Lloyd’s Register EnergyModelling techniques for tidal arraysAll Energy – AberdeenLloyd’s RegisterMarine Renewable Energy R...
Lloyd’s Register EnergyAgenda• Introduction to Lloyd’s Register• Previous work in tidal modelling• Simulation goals• Model...
Lloyd’s Register EnergyOur services to the energy industry• regulation compliance assessment and consultancy• risk consult...
Lloyd’s Register EnergyPrevious work in tidal modelling• Modelling of tidal turbines using open source software - presente...
Lloyd’s Register EnergyTidal velocity measurementsdepth vs timeUpdate on EMEC activities, resourcedescription, and charact...
Lloyd’s Register EnergyTidal velocity measurementsdepth vs timeUpdate on EMEC activities, resourcedescription, and charact...
Lloyd’s Register EnergySimulation goals• Turbine loading and power performance• Investigate and compare wake with and with...
Lloyd’s Register EnergyModelling• Domain size:Width x length x depth:540 x 560 x 45 m.22.8 m150 m120 m
Lloyd’s Register EnergyModelling• Inlet velocity profile:• Mesh size in the order of 9 million for 3x3 array.• Rotor may b...
Lloyd’s Register EnergySteady state MRFno waves• Inlet velocity 2.5 m/s at hub height.• Wake zone behind turbines reducesv...
Lloyd’s Register EnergySettings• Velocity profiles - modified by influence ofturbines
Lloyd’s Register EnergyResultsArray Layout
Lloyd’s Register EnergyResultsArray Layout
Lloyd’s Register EnergyWave modelling• Free surface waves• Waves defined at the inlet – travels through the domain• Comput...
Lloyd’s Register EnergySteady state MRFkinematic waves• Inlet velocity 2.5 m/s at hub height. 3m waves, T = 6 s.• Wake zon...
Lloyd’s Register EnergySteady state MRFkinematic wavesWith wavesNo waves
Lloyd’s Register EnergyConclusion• Fully discretized 3x3 tidal array modelling was simulated with and withoutwave modellin...
Lloyd’s Register EnergyANY QUESTIONS ?Thank you for listening
Lloyd’s Register is a trading name of the Lloyd’s Register Group of entities.Services are provided by members of the Lloyd...
Upcoming SlideShare
Loading in …5
×

Peter Davies & Morten Boegild - Tidal turbine array modelling, influence of waves on turbine wakes

904 views

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
904
On SlideShare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
16
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Peter Davies & Morten Boegild - Tidal turbine array modelling, influence of waves on turbine wakes

  1. 1. Lloyd’s Register EnergyModelling techniques for tidal arraysAll Energy – AberdeenLloyd’s RegisterMarine Renewable Energy ResearchPeter DaviesGlobal Technology Leader Renewable EnergyEnergy Technology DirectorateCo presenter:Morten Ryge BøgildConsultantEnergy, Fluid DynamicsLloyds Register ODS22nd & 23rd May 2013
  2. 2. Lloyd’s Register EnergyAgenda• Introduction to Lloyd’s Register• Previous work in tidal modelling• Simulation goals• Model setup• Wave modelling techniques• Steady state array simulations with and without waves
  3. 3. Lloyd’s Register EnergyOur services to the energy industry• regulation compliance assessment and consultancy• risk consultancy• optimising risk-based inspection• asset management system certification• asset integrity management with bespoke software solutions.Lloyd’s Register offers expert advise for safe and efficient power generation,transmission and distribution. Our services cover:Convering renewable energy, oil and gas, nuclear, thermal energy andmanufacturing sectors245 Offices in 186 Countries
  4. 4. Lloyd’s Register EnergyPrevious work in tidal modelling• Modelling of tidal turbines using open source software - presented at AllEnergy last year• Modelling of tidal turbines using CFD both single turbines and arrays:• The multipe rotating reference frames (MRF): Steady-state analysis,produces a snap-shot in time (fast)• The rigid body motion (RBM): Full transient solution for a rotating turbine• See paper presented at Marine & Offshore Renewable Energy, 26-27September 2012, London, UK
  5. 5. Lloyd’s Register EnergyTidal velocity measurementsdepth vs timeUpdate on EMEC activities, resourcedescription, and characterisation ofwave-induced velcities in a tidal flow~Norris & Droniou 2007
  6. 6. Lloyd’s Register EnergyTidal velocity measurementsdepth vs timeUpdate on EMEC activities, resourcedescription, and characterisation ofwave-induced velcities in a tidal flow~Norris & Droniou 2007
  7. 7. Lloyd’s Register EnergySimulation goals• Turbine loading and power performance• Investigate and compare wake with and without wavesTo do this:• fully discretized numerical simulation of 3x3 tidal turbine array using STARCCM+ and ANSYS CFX.
  8. 8. Lloyd’s Register EnergyModelling• Domain size:Width x length x depth:540 x 560 x 45 m.22.8 m150 m120 m
  9. 9. Lloyd’s Register EnergyModelling• Inlet velocity profile:• Mesh size in the order of 9 million for 3x3 array.• Rotor may be stationary with rotating flow in the subdomainaround it; MRF.• Or rotor may be rotating in a subdomain with mesh; Slidinginterface / RBM.• Rotor speed adjusted to match generator:
  10. 10. Lloyd’s Register EnergySteady state MRFno waves• Inlet velocity 2.5 m/s at hub height.• Wake zone behind turbines reducesvelocity by 30 %.
  11. 11. Lloyd’s Register EnergySettings• Velocity profiles - modified by influence ofturbines
  12. 12. Lloyd’s Register EnergyResultsArray Layout
  13. 13. Lloyd’s Register EnergyResultsArray Layout
  14. 14. Lloyd’s Register EnergyWave modelling• Free surface waves• Waves defined at the inlet – travels through the domain• Computational intensive – diffusive if mesh is not refined in interface region• Can model situations where waves are disturbed by the turbine• Kinematic waves• Waves are specified by velocity components at the inlet and the top boundary• Able to model wave impact on tidal turbine but cannot model the tidal turbine effect onthe wavesFig. from: Westphalen et al. “Simulation of Extreme Free Surface Waves using STAR CCM+ and CFX11” (2008)
  15. 15. Lloyd’s Register EnergySteady state MRFkinematic waves• Inlet velocity 2.5 m/s at hub height. 3m waves, T = 6 s.• Wake zone behind turbines increasesvelocity due to influence ofstreamwise waves.
  16. 16. Lloyd’s Register EnergySteady state MRFkinematic wavesWith wavesNo waves
  17. 17. Lloyd’s Register EnergyConclusion• Fully discretized 3x3 tidal array modelling was simulated with and withoutwave modelling using the MRF rotor simulation.• Flow distribution and turbine performance in tidal array are possible outcomes.• It has been demonstrated that the turbine wake is influenced by waves;this is dependent on turbine design, wave height, period and waterdepth.• The choice of either modelling the free surface or using the kinematicdescription depends on the above parameters.• We are continuing to investigate the turbines influence on the free surface.• We are continuing to compare STAR CCM+ and ANSYS CFX.
  18. 18. Lloyd’s Register EnergyANY QUESTIONS ?Thank you for listening
  19. 19. Lloyd’s Register is a trading name of the Lloyd’s Register Group of entities.Services are provided by members of the Lloyds Register Group.For further information visit www.lr.org/entitiesFor more information, please contact:Peter DaviesRenewable Energy Global Technology LeaderLloyd’s Register Group Services LtdDenburn House, 25 Union TerraceAberdeen, AB10 1NNT +44 (0)1224 267771E peter.davies@lr.orgw www.lr.org/renewables

×