (α − β ) n ( a + b ) ⋅ ⎜ ∑ ( −1) k +1 a n − k b k −1 ⎟ = a n + b n ∀ n ∈ impar θ sin cos tg ctg sec csc 1 2 2 ⎝ k =1 ⎠1. VALOR ABSOLUTO 0 0 1 0 ∞ 1 ∞ sin (α ± β ) 0 ⎛ n ⎞ tg α ± tg β = ( a + b ) ⋅ ⎜ ∑ ( −1) k +1 12 ⎧a si a ≥ 0 a n − k b k −1 ⎟ = a n − b n ∀ n ∈ par 30 3 2 1 3 3 2 3 2 a =⎨ ⎝ k =1 ⎠ -1 arc ctg x cos α ⋅ cos β 45 1 2 1 2 2 2 ⎩− a si a < 0 1 1 arc sec x arc csc x 1 ⎡sin (α − β ) + sin (α + β ) ⎤ 5. SUMAS Y PRODUCTOS 60 3 2 12 3 1 3 2 2 3 -2 sin α ⋅ cos β = a = −a 2⎣ ⎦ -5 0 5 ∞ ∞ n + a n = ∑ ak 90 1 0 0 1a ≤ a y −a ≤ a a1 + a2 + 8. IDENTIDADES TRIGONOMÉTRICAS 1 k =1 ⎡ π π⎤ sin α ⋅ sin β = ⎡cos (α − β ) − cos (α + β ) ⎤ sin θ + cos 2 θ = 1 2⎣ ⎦ 2 a ≥0 y a =0 ⇔ a=0 n y = ∠ sin x y ∈ ⎢− , ⎥ ∑ c = nc ⎣ 2 2⎦ 1 + ctg 2 θ = csc 2 θ cos α ⋅ cos β = 1 ⎡cos (α − β ) + cos (α + β ) ⎤ y = ∠ cos x y ∈ [ 0, π ] n n ∏a = ∏ ak 2⎣ ⎦ k =1 ab = a b ó k n n tg 2 θ + 1 = sec 2 θ k =1 k =1 ∑ ca = c ∑ ak y = ∠ tg x y∈ − π π tg α + tg β sin ( −θ ) = − sin θ k n n k =1 k =1 , tg α ⋅ tg β = a+b ≤ a + b ó ∑a ≤ ∑ ak n n n 2 2 ctg α + ctg β cos ( −θ ) = cos θ k k =1 k =1 ∑(a k + bk ) = ∑ ak + ∑ bk y = ∠ ctg x = ∠ tg 1 y ∈ 0, π 9. FUNCIONES HIPERBÓLICAS tg ( −θ ) = − tg θ k =1 k =1 k =12. EXPONENTES x ex − e− x sinh x = n a p ⋅ a q = a p+q ∑(a k =1 k − ak −1 ) = an − a0 y = ∠ sec x = ∠ cos 1 y ∈ [ 0, π ] sin (θ + 2π ) = sin θ 2 ap x = a p−q e x + e− x n n 1 ⎡ π π⎤ cos (θ + 2π ) = cos θ cosh x = aq ∑ ⎡ a + ( k − 1) d ⎤ = 2 ⎡ 2a + ( n − 1) d ⎤ ⎣ ⎦ ⎣ ⎦ y = ∠ csc x = ∠ sen y ∈ ⎢− , ⎥ ⎣ 2 2⎦ tg (θ + 2π ) = tg θ 2(a ) p q =a pq k =1 x tgh x = sinh x e x − e − x = n (a + l ) Gráfica 1. Las funciones trigonométricas: sin x , sin (θ + π ) = − sin θ cosh x e x + e− x(a ⋅b) = a ⋅b = p p p 2 cos x , tg x : cos (θ + π ) = − cos θ 1 e x + e− x p n 1 − r n a − rl ctgh x = =⎛a⎞ ap⎜ ⎟ = p ∑ ar k −1 = a 1 − r = 1 − r 2 tg (θ + π ) = tg θ tgh x e x − e − x⎝b⎠ b k =1 1 2 sin (θ + nπ ) = ( −1) sin θ sech x = = 1.5 n ∑ k = 2 ( n2 + n ) n a = a 1 cosh x e x + e − x p/q q p 1 cos (θ + nπ ) = ( −1) cos θ n3. LOGARITMOS k =1 1 2 n ( n + 1)( 2n + 1) 0.5 csch x = = ∑ k 2 = 6 ( 2n3 + 3n2 + n ) = tg (θ + nπ ) = tg θ sinh x e x − e − x n log a N = x ⇒ a x = N 1 0log a MN = log a M + log a N k =1 6 sinh : → -0.5 sin ( nπ ) = 0 ∑ k = 4 ( n + 2n + n ) → [1, ∞ n M 3 1 4 3 2 cosh : = log a M − log a N cos ( nπ ) = ( −1) -1 nlog a k =1 N -1.5 sen x tgh : → −1,1 tg ( nπ ) = 0 cos x ∑ k 4 = 30 ( 6n5 + 15n4 + 10n3 − n ) nlog a N = r log a N r 1 − {0} → −∞ , −1 ∪ 1, ∞ tg x -2 -8 -6 -4 -2 0 2 4 6 8 ctgh : k =1 ⎛ 2n + 1 ⎞ π ⎟ = ( −1) log b N ln N → 0 ,1] nlog a N = = 1+ 3 + 5 + + ( 2n − 1) = n 2 Gráfica 2. Las funciones trigonométricas csc x , sin ⎜ sech : log b a ln a ⎝ 2 ⎠ sec x , ctg x : csch : − {0} → − {0} ⎛ 2n + 1 ⎞ nlog10 N = log N y log e N = ln N n! = ∏ k cos ⎜ π⎟=04. ALGUNOS PRODUCTOS k =1 2.5 ⎝ 2 ⎠ Gráfica 5. Las funciones hiperbólicas sinh x , a ⋅ ( c + d ) = ac + ad ⎛n⎞ n! 2 ⎛ 2n + 1 ⎞ cosh x , tgh x : ⎜ ⎟= , k≤n tg ⎜ π⎟=∞ ⎝ k ⎠ ( n − k ) !k ! 1.5( a + b ) ⋅ ( a − b ) = a 2 − b2 1 ⎝ 2 ⎠ 5 4 n ⎛n⎞ ⎛ π⎞( a + b ) ⋅ ( a + b ) = ( a + b ) = a 2 + 2ab + b 2 ( x + y ) = ∑ ⎜ ⎟ x n −k y k 2 n 0.5 sin θ = cos ⎜ θ − ⎟ 3 k =0 ⎝ k ⎠ ⎝ 2⎠ 0( a − b ) ⋅ ( a − b ) = ( a − b ) = a 2 − 2ab + b 2 2 2 -0.5 ⎛ π⎞ 1 ( x1 + x2 + + xk ) = ∑ n! cos θ = sin ⎜ θ + ⎟( x + b ) ⋅ ( x + d ) = x 2 + ( b + d ) x + bd x1n1 ⋅ x2 2 n -1 n xknk ⎝ 2⎠ 0 n1 ! n2 ! nk ! -1.5( ax + b ) ⋅ ( cx + d ) = acx 2 + ( ad + bc ) x + bd csc x -1 sin (α ± β ) = sin α cos β ± cos α sin β -2 sec x 6. CONSTANTES ctg x -2( a + b ) ⋅ ( c + d ) = ac + ad + bc + bd -2.5 π = 3.14159265359… cos (α ± β ) = cos α cos β ∓ sin α sin β -8 -6 -4 -2 0 2 4 6 8 senh x -3 cosh x tgh x( a + b ) = a3 + 3a 2b + 3ab 2 + b3 e = 2.71828182846… 3 -4 Gráfica 3. Las funciones trigonométricas inversas tg α ± tg β -5 0 5 tg (α ± β ) = 10. FUNCIONES HIPERBÓLICAS INV( a − b ) = a 3 − 3a 2b + 3ab 2 − b3 3 7. TRIGONOMETRÍA arcsin x , arccos x , arctg x : 1 ∓ tg α tg β( a + b + c ) = a 2 + b 2 + c 2 + 2ab + 2ac + 2bc 2 sen θ = CO cscθ = 1 4 sin 2θ = 2sin θ cos θ ( sinh −1 x = ln x + x 2 + 1 , ∀x ∈ ) sen θ ( ) HIP cos 2θ = cos θ − sin θ 2 2 cosh −1 x = ln x ± x 2 − 1 , x ≥ 1( a − b ) ⋅ ( a 2 + ab + b 2 ) = a 3 − b3 3 CA 1 cosθ = secθ = 2 tg θ HIP cosθ tg 2θ = 1 ⎛1+ x ⎞( a − b ) ⋅ ( a 3 + a 2 b + ab 2 + b3 ) = a 4 − b 4 1 − tg 2 θ 2 sen θ CO 1 tgh −1 x = ln ⎜ ⎟, x <1 tgθ = = ctgθ = 2 ⎝1− x ⎠( a − b ) ⋅ ( a 4 + a 3b + a 2 b 2 + ab3 + b 4 ) = a 5 − b5 cosθ CA tgθ 1 sin 2 θ = (1 − cos 2θ ) 1 1 ⎛ x +1⎞ 0 2 ctgh −1 x = ln ⎜ ⎟, x >1 ⎛ n ⎞ 2 ⎝ x −1⎠( a − b ) ⋅ ⎜ ∑ a n − k b k −1 ⎟ = a n − b n ∀n ∈ π radianes=180 1 cos 2 θ = (1 + cos 2θ ) ⎝ k =1 ⎠ -1 arc sen x 2 ⎛ 1 ± 1 − x2 ⎞ sech −1 x = ln ⎜ ⎟, 0 < x ≤ 1 arc cos x arc tg x 1 − cos 2θ ⎜ ⎟ -2 -3 -2 -1 0 1 2 3 tg 2 θ = ⎝ x ⎠ 1 + cos 2θ ⎛1 x2 + 1 ⎞ csch −1 x = ln ⎜ + ⎟, x ≠ 0 ⎜x x ⎟ ⎝ ⎠

×