SlideShare a Scribd company logo

Developing a Modeling Framework to Characterize Manure Flows in Texas

Proceedings available at: www.extension.org/67646 In recent years, sharply rising costs of inorganic fertilizers have contributed to an increased demand for manure and compost in crop production acreage, transforming cattle manure from a valueless waste to a viable alternative to commercial fertilizer. If additional demand for manure as a bio-fuel were to arise manure could take on two distinct values, a fertilizer value and a fuel value. This potential “dual” value of manure begs several questions. What would the fertilizer and fuel markets of manure look like? Is there enough manure supply for the markets to operate independently? If not, which market would prevail? In essence, how, if at all, would manure’s potential value as a bio-fuel distort the traditional Panhandle manure market? A modeling framework was developed to assess the potential impacts of a manure-fired ethanol plant on the existing Texas Panhandle manure fertilizer market. Two manure-allocation runs were performed using a spreadsheet model. Run #1 allocated all available manure from dairies and feedlots to cropland as manure fertilizer; run #2 first allocated fuel manure to the ethanol plant and then allocated the remaining manure to cropland. Both model runs assumed a time horizon of one year and no antecedent nutrients in cropland soils. Other constraints included only irrigated acreages received manure and no supplemental fertilizer was used. The model revealed a 6.4% increase in cost per acre of fertilizing with manure for fields whose nutrient requirements were fully satisfied in both runs. The increase in cost per acre was likely due to an increase in hauling distances attributed to fewer CAFOs available for fertilizer manure. The model is not presented as a dynamic, systems model, but rather a static model with the potential to be incorporated into a more dynamic systems-based modeling environment. Suggestions for further model development and expansion including GAMS integration are presented.

1 of 42
Download to read offline
ENVIRONMENT
AND NATURAL
RESOURCES
SOCIAL
SYSTEMS
ECONOMIES
LPOs
Developing a Modeling Framework to Characterize Manure Flows in Texas
MODELING MANURE FLOWS IN THE TEXAS
PANHANDLE IN RESPONSE TO FERTILIZER
PRICES, BIOFUEL DEMAND, AND OTHER
EXTERNALITIES
Gary Marek, Ph. D.
Research Engineer
USDA-ARS, Bushland, TX
Photo courtesy of Emalee Buttrey
Project Background
WTAMU Systems I class project:
Initial Q: Evaluate the economic
feasibility of a manure-fueled corn
ethanol plant in the Texas Panhandle
Revised Q: Under what conditions is it
economically feasible to fuel an EtOH
plant with manure in the Panhandle?
Integrated System Layers of
Dynamic Modeling
Mass
Energy
Environment
Markets
Policy
Mass & Energy Layers
• Manure
• Distillers Grains
• Water
• Natural Gas
• Corn
• Ash
Conceptual Model Schematic
Mass & Energy Flows
FEEDYARD
LAND
MANAGEMENT
UNIT
PANDA
ETHANOL
PLANT
manure
ash
natural
gaswater
CORN
DISTILLERS GRAINS
SEED
Adapted from image by Sharon Preece
System Manure Flow
• Time of Year
• Storage capacity
• Collection radius
• Price of fossil fuel
• Manure production rate
• Price of chemical fertilizer
• Fertilizer Value
• Fuel Value
• Agronomic Rate
• HHV Demand
• NPK Demand
Distillers Grains Effects on Manure
• Increases concentration of phosphorous
 May increase land requirements, travel
distances, and management practices
• Decreases Higher Heating Value (HHV) (Buttrey et al.,2012)
Environment Layer
• Regulatory Nutrient Limits
• Soil
• Water
• Air Quality
• Nitrogen Thresholds (Rocky Mtn. Natl. Park)
• Permit Storage Limits (CAFOs & Panda)
• Declining Aquifer Capacity - Droughts
• Effects on crop composition & yield
• Jevons Paradox
Markets Layer
• Valuing Manure
• Fertilizer Value
• Fuel Value
• Transaction modeling
• Buyer vs. Seller
• Market Structures
• Market Simulator
Valuing Manure as Fertilizer
(Massey 2006)
Commercial Fertilizer
• Guaranteed Analysis
• Concentrated
• Selectable nutrient ratios
• Accurate Application
Systems
• Relatively Low
Hauling/Application Costs
• Expensive
Manure & Compost
• Inconsistent Nutrient Conc.
• Highly Variable Application
Methods
• Expensive Hauling Costs
• Weed Seed
• Foreign Debris
• Salts
• Organic Matter
Average U.S. Farm Prices
of Selected Fertilizers
0
100
200
300
400
500
600
700
800
900
1975 1980 1985 1990 1995 2000 2005 2010
Dollars/tonofnutrient
Year
Nitrogen
phosphate
potassium
Source: Agricultural Prices, National Agricultural Statistics Service, USDA.
Marginal Nutrient Value
MV ip
AR pt
MV in
AR nt
MV max
MARGINALNUTRIENTVALUE
($/tonas-is)
APPLICATION RATE (tons as-is / acre)
I
II
III
Valuing Manure as Fuel Source
• HHV of manure determined by…
• Ash Content
• Moisture
• DDGS inclusion (Buttrey et al., 2012)
• Manure Handling Practices
• Affect on ash content
• Weather
• Point-of-Use Comparison
• Natural Gas Price Trends
Heating Value of Manure
0%
20%
40%
60%
80%
0% 20% 40% 60% 80%
MaximumMoistureContent(wb)
Ash Fraction (db)
MinimumAcceptable HV = 2,758 BTU/lb
Arbitrary Target HHV = 3,500 BTU/lb
Arbitrary Target HHV = 4,500 BTU/lb
Natural Gas vs. Ammonia
(1985-2006)
Manure Value Calculator
INPUTS:
N & P conc. of manure N & P crop requirements
Price of inorganic N & P Hauling distance
Hauling costs Price of natural gas
Landfill disposal costs
OUTPUTS:
Manure value as N & P fertilizer
Manure value as an energy source
Net values after transportation
Transaction Probability Model
PWA
(PB, P(PB)) (PA, P(PA))
PWPPB PA
XactionProbabilityatPrice
Xaction Price
BUYER
SELLER
Market Structures
• Prior to markets operating, a hypothesis can be used
to simulate potential markets
• Local market conditions determine the type of
market (Zering 2010)
A. Sufficient # of buyers & sellers, prices adjust frequently
to clear the market
B. Single seller, multiple buyers (monopoly), seller sets
price
C. Single buyer, multiple sellers (monopsony), buyer sets
price
D. Few buyers & sellers, potential for “hold up”, whoever
can survive the longest without the other sets price
Market Simulator
Market
Type
Need to
Reduce
Volume?
Storage
Remaining?
Manure
Value
Calculator
Transaction
Model
Market Simulator
Programming Flowchart
Explicit Model
• Database information
• Manure fertilizer value modules
• Manure fuel value modules
• Transaction Models
• Dynamically linked system layers
How do we synthesize all of this information?
System Boundary
Panda
• Feedlots
• Dairies
• Manure collection radius of
30 miles from proposed
Panda plant
 41 feedlots
3,000 – 100,000 head
 21 dairies
250 - 5,000 head
• CAFO capacities estimated by
industry and extension
personnel
• System Boundary - Manure
dispersion radius of 20 miles
from each CAFO
• Boundary encompasses
4,172,815 acres
Satellite Imagery
Panda
• Feedlots
• Dairies
• DOQ’s from Texas Natural
Resources Information System
(TNRIS) added to the project
• Used to estimate
irrigated, dryland, rangeland,
and municipal acreages
Irrigated Land
• DOQ’s from Texas Natural
Resources Information System
(TNRIS) added to the project
• Irrigated land calculated by
digitizing center pivot circles
 4,935 circles
 740,765 acres
• Dryland acreage was
calculated by subtracting
irrigated acreage from total
arable land
 3,226,894 acres
• Rangeland/Municipal Acreage
 205,156 acres
Grid Overlay
• Grid constructed to address
spatial aspects of project
 1,023 cells
 3 mi x 3 mi
• Cells assigned crop
composition and yield values
based on county NASS data
• Road distance from centroid
of every cell to each CAFO
was calculated using ArcGIS
Network Analyst algorithm
Simple Optimization Model
(MS Excel)
A B C D E G
1
2
3
4
5
7
8
8
9
10
CAFOS (feedlots & dairies)
LMUCells
… n=62
n=1,023…
Solution-Based Model
(MS Excel)
Information relating each CAFO
to each LMU cell
CAFO Attributes
• Feedlot or Dairy
• Annual manure production capacity
• As-collected manure production
• Nutrient concentrations of CAFO manure
LMU Cell Attributes
• Acreage characterization and allocation
(irrigated,dryland, rangeland/municipal)
• Nitrogen and phosphorus requirements
(based on county NASS crop composition and
average yield values)
• Road distance to CAFO
Array Calculations/Switches
• Tons of manure required to fulfill nitrogen and
phosphorus requirements
• Fulfill nitrogen or phosphorus demand
• Net price per acre to fulfill nutrient
requirements
Model Assumptions & Constraints
• One year time horizon
• Manure to satisfy nitrogen requirements
• No antecedent nutrients
• Only irrigated acreage would receive manure
• CAFOs and Panda operate at 100% capacity
• All manure allocated to LMU (no storage)
• No supplemental commercial fertilizer
• Zero value for organic matter
• Price of manure held constant ($2.50 per ton)
• Hauling & spreading costs held constant ($0.24 per ton mile)
Model Runs
• Model run #1 – Manure from all 62 CAFOs
allocated to LMU
• Model run #2 – Manure from closest feedlots
allocated to Panda. Manure from the
remaining 55 CAFOs allocated to LMU
Subscription Ratio
A B C D E G
1
2
3
4
5
7
8
8
9
10
CAFOS (feedlots & dairies)
LMUCells
… n=62
n=431…
RATIO 3.2 0.9 10.5 6.5 1.5 0.25
RANK 3 5 1 2 4 6
Subscription Ratio (i=1)
A B C D E G
1
2
3
4
5
7
8
9
10
11
CAFOS (feedlots & dairies)
LMUCells
… n=62
n=431…
RATIO 3.2 0.9 10.5 6.5 1.5 0.25
RANK 3 5 1 2 4 6
Subscription Ratio (i=2)
A B C D E G
1
2
3
4
5
7
8
9
10
11
CAFOS (feedlots & dairies)
LMUCells
… n=62
n=431…
RATIO 3.2 0.9 1.0 6.5 1.5 0.25
RANK 2 4 N/A 1 3 5
Subscription Ratio (i=2)
A B C D E G
1
2
3
4
5
7
8
9
10
11
CAFOS (feedlots & dairies)
LMUCells
… n=62
n=431…
RATIO 3.2 0.9 1.0 6.5 1.5 0.25
RANK 2 4 N/A 1 3 5
Ranking LMU Cells within a CAFO
• NPA for manure to NPA for commercial
fertilizer ratio
 Assumed Co-Op at a distance of 10 miles from every cell
• Fields allocated until CAFO manure is depleted
• Partially fulfilled fields returned to array with
updated nutrient and acreage requirements
CAFOs with Unallocated Manure
• Model forced CAFOs to allocate all manure
produced
• Taking off point for transaction modeling
• To move manure, would likely have to
discount price
Results
Run #1
232 total cells
Avg. price per acre
(197 common cells)
$52.86
Avg. hauling distance
8.38 miles
33 66 99 132 165 198 231 264 297 330 363 396 429 462 495 528 561 594 627 660 693 726 759 792 825 858 891 924 957 990 1023
32 65 98 131 164 197 230 263 296 329 362 395 428 461 494 527 560 593 626 659 692 725 758 791 824 857 890 923 956 989 1022
31 64 97 130 163 196 229 262 295 328 361 394 427 460 493 526 559 592 625 658 691 724 757 790 823 856 889 922 955 988 1021
30 63 96 129 162 195 228 261 294 327 360 393 426 459 492 525 558 591 624 657 690 723 756 789 822 855 888 921 954 987 1020
29 62 95 128 161 194 227 260 293 326 359 392 425 458 491 524 557 590 623 656 689 722 755 788 821 854 887 920 953 986 1019
28 61 94 127 160 193 226 259 292 325 358 391 424 457 490 523 556 589 622 655 688 721 754 787 820 853 886 919 952 985 1018
27 60 93 126 159 192 225 258 291 324 357 390 423 456 489 522 555 588 621 654 687 720 753 786 819 852 885 918 951 984 1017
26 59 92 125 158 191 224 257 290 323 356 389 422 455 488 521 554 587 620 653 686 719 752 785 818 851 884 917 950 983 1016
25 58 91 124 157 190 223 256 289 322 355 388 421 454 487 520 553 586 619 652 685 718 751 784 817 850 883 916 949 982 1015
24 57 90 123 156 189 222 255 288 321 354 387 420 453 486 519 552 585 618 651 684 717 750 783
816
849 882 915 948 981 1014
23 56 89 122 155 188 221 254 287 320 353
386 419 452
485 518
551
584 617 650 683 716 749 782 815 848 881 914 947 980 1013
22 55 88 121 154 187 220 253 286 319 352 385
418 451
484 517 550 583 616 649 682 715 748 781 814 847 880 913 946 979 1012
21 54 87 120 153 186 219 252 285 318 351 384 417 450 483 516 549 582 615 648 681 714 747 780 813 846 879 912 945 978 1011
20 53 86 119 152 185 218 251 284 317 350 383
416
449 482
515
548 581 614 647 680 713 746 779 812 845 878 911 944 977 1010
19 52 85 118 151 184 217
250
283 316 349 382 415 448 481 514 547 580 613 646 679 712 745 778 811 844 877 910 943 976 1009
18 51 84 117 150 183 216 249 282 315 348
381 414
447 480 513 546 579 612 645 678 711 744 777 810 843 876 909 942 975 1008
17 50 83 116 149 182 215 248 281 314 347 380 413 446 479 512 545 578 611 644 677 710 743 776 809 842 875 908 941 974 1007
16 49 82 115 148 181 214 247 280 313 346 379 412 445 478 511 544 577 610 643 676 709 742 775 808 841 874 907 940 973 1006
15 48 81 114 147 180 213 246 279 312 345 378 411 444 477 510 543 576 609 642 675 708 741 774 807 840 873 906 939 972 1005
14 47 80 113 146 179 212
245
278 311 344 377 410
443 476
509 542 575 608 641 674 707 740 773 806 839 872 905 938 971 1004
13 46 79 112 145 178 211
244
277 310 343 376 409 442
475
508
541 574 607 640 673 706 739 772 805 838 871 904 937 970 1003
12 45 78 111 144 177 210 243 276 309 342 375
408 441
474 507 540 573 606 639 672 705 738 771 804 837 870 903 936 969 1002
11 44 77 110 143
176
209
242
275 308 341 374 407 440 473 506 539 572 605 638 671 704 737 770 803 836 869 902 935 968 1001
10 43 76 109 142 175 208
241
274 307 340 373 406 439 472 505
538 571
604 637 670 703 736 769 802 835 868 901 934 967 1000
9 42 75 108 141 174 207 240
273
306 339
372 405 438
471 504
537
570 603
636
669
702 735 768 801
834
867
900 933 966 999
8 41 74 107 140 173 206 239 272 305 338
371
404 437 470 503 536 569 602 635 668 701 734 767
800
833 866 899 932 965 998
7 40 73 106 139 172 205 238 271 304 337 370 403 436 469 502 535 568 601 634 667 700 733 766 799 832 865 898 931 964 997
6 39 72 105 138 171 204 237 270 303 336 369 402 435 468 501 534 567 600 633 666 699 732 765 798 831 864 897 930 963 996
5 38 71 104 137 170 203 236 269 302 335 368 401 434 467 500 533 566 599 632 665 698 731 764 797 830 863 896 929 962 995
4 37 70 103 136 169 202 235 268 301 334 367 400 433 466 499 532 565 598 631 664 697 730 763 796 829 862 895 928 961 994
3 36 69 102 135 168 201 234 267 300 333 366 399 432 465 498 531 564 597 630 663 696 729 762 795 828 861 894 927 960 993
2 35 68 101 134 167 200 233 266 299 332 365 398 431 464 497 530 563 596 629 662 695 728 761 794 827 860 893 926 959 992
1 34 67 100 133 166 199 232 265 298 331 364 397 430 463 496 529 562 595 628 661 694 727 760 793 826 859 892 925 958 991
dairies
386 386 416 416 416 415 381 537 348 537 371 470 569 637 669 176 273 273 176 800 800
387 669
353
feedlots cont
618 479 444 512 508 478 454 586 384 483 517 682 547 715 413 411 714 777 548 469 438 437
651 447 443 446 507 476 421 585 417 450 516 649 849 748 414 209 636 669 581 471 436
617 480 477 513 541 509 453 552 385 484 518 616 514 716 177 515 405
684 481 476 546 540 475 487 584 418 482 550 615 882 683 241 372
650 414 538 506 388 553 449 485 648 605 749
816 571 504 539 420 551 451 515 583 604 781
419 537 505 486 519 549 613 636 717
418 572 452 582 551 580 571 782
386 538 452 848 603 814
Results
Run #2
221 total cells
11 fewer cells
Avg. price per acre
(197 common cells)
$56.38
Avg. hauling distance
9.3 miles
33 66 99 132 165 198 231 264 297 330 363 396 429 462 495 528 561 594 627 660 693 726 759 792 825 858 891 924 957 990 1023
32 65 98 131 164 197 230 263 296 329 362 395 428 461 494 527 560 593 626 659 692 725 758 791 824 857 890 923 956 989 1022
31 64 97 130 163 196 229 262 295 328 361 394 427 460 493 526 559 592 625 658 691 724 757 790 823 856 889 922 955 988 1021
30 63 96 129 162 195 228 261 294 327 360 393 426 459 492 525 558 591 624 657 690 723 756 789 822 855 888 921 954 987 1020
29 62 95 128 161 194 227 260 293 326 359 392 425 458 491 524 557 590 623 656 689 722 755 788 821 854 887 920 953 986 1019
28 61 94 127 160 193 226 259 292 325 358 391 424 457 490 523 556 589 622 655 688 721 754 787 820 853 886 919 952 985 1018
27 60 93 126 159 192 225 258 291 324 357 390 423 456 489 522 555 588 621 654 687 720 753 786 819 852 885 918 951 984 1017
26 59 92 125 158 191 224 257 290 323 356 389 422 455 488 521 554 587 620 653 686 719 752 785 818 851 884 917 950 983 1016
25 58 91 124 157 190 223 256 289 322 355 388 421 454 487 520 553 586 619 652 685 718 751 784 817 850 883 916 949 982 1015
24 57 90 123 156 189 222 255 288 321 354 387 420 453 486 519 552 585 618 651 684 717 750 783
816
849 882 915 948 981 1014
23 56 89 122 155 188 221 254 287 320 353
386 419 452
485 518
551
584 617 650 683 716 749 782 815 848 881 914 947 980 1013
22 55 88 121 154 187 220 253 286 319 352 385
418 451
484 517 550 583 616 649 682 715 748 781 814 847 880 913 946 979 1012
21 54 87 120 153 186 219 252 285 318 351 384 417 450 483 516 549 582 615 648 681 714 747 780 813 846 879 912 945 978 1011
20 53 86 119 152 185 218 251 284 317 350 383
416
449 482
515
548 581 614 647 680 713 746 779 812 845 878 911 944 977 1010
19 52 85 118 151 184 217 250 283 316 349 382 415 448 481 514 547 580 613 646 679 712 745 778 811 844 877 910 943 976 1009
18 51 84 117 150 183 216 249 282 315 348 381
414
447 480 513 546 579 612 645 678 711 744 777 810 843 876 909 942 975 1008
17 50 83 116 149 182 215 248 281 314 347 380 413 446 479 512 545 578 611 644 677 710 743 776 809 842 875 908 941 974 1007
16 49 82 115 148 181 214 247 280 313 346 379 412 445 478 511 544 577 610 643 676 709 742 775 808 841 874 907 940 973 1006
15 48 81 114 147 180 213 246 279 312 345 378 411 444 477 510 543 576 609 642 675 708 741 774 807 840 873 906 939 972 1005
14 47 80 113 146 179 212
245
278 311 344 377 410
443
476
509 542 575 608 641 674 707 740 773 806 839 872 905 938 971 1004
13 46 79 112 145 178 211
244
277 310 343 376 409 442 475 508 541 574 607 640 673 706 739 772 805 838 871 904 937 970 1003
12 45 78 111 144 177 210 243 276 309 342 375
408
441
474 507 540 573 606 639 672 705 738 771 804 837 870 903 936 969 1002
11 44 77 110 143 176 209
242
275 308 341 374 407 440 473 506 539 572 605 638 671 704 737 770 803 836 869 902 935 968 1001
10 43 76 109 142 175 208 241
274
307 340 373 406 439 472
505 538
571 604 637 670 703 736 769 802 835 868 901 934 967 1000
9 42 75 108 141 174 207 240 273
306
339
372 405 438
471 504 537 570 603
636
669
702 735 768 801
834
867
900 933 966 999
8 41 74 107 140 173 206 239 272 305 338 371 404 437 470 503 536 569 602 635 668 701 734 767
800
833 866 899 932 965 998
7 40 73 106 139 172 205 238 271 304 337 370 403 436 469 502 535 568 601 634 667 700 733 766 799 832 865 898 931 964 997
6 39 72 105 138 171 204 237 270 303 336 369 402 435 468 501 534 567 600 633 666 699 732 765 798 831 864 897 930 963 996
5 38 71 104 137 170 203 236 269 302 335 368 401 434 467 500 533 566 599 632 665 698 731 764 797 830 863 896 929 962 995
4 37 70 103 136 169 202 235 268 301 334 367 400 433 466 499 532 565 598 631 664 697 730 763 796 829 862 895 928 961 994
3 36 69 102 135 168 201 234 267 300 333 366 399 432 465 498 531 564 597 630 663 696 729 762 795 828 861 894 927 960 993
2 35 68 101 134 167 200 233 266 299 332 365 398 431 464 497 530 563 596 629 662 695 728 761 794 827 860 893 926 959 992
1 34 67 100 133 166 199 232 265 298 331 364 397 430 463 496 529 562 595 628 661 694 727 760 793 826 859 892 925 958 991
dairies
386 386 416 416 416 415 447 538 316 538 306 470 569 637 669 245 306 306 245 605 800
387 636
353
feedlots cont
618 444 512 454 586 384 483 517 682 547 715 413 411 714 777 548 469 438 437
651 443 446 421 585 417 450 516 649 849 748 414 476 636 669 581 471 436
617 477 513 453 552 385 484 518 616 514 716 510 515 405
684 476 546 487 584 418 482 550 615 882 683 509 372
650 538 388 553 449 485 648 513 749 540
816 504 420 551 451 515 583 481 781 506
419 537 486 519 549 613 512 717 539
418 452 582 551 580 479 782 505
386 452 848 480 814
451 579 446 815

More Related Content

Similar to Developing a Modeling Framework to Characterize Manure Flows in Texas

A Technology Platform for Africa
A Technology Platform for AfricaA Technology Platform for Africa
A Technology Platform for Africariatenorio
 
UABioConf 2016 - Plenary Session 2/1 - Kramar (Eng)
UABioConf 2016 - Plenary Session 2/1 - Kramar (Eng)UABioConf 2016 - Plenary Session 2/1 - Kramar (Eng)
UABioConf 2016 - Plenary Session 2/1 - Kramar (Eng)UABioConf.org
 
Assess the transition to a circular economy for the energy system: Long-term ...
Assess the transition to a circular economy for the energy system: Long-term ...Assess the transition to a circular economy for the energy system: Long-term ...
Assess the transition to a circular economy for the energy system: Long-term ...IEA-ETSAP
 
Brent Goliath NCPC-SA
Brent Goliath NCPC-SABrent Goliath NCPC-SA
Brent Goliath NCPC-SA7391456
 
Integration of agricultural and energy system models for biofuel assessment
Integration of agricultural and energy system models for biofuel assessmentIntegration of agricultural and energy system models for biofuel assessment
Integration of agricultural and energy system models for biofuel assessmentSimla Tokgoz
 
Phytorid for bio-remediation of lakes
Phytorid for bio-remediation of lakesPhytorid for bio-remediation of lakes
Phytorid for bio-remediation of lakesbiomeshubha
 
Dr. Greg Thoma - The Intersection Between Traceability and Sustainability
Dr. Greg Thoma - The Intersection Between Traceability and SustainabilityDr. Greg Thoma - The Intersection Between Traceability and Sustainability
Dr. Greg Thoma - The Intersection Between Traceability and SustainabilityJohn Blue
 
Mapping suitable niche for cactus and legumes in diversified farming in drylands
Mapping suitable niche for cactus and legumes in diversified farming in drylandsMapping suitable niche for cactus and legumes in diversified farming in drylands
Mapping suitable niche for cactus and legumes in diversified farming in drylandsICARDA
 
Comparative performance evaluation of different mechanical implement for weed...
Comparative performance evaluation of different mechanical implement for weed...Comparative performance evaluation of different mechanical implement for weed...
Comparative performance evaluation of different mechanical implement for weed...Gajanan Bele
 
Phytorid Wastewater Treatment Technology- Decentralised & Ecosystem Based ...
Phytorid Wastewater Treatment Technology- Decentralised  &  Ecosystem  Based ...Phytorid Wastewater Treatment Technology- Decentralised  &  Ecosystem  Based ...
Phytorid Wastewater Treatment Technology- Decentralised & Ecosystem Based ...Nitin Kumar
 
Agro-Processing Complexes, Punjab Agricultural University
Agro-Processing Complexes, Punjab Agricultural UniversityAgro-Processing Complexes, Punjab Agricultural University
Agro-Processing Complexes, Punjab Agricultural UniversityMSALAM27
 
Recycling Organics thru Sm. Farm Anaerobic Digestion - Snellings
Recycling Organics thru Sm. Farm Anaerobic Digestion - SnellingsRecycling Organics thru Sm. Farm Anaerobic Digestion - Snellings
Recycling Organics thru Sm. Farm Anaerobic Digestion - SnellingsMassRecycle .
 
Development of the pathways to achieve SE4ALL 2030 objectives
Development of the pathways to achieve SE4ALL 2030 objectivesDevelopment of the pathways to achieve SE4ALL 2030 objectives
Development of the pathways to achieve SE4ALL 2030 objectivesIEA-ETSAP
 

Similar to Developing a Modeling Framework to Characterize Manure Flows in Texas (20)

A Technology Platform for Africa
A Technology Platform for AfricaA Technology Platform for Africa
A Technology Platform for Africa
 
UABioConf 2016 - Plenary Session 2/1 - Kramar (Eng)
UABioConf 2016 - Plenary Session 2/1 - Kramar (Eng)UABioConf 2016 - Plenary Session 2/1 - Kramar (Eng)
UABioConf 2016 - Plenary Session 2/1 - Kramar (Eng)
 
Assess the transition to a circular economy for the energy system: Long-term ...
Assess the transition to a circular economy for the energy system: Long-term ...Assess the transition to a circular economy for the energy system: Long-term ...
Assess the transition to a circular economy for the energy system: Long-term ...
 
Brent Goliath NCPC-SA
Brent Goliath NCPC-SABrent Goliath NCPC-SA
Brent Goliath NCPC-SA
 
Integration of agricultural and energy system models for biofuel assessment
Integration of agricultural and energy system models for biofuel assessmentIntegration of agricultural and energy system models for biofuel assessment
Integration of agricultural and energy system models for biofuel assessment
 
Project of Organic fertilizer unit
Project of Organic fertilizer unitProject of Organic fertilizer unit
Project of Organic fertilizer unit
 
Phytorid for bio-remediation of lakes
Phytorid for bio-remediation of lakesPhytorid for bio-remediation of lakes
Phytorid for bio-remediation of lakes
 
Cogeneration power plant
Cogeneration power plantCogeneration power plant
Cogeneration power plant
 
Environmental impacts of RTB processing and life cycle assessment
Environmental impacts of RTB processing and life cycle assessmentEnvironmental impacts of RTB processing and life cycle assessment
Environmental impacts of RTB processing and life cycle assessment
 
Dr. Greg Thoma - The Intersection Between Traceability and Sustainability
Dr. Greg Thoma - The Intersection Between Traceability and SustainabilityDr. Greg Thoma - The Intersection Between Traceability and Sustainability
Dr. Greg Thoma - The Intersection Between Traceability and Sustainability
 
GHG mitigation potential in rice production
GHG mitigation potential in rice productionGHG mitigation potential in rice production
GHG mitigation potential in rice production
 
Mapping suitable niche for cactus and legumes in diversified farming in drylands
Mapping suitable niche for cactus and legumes in diversified farming in drylandsMapping suitable niche for cactus and legumes in diversified farming in drylands
Mapping suitable niche for cactus and legumes in diversified farming in drylands
 
Présentation IIRB 2024 M.Campoverde R.Duval
Présentation IIRB 2024 M.Campoverde R.DuvalPrésentation IIRB 2024 M.Campoverde R.Duval
Présentation IIRB 2024 M.Campoverde R.Duval
 
Comparative performance evaluation of different mechanical implement for weed...
Comparative performance evaluation of different mechanical implement for weed...Comparative performance evaluation of different mechanical implement for weed...
Comparative performance evaluation of different mechanical implement for weed...
 
Van Trinh GHG emission in agric Vietnam Nov 10 2014
Van Trinh GHG emission in agric Vietnam Nov 10 2014Van Trinh GHG emission in agric Vietnam Nov 10 2014
Van Trinh GHG emission in agric Vietnam Nov 10 2014
 
Evaluation of nutrient reductions
Evaluation of nutrient reductionsEvaluation of nutrient reductions
Evaluation of nutrient reductions
 
Phytorid Wastewater Treatment Technology- Decentralised & Ecosystem Based ...
Phytorid Wastewater Treatment Technology- Decentralised  &  Ecosystem  Based ...Phytorid Wastewater Treatment Technology- Decentralised  &  Ecosystem  Based ...
Phytorid Wastewater Treatment Technology- Decentralised & Ecosystem Based ...
 
Agro-Processing Complexes, Punjab Agricultural University
Agro-Processing Complexes, Punjab Agricultural UniversityAgro-Processing Complexes, Punjab Agricultural University
Agro-Processing Complexes, Punjab Agricultural University
 
Recycling Organics thru Sm. Farm Anaerobic Digestion - Snellings
Recycling Organics thru Sm. Farm Anaerobic Digestion - SnellingsRecycling Organics thru Sm. Farm Anaerobic Digestion - Snellings
Recycling Organics thru Sm. Farm Anaerobic Digestion - Snellings
 
Development of the pathways to achieve SE4ALL 2030 objectives
Development of the pathways to achieve SE4ALL 2030 objectivesDevelopment of the pathways to achieve SE4ALL 2030 objectives
Development of the pathways to achieve SE4ALL 2030 objectives
 

More from LPE Learning Center

Animal agriculture adaptation planning guide (climate change)
Animal agriculture adaptation planning guide (climate change)Animal agriculture adaptation planning guide (climate change)
Animal agriculture adaptation planning guide (climate change)LPE Learning Center
 
Is it weather or is it climate? What is the difference?
Is it weather or is it climate? What is the difference?Is it weather or is it climate? What is the difference?
Is it weather or is it climate? What is the difference?LPE Learning Center
 
The current state of cap-and-trade in the U.S. and the mandatory greenhouse g...
The current state of cap-and-trade in the U.S. and the mandatory greenhouse g...The current state of cap-and-trade in the U.S. and the mandatory greenhouse g...
The current state of cap-and-trade in the U.S. and the mandatory greenhouse g...LPE Learning Center
 
Mitigation of greenhouse gas emissions in animal agriculture
Mitigation of greenhouse gas emissions in animal agricultureMitigation of greenhouse gas emissions in animal agriculture
Mitigation of greenhouse gas emissions in animal agricultureLPE Learning Center
 
Contribution of greenhouse gas emissions: animal agriculture in perspective
Contribution of greenhouse gas emissions: animal agriculture in perspectiveContribution of greenhouse gas emissions: animal agriculture in perspective
Contribution of greenhouse gas emissions: animal agriculture in perspectiveLPE Learning Center
 
Impact of aerosols on respiratory health of dairy workers and residents livin...
Impact of aerosols on respiratory health of dairy workers and residents livin...Impact of aerosols on respiratory health of dairy workers and residents livin...
Impact of aerosols on respiratory health of dairy workers and residents livin...LPE Learning Center
 
Estimation of infectious risks in residential populations near a center pivot...
Estimation of infectious risks in residential populations near a center pivot...Estimation of infectious risks in residential populations near a center pivot...
Estimation of infectious risks in residential populations near a center pivot...LPE Learning Center
 
User capabilities and next generation phosphorus (p) indices
User capabilities and next generation phosphorus (p) indicesUser capabilities and next generation phosphorus (p) indices
User capabilities and next generation phosphorus (p) indicesLPE Learning Center
 
Phosphorus indices what is the water quality goal
Phosphorus indices what is the water quality goalPhosphorus indices what is the water quality goal
Phosphorus indices what is the water quality goalLPE Learning Center
 
How legacy nutrients affect farm conservation measures
How legacy nutrients affect farm conservation measuresHow legacy nutrients affect farm conservation measures
How legacy nutrients affect farm conservation measuresLPE Learning Center
 
Estimation of phosphorus loss from agricultural land in the southern region o...
Estimation of phosphorus loss from agricultural land in the southern region o...Estimation of phosphorus loss from agricultural land in the southern region o...
Estimation of phosphorus loss from agricultural land in the southern region o...LPE Learning Center
 
Estimation of phosphorus loss from agricultural land in the heartland region ...
Estimation of phosphorus loss from agricultural land in the heartland region ...Estimation of phosphorus loss from agricultural land in the heartland region ...
Estimation of phosphorus loss from agricultural land in the heartland region ...LPE Learning Center
 
Checking ambition with reality the pros and cons of different approaches to s...
Checking ambition with reality the pros and cons of different approaches to s...Checking ambition with reality the pros and cons of different approaches to s...
Checking ambition with reality the pros and cons of different approaches to s...LPE Learning Center
 
Removing phosphorus from drainage water the phosphorus removal structure
Removing phosphorus from drainage water the phosphorus removal structureRemoving phosphorus from drainage water the phosphorus removal structure
Removing phosphorus from drainage water the phosphorus removal structureLPE Learning Center
 
Legacy phosphorus in calcareous soils effects of long term poultry litter app...
Legacy phosphorus in calcareous soils effects of long term poultry litter app...Legacy phosphorus in calcareous soils effects of long term poultry litter app...
Legacy phosphorus in calcareous soils effects of long term poultry litter app...LPE Learning Center
 
Identify and synthesize methods to refine phosphorus indices from three regio...
Identify and synthesize methods to refine phosphorus indices from three regio...Identify and synthesize methods to refine phosphorus indices from three regio...
Identify and synthesize methods to refine phosphorus indices from three regio...LPE Learning Center
 
Modeling phosphorus runoff in the chesapeake bay region to test the phosphoru...
Modeling phosphorus runoff in the chesapeake bay region to test the phosphoru...Modeling phosphorus runoff in the chesapeake bay region to test the phosphoru...
Modeling phosphorus runoff in the chesapeake bay region to test the phosphoru...LPE Learning Center
 

More from LPE Learning Center (20)

Animal agriculture adaptation planning guide (climate change)
Animal agriculture adaptation planning guide (climate change)Animal agriculture adaptation planning guide (climate change)
Animal agriculture adaptation planning guide (climate change)
 
Is it weather or is it climate? What is the difference?
Is it weather or is it climate? What is the difference?Is it weather or is it climate? What is the difference?
Is it weather or is it climate? What is the difference?
 
Why does climate change?
Why does climate change?Why does climate change?
Why does climate change?
 
The current state of cap-and-trade in the U.S. and the mandatory greenhouse g...
The current state of cap-and-trade in the U.S. and the mandatory greenhouse g...The current state of cap-and-trade in the U.S. and the mandatory greenhouse g...
The current state of cap-and-trade in the U.S. and the mandatory greenhouse g...
 
Mitigation of greenhouse gas emissions in animal agriculture
Mitigation of greenhouse gas emissions in animal agricultureMitigation of greenhouse gas emissions in animal agriculture
Mitigation of greenhouse gas emissions in animal agriculture
 
Contribution of greenhouse gas emissions: animal agriculture in perspective
Contribution of greenhouse gas emissions: animal agriculture in perspectiveContribution of greenhouse gas emissions: animal agriculture in perspective
Contribution of greenhouse gas emissions: animal agriculture in perspective
 
What Is a Water Footprint?
What Is a Water Footprint?What Is a Water Footprint?
What Is a Water Footprint?
 
What Is a Land Footprint?
What Is a Land Footprint?What Is a Land Footprint?
What Is a Land Footprint?
 
Impact of aerosols on respiratory health of dairy workers and residents livin...
Impact of aerosols on respiratory health of dairy workers and residents livin...Impact of aerosols on respiratory health of dairy workers and residents livin...
Impact of aerosols on respiratory health of dairy workers and residents livin...
 
Estimation of infectious risks in residential populations near a center pivot...
Estimation of infectious risks in residential populations near a center pivot...Estimation of infectious risks in residential populations near a center pivot...
Estimation of infectious risks in residential populations near a center pivot...
 
User capabilities and next generation phosphorus (p) indices
User capabilities and next generation phosphorus (p) indicesUser capabilities and next generation phosphorus (p) indices
User capabilities and next generation phosphorus (p) indices
 
Phosphorus indices what is the water quality goal
Phosphorus indices what is the water quality goalPhosphorus indices what is the water quality goal
Phosphorus indices what is the water quality goal
 
How legacy nutrients affect farm conservation measures
How legacy nutrients affect farm conservation measuresHow legacy nutrients affect farm conservation measures
How legacy nutrients affect farm conservation measures
 
Estimation of phosphorus loss from agricultural land in the southern region o...
Estimation of phosphorus loss from agricultural land in the southern region o...Estimation of phosphorus loss from agricultural land in the southern region o...
Estimation of phosphorus loss from agricultural land in the southern region o...
 
Estimation of phosphorus loss from agricultural land in the heartland region ...
Estimation of phosphorus loss from agricultural land in the heartland region ...Estimation of phosphorus loss from agricultural land in the heartland region ...
Estimation of phosphorus loss from agricultural land in the heartland region ...
 
Checking ambition with reality the pros and cons of different approaches to s...
Checking ambition with reality the pros and cons of different approaches to s...Checking ambition with reality the pros and cons of different approaches to s...
Checking ambition with reality the pros and cons of different approaches to s...
 
Removing phosphorus from drainage water the phosphorus removal structure
Removing phosphorus from drainage water the phosphorus removal structureRemoving phosphorus from drainage water the phosphorus removal structure
Removing phosphorus from drainage water the phosphorus removal structure
 
Legacy phosphorus in calcareous soils effects of long term poultry litter app...
Legacy phosphorus in calcareous soils effects of long term poultry litter app...Legacy phosphorus in calcareous soils effects of long term poultry litter app...
Legacy phosphorus in calcareous soils effects of long term poultry litter app...
 
Identify and synthesize methods to refine phosphorus indices from three regio...
Identify and synthesize methods to refine phosphorus indices from three regio...Identify and synthesize methods to refine phosphorus indices from three regio...
Identify and synthesize methods to refine phosphorus indices from three regio...
 
Modeling phosphorus runoff in the chesapeake bay region to test the phosphoru...
Modeling phosphorus runoff in the chesapeake bay region to test the phosphoru...Modeling phosphorus runoff in the chesapeake bay region to test the phosphoru...
Modeling phosphorus runoff in the chesapeake bay region to test the phosphoru...
 

Recently uploaded

Plagiarism, Types & Consequences by Dr. Sarita Anand
Plagiarism, Types & Consequences by Dr. Sarita AnandPlagiarism, Types & Consequences by Dr. Sarita Anand
Plagiarism, Types & Consequences by Dr. Sarita AnandDr. Sarita Anand
 
Persuasive Speaking and Organizational Patterns
Persuasive Speaking and Organizational PatternsPersuasive Speaking and Organizational Patterns
Persuasive Speaking and Organizational PatternsCorinne Weisgerber
 
The basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptxThe basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptxdeputymitchell2
 
2.27.24 Malcolm X and the Black Freedom Struggle.pptx
2.27.24 Malcolm X and the Black Freedom Struggle.pptx2.27.24 Malcolm X and the Black Freedom Struggle.pptx
2.27.24 Malcolm X and the Black Freedom Struggle.pptxMaryPotorti1
 
Data Modeling - Enhanced ER diagrams & Mapping.pdf
Data Modeling - Enhanced ER diagrams & Mapping.pdfData Modeling - Enhanced ER diagrams & Mapping.pdf
Data Modeling - Enhanced ER diagrams & Mapping.pdfChristalin Nelson
 
CATCH UP FRIDAY LESSON PLAN GRADE 6.docx
CATCH UP FRIDAY LESSON PLAN GRADE 6.docxCATCH UP FRIDAY LESSON PLAN GRADE 6.docx
CATCH UP FRIDAY LESSON PLAN GRADE 6.docxAizaPolinarCruz
 
Mycobacteriology update 2024 Margie Morgan.ppt
Mycobacteriology update 2024 Margie Morgan.pptMycobacteriology update 2024 Margie Morgan.ppt
Mycobacteriology update 2024 Margie Morgan.pptMargie Morgan
 
Google Ad Grants Services at TechSoup.pdf
Google Ad Grants Services at TechSoup.pdfGoogle Ad Grants Services at TechSoup.pdf
Google Ad Grants Services at TechSoup.pdfTechSoup
 
Mycology Update February 2024 Microbes with Morgan
Mycology Update February 2024 Microbes with MorganMycology Update February 2024 Microbes with Morgan
Mycology Update February 2024 Microbes with MorganMargie Morgan
 
SSC Hindu Religion and Moral Education MCQ Solutions 2024.pdf
SSC Hindu Religion and Moral Education MCQ Solutions 2024.pdfSSC Hindu Religion and Moral Education MCQ Solutions 2024.pdf
SSC Hindu Religion and Moral Education MCQ Solutions 2024.pdfMohonDas
 
BIOCHEMICAL PROPERTIES OF WATER .Raveesh.pptx
BIOCHEMICAL PROPERTIES OF WATER .Raveesh.pptxBIOCHEMICAL PROPERTIES OF WATER .Raveesh.pptx
BIOCHEMICAL PROPERTIES OF WATER .Raveesh.pptxRAVEESHAD
 
Learner Digital Skills Toolkit DRAFT.docx
Learner Digital Skills Toolkit DRAFT.docxLearner Digital Skills Toolkit DRAFT.docx
Learner Digital Skills Toolkit DRAFT.docxGeorgeMilliken2
 
Capitol Doctoral Presentation -Feb 2024.pptx
Capitol Doctoral Presentation -Feb 2024.pptxCapitol Doctoral Presentation -Feb 2024.pptx
Capitol Doctoral Presentation -Feb 2024.pptxCapitolTechU
 
ICS2208 Lecture 2 Slides Interfaces_.pdf
ICS2208 Lecture 2 Slides Interfaces_.pdfICS2208 Lecture 2 Slides Interfaces_.pdf
ICS2208 Lecture 2 Slides Interfaces_.pdfVanessa Camilleri
 
天橋立 観光メモ 2024-30-302-2-Amanohashidate Sightseeing Memo.pptx
天橋立 観光メモ 2024-30-302-2-Amanohashidate Sightseeing Memo.pptx天橋立 観光メモ 2024-30-302-2-Amanohashidate Sightseeing Memo.pptx
天橋立 観光メモ 2024-30-302-2-Amanohashidate Sightseeing Memo.pptxMasami YASUDA
 
Successful projects and failed programmes – the cost of not designing the who...
Successful projects and failed programmes – the cost of not designing the who...Successful projects and failed programmes – the cost of not designing the who...
Successful projects and failed programmes – the cost of not designing the who...Association for Project Management
 
Digital Footprints to Career Pathways - Building a Strong Professional Online...
Digital Footprints to Career Pathways - Building a Strong Professional Online...Digital Footprints to Career Pathways - Building a Strong Professional Online...
Digital Footprints to Career Pathways - Building a Strong Professional Online...Sue Beckingham
 

Recently uploaded (20)

Advance Mobile Application Development class 04
Advance Mobile Application Development class 04Advance Mobile Application Development class 04
Advance Mobile Application Development class 04
 
Plagiarism, Types & Consequences by Dr. Sarita Anand
Plagiarism, Types & Consequences by Dr. Sarita AnandPlagiarism, Types & Consequences by Dr. Sarita Anand
Plagiarism, Types & Consequences by Dr. Sarita Anand
 
Persuasive Speaking and Organizational Patterns
Persuasive Speaking and Organizational PatternsPersuasive Speaking and Organizational Patterns
Persuasive Speaking and Organizational Patterns
 
The basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptxThe basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptx
 
2.27.24 Malcolm X and the Black Freedom Struggle.pptx
2.27.24 Malcolm X and the Black Freedom Struggle.pptx2.27.24 Malcolm X and the Black Freedom Struggle.pptx
2.27.24 Malcolm X and the Black Freedom Struggle.pptx
 
Data Modeling - Enhanced ER diagrams & Mapping.pdf
Data Modeling - Enhanced ER diagrams & Mapping.pdfData Modeling - Enhanced ER diagrams & Mapping.pdf
Data Modeling - Enhanced ER diagrams & Mapping.pdf
 
CATCH UP FRIDAY LESSON PLAN GRADE 6.docx
CATCH UP FRIDAY LESSON PLAN GRADE 6.docxCATCH UP FRIDAY LESSON PLAN GRADE 6.docx
CATCH UP FRIDAY LESSON PLAN GRADE 6.docx
 
Mycobacteriology update 2024 Margie Morgan.ppt
Mycobacteriology update 2024 Margie Morgan.pptMycobacteriology update 2024 Margie Morgan.ppt
Mycobacteriology update 2024 Margie Morgan.ppt
 
Google Ad Grants Services at TechSoup.pdf
Google Ad Grants Services at TechSoup.pdfGoogle Ad Grants Services at TechSoup.pdf
Google Ad Grants Services at TechSoup.pdf
 
CLUBE PERLINGUAS .
CLUBE PERLINGUAS                        .CLUBE PERLINGUAS                        .
CLUBE PERLINGUAS .
 
Mycology Update February 2024 Microbes with Morgan
Mycology Update February 2024 Microbes with MorganMycology Update February 2024 Microbes with Morgan
Mycology Update February 2024 Microbes with Morgan
 
SSC Hindu Religion and Moral Education MCQ Solutions 2024.pdf
SSC Hindu Religion and Moral Education MCQ Solutions 2024.pdfSSC Hindu Religion and Moral Education MCQ Solutions 2024.pdf
SSC Hindu Religion and Moral Education MCQ Solutions 2024.pdf
 
BIOCHEMICAL PROPERTIES OF WATER .Raveesh.pptx
BIOCHEMICAL PROPERTIES OF WATER .Raveesh.pptxBIOCHEMICAL PROPERTIES OF WATER .Raveesh.pptx
BIOCHEMICAL PROPERTIES OF WATER .Raveesh.pptx
 
Learner Digital Skills Toolkit DRAFT.docx
Learner Digital Skills Toolkit DRAFT.docxLearner Digital Skills Toolkit DRAFT.docx
Learner Digital Skills Toolkit DRAFT.docx
 
Capitol Doctoral Presentation -Feb 2024.pptx
Capitol Doctoral Presentation -Feb 2024.pptxCapitol Doctoral Presentation -Feb 2024.pptx
Capitol Doctoral Presentation -Feb 2024.pptx
 
Risk in the changing world – Opportunity or threat
Risk in the changing world – Opportunity or threatRisk in the changing world – Opportunity or threat
Risk in the changing world – Opportunity or threat
 
ICS2208 Lecture 2 Slides Interfaces_.pdf
ICS2208 Lecture 2 Slides Interfaces_.pdfICS2208 Lecture 2 Slides Interfaces_.pdf
ICS2208 Lecture 2 Slides Interfaces_.pdf
 
天橋立 観光メモ 2024-30-302-2-Amanohashidate Sightseeing Memo.pptx
天橋立 観光メモ 2024-30-302-2-Amanohashidate Sightseeing Memo.pptx天橋立 観光メモ 2024-30-302-2-Amanohashidate Sightseeing Memo.pptx
天橋立 観光メモ 2024-30-302-2-Amanohashidate Sightseeing Memo.pptx
 
Successful projects and failed programmes – the cost of not designing the who...
Successful projects and failed programmes – the cost of not designing the who...Successful projects and failed programmes – the cost of not designing the who...
Successful projects and failed programmes – the cost of not designing the who...
 
Digital Footprints to Career Pathways - Building a Strong Professional Online...
Digital Footprints to Career Pathways - Building a Strong Professional Online...Digital Footprints to Career Pathways - Building a Strong Professional Online...
Digital Footprints to Career Pathways - Building a Strong Professional Online...
 

Developing a Modeling Framework to Characterize Manure Flows in Texas

  • 3. MODELING MANURE FLOWS IN THE TEXAS PANHANDLE IN RESPONSE TO FERTILIZER PRICES, BIOFUEL DEMAND, AND OTHER EXTERNALITIES Gary Marek, Ph. D. Research Engineer USDA-ARS, Bushland, TX Photo courtesy of Emalee Buttrey
  • 4. Project Background WTAMU Systems I class project: Initial Q: Evaluate the economic feasibility of a manure-fueled corn ethanol plant in the Texas Panhandle Revised Q: Under what conditions is it economically feasible to fuel an EtOH plant with manure in the Panhandle?
  • 5. Integrated System Layers of Dynamic Modeling Mass Energy Environment Markets Policy
  • 6. Mass & Energy Layers • Manure • Distillers Grains • Water • Natural Gas • Corn • Ash
  • 7. Conceptual Model Schematic Mass & Energy Flows FEEDYARD LAND MANAGEMENT UNIT PANDA ETHANOL PLANT manure ash natural gaswater CORN DISTILLERS GRAINS SEED Adapted from image by Sharon Preece
  • 8. System Manure Flow • Time of Year • Storage capacity • Collection radius • Price of fossil fuel • Manure production rate • Price of chemical fertilizer • Fertilizer Value • Fuel Value • Agronomic Rate • HHV Demand • NPK Demand
  • 9. Distillers Grains Effects on Manure • Increases concentration of phosphorous  May increase land requirements, travel distances, and management practices • Decreases Higher Heating Value (HHV) (Buttrey et al.,2012)
  • 10. Environment Layer • Regulatory Nutrient Limits • Soil • Water • Air Quality • Nitrogen Thresholds (Rocky Mtn. Natl. Park) • Permit Storage Limits (CAFOs & Panda) • Declining Aquifer Capacity - Droughts • Effects on crop composition & yield • Jevons Paradox
  • 11. Markets Layer • Valuing Manure • Fertilizer Value • Fuel Value • Transaction modeling • Buyer vs. Seller • Market Structures • Market Simulator
  • 12. Valuing Manure as Fertilizer (Massey 2006) Commercial Fertilizer • Guaranteed Analysis • Concentrated • Selectable nutrient ratios • Accurate Application Systems • Relatively Low Hauling/Application Costs • Expensive Manure & Compost • Inconsistent Nutrient Conc. • Highly Variable Application Methods • Expensive Hauling Costs • Weed Seed • Foreign Debris • Salts • Organic Matter
  • 13. Average U.S. Farm Prices of Selected Fertilizers 0 100 200 300 400 500 600 700 800 900 1975 1980 1985 1990 1995 2000 2005 2010 Dollars/tonofnutrient Year Nitrogen phosphate potassium Source: Agricultural Prices, National Agricultural Statistics Service, USDA.
  • 14. Marginal Nutrient Value MV ip AR pt MV in AR nt MV max MARGINALNUTRIENTVALUE ($/tonas-is) APPLICATION RATE (tons as-is / acre) I II III
  • 15. Valuing Manure as Fuel Source • HHV of manure determined by… • Ash Content • Moisture • DDGS inclusion (Buttrey et al., 2012) • Manure Handling Practices • Affect on ash content • Weather • Point-of-Use Comparison • Natural Gas Price Trends
  • 16. Heating Value of Manure 0% 20% 40% 60% 80% 0% 20% 40% 60% 80% MaximumMoistureContent(wb) Ash Fraction (db) MinimumAcceptable HV = 2,758 BTU/lb Arbitrary Target HHV = 3,500 BTU/lb Arbitrary Target HHV = 4,500 BTU/lb
  • 17. Natural Gas vs. Ammonia (1985-2006)
  • 18. Manure Value Calculator INPUTS: N & P conc. of manure N & P crop requirements Price of inorganic N & P Hauling distance Hauling costs Price of natural gas Landfill disposal costs OUTPUTS: Manure value as N & P fertilizer Manure value as an energy source Net values after transportation
  • 19. Transaction Probability Model PWA (PB, P(PB)) (PA, P(PA)) PWPPB PA XactionProbabilityatPrice Xaction Price BUYER SELLER
  • 20. Market Structures • Prior to markets operating, a hypothesis can be used to simulate potential markets • Local market conditions determine the type of market (Zering 2010) A. Sufficient # of buyers & sellers, prices adjust frequently to clear the market B. Single seller, multiple buyers (monopoly), seller sets price C. Single buyer, multiple sellers (monopsony), buyer sets price D. Few buyers & sellers, potential for “hold up”, whoever can survive the longest without the other sets price
  • 23. Explicit Model • Database information • Manure fertilizer value modules • Manure fuel value modules • Transaction Models • Dynamically linked system layers How do we synthesize all of this information?
  • 24. System Boundary Panda • Feedlots • Dairies • Manure collection radius of 30 miles from proposed Panda plant  41 feedlots 3,000 – 100,000 head  21 dairies 250 - 5,000 head • CAFO capacities estimated by industry and extension personnel • System Boundary - Manure dispersion radius of 20 miles from each CAFO • Boundary encompasses 4,172,815 acres
  • 25. Satellite Imagery Panda • Feedlots • Dairies • DOQ’s from Texas Natural Resources Information System (TNRIS) added to the project • Used to estimate irrigated, dryland, rangeland, and municipal acreages
  • 26. Irrigated Land • DOQ’s from Texas Natural Resources Information System (TNRIS) added to the project • Irrigated land calculated by digitizing center pivot circles  4,935 circles  740,765 acres • Dryland acreage was calculated by subtracting irrigated acreage from total arable land  3,226,894 acres • Rangeland/Municipal Acreage  205,156 acres
  • 27. Grid Overlay • Grid constructed to address spatial aspects of project  1,023 cells  3 mi x 3 mi • Cells assigned crop composition and yield values based on county NASS data • Road distance from centroid of every cell to each CAFO was calculated using ArcGIS Network Analyst algorithm
  • 28. Simple Optimization Model (MS Excel) A B C D E G 1 2 3 4 5 7 8 8 9 10 CAFOS (feedlots & dairies) LMUCells … n=62 n=1,023…
  • 29. Solution-Based Model (MS Excel) Information relating each CAFO to each LMU cell
  • 30. CAFO Attributes • Feedlot or Dairy • Annual manure production capacity • As-collected manure production • Nutrient concentrations of CAFO manure
  • 31. LMU Cell Attributes • Acreage characterization and allocation (irrigated,dryland, rangeland/municipal) • Nitrogen and phosphorus requirements (based on county NASS crop composition and average yield values) • Road distance to CAFO
  • 32. Array Calculations/Switches • Tons of manure required to fulfill nitrogen and phosphorus requirements • Fulfill nitrogen or phosphorus demand • Net price per acre to fulfill nutrient requirements
  • 33. Model Assumptions & Constraints • One year time horizon • Manure to satisfy nitrogen requirements • No antecedent nutrients • Only irrigated acreage would receive manure • CAFOs and Panda operate at 100% capacity • All manure allocated to LMU (no storage) • No supplemental commercial fertilizer • Zero value for organic matter • Price of manure held constant ($2.50 per ton) • Hauling & spreading costs held constant ($0.24 per ton mile)
  • 34. Model Runs • Model run #1 – Manure from all 62 CAFOs allocated to LMU • Model run #2 – Manure from closest feedlots allocated to Panda. Manure from the remaining 55 CAFOs allocated to LMU
  • 35. Subscription Ratio A B C D E G 1 2 3 4 5 7 8 8 9 10 CAFOS (feedlots & dairies) LMUCells … n=62 n=431… RATIO 3.2 0.9 10.5 6.5 1.5 0.25 RANK 3 5 1 2 4 6
  • 36. Subscription Ratio (i=1) A B C D E G 1 2 3 4 5 7 8 9 10 11 CAFOS (feedlots & dairies) LMUCells … n=62 n=431… RATIO 3.2 0.9 10.5 6.5 1.5 0.25 RANK 3 5 1 2 4 6
  • 37. Subscription Ratio (i=2) A B C D E G 1 2 3 4 5 7 8 9 10 11 CAFOS (feedlots & dairies) LMUCells … n=62 n=431… RATIO 3.2 0.9 1.0 6.5 1.5 0.25 RANK 2 4 N/A 1 3 5
  • 38. Subscription Ratio (i=2) A B C D E G 1 2 3 4 5 7 8 9 10 11 CAFOS (feedlots & dairies) LMUCells … n=62 n=431… RATIO 3.2 0.9 1.0 6.5 1.5 0.25 RANK 2 4 N/A 1 3 5
  • 39. Ranking LMU Cells within a CAFO • NPA for manure to NPA for commercial fertilizer ratio  Assumed Co-Op at a distance of 10 miles from every cell • Fields allocated until CAFO manure is depleted • Partially fulfilled fields returned to array with updated nutrient and acreage requirements
  • 40. CAFOs with Unallocated Manure • Model forced CAFOs to allocate all manure produced • Taking off point for transaction modeling • To move manure, would likely have to discount price
  • 41. Results Run #1 232 total cells Avg. price per acre (197 common cells) $52.86 Avg. hauling distance 8.38 miles 33 66 99 132 165 198 231 264 297 330 363 396 429 462 495 528 561 594 627 660 693 726 759 792 825 858 891 924 957 990 1023 32 65 98 131 164 197 230 263 296 329 362 395 428 461 494 527 560 593 626 659 692 725 758 791 824 857 890 923 956 989 1022 31 64 97 130 163 196 229 262 295 328 361 394 427 460 493 526 559 592 625 658 691 724 757 790 823 856 889 922 955 988 1021 30 63 96 129 162 195 228 261 294 327 360 393 426 459 492 525 558 591 624 657 690 723 756 789 822 855 888 921 954 987 1020 29 62 95 128 161 194 227 260 293 326 359 392 425 458 491 524 557 590 623 656 689 722 755 788 821 854 887 920 953 986 1019 28 61 94 127 160 193 226 259 292 325 358 391 424 457 490 523 556 589 622 655 688 721 754 787 820 853 886 919 952 985 1018 27 60 93 126 159 192 225 258 291 324 357 390 423 456 489 522 555 588 621 654 687 720 753 786 819 852 885 918 951 984 1017 26 59 92 125 158 191 224 257 290 323 356 389 422 455 488 521 554 587 620 653 686 719 752 785 818 851 884 917 950 983 1016 25 58 91 124 157 190 223 256 289 322 355 388 421 454 487 520 553 586 619 652 685 718 751 784 817 850 883 916 949 982 1015 24 57 90 123 156 189 222 255 288 321 354 387 420 453 486 519 552 585 618 651 684 717 750 783 816 849 882 915 948 981 1014 23 56 89 122 155 188 221 254 287 320 353 386 419 452 485 518 551 584 617 650 683 716 749 782 815 848 881 914 947 980 1013 22 55 88 121 154 187 220 253 286 319 352 385 418 451 484 517 550 583 616 649 682 715 748 781 814 847 880 913 946 979 1012 21 54 87 120 153 186 219 252 285 318 351 384 417 450 483 516 549 582 615 648 681 714 747 780 813 846 879 912 945 978 1011 20 53 86 119 152 185 218 251 284 317 350 383 416 449 482 515 548 581 614 647 680 713 746 779 812 845 878 911 944 977 1010 19 52 85 118 151 184 217 250 283 316 349 382 415 448 481 514 547 580 613 646 679 712 745 778 811 844 877 910 943 976 1009 18 51 84 117 150 183 216 249 282 315 348 381 414 447 480 513 546 579 612 645 678 711 744 777 810 843 876 909 942 975 1008 17 50 83 116 149 182 215 248 281 314 347 380 413 446 479 512 545 578 611 644 677 710 743 776 809 842 875 908 941 974 1007 16 49 82 115 148 181 214 247 280 313 346 379 412 445 478 511 544 577 610 643 676 709 742 775 808 841 874 907 940 973 1006 15 48 81 114 147 180 213 246 279 312 345 378 411 444 477 510 543 576 609 642 675 708 741 774 807 840 873 906 939 972 1005 14 47 80 113 146 179 212 245 278 311 344 377 410 443 476 509 542 575 608 641 674 707 740 773 806 839 872 905 938 971 1004 13 46 79 112 145 178 211 244 277 310 343 376 409 442 475 508 541 574 607 640 673 706 739 772 805 838 871 904 937 970 1003 12 45 78 111 144 177 210 243 276 309 342 375 408 441 474 507 540 573 606 639 672 705 738 771 804 837 870 903 936 969 1002 11 44 77 110 143 176 209 242 275 308 341 374 407 440 473 506 539 572 605 638 671 704 737 770 803 836 869 902 935 968 1001 10 43 76 109 142 175 208 241 274 307 340 373 406 439 472 505 538 571 604 637 670 703 736 769 802 835 868 901 934 967 1000 9 42 75 108 141 174 207 240 273 306 339 372 405 438 471 504 537 570 603 636 669 702 735 768 801 834 867 900 933 966 999 8 41 74 107 140 173 206 239 272 305 338 371 404 437 470 503 536 569 602 635 668 701 734 767 800 833 866 899 932 965 998 7 40 73 106 139 172 205 238 271 304 337 370 403 436 469 502 535 568 601 634 667 700 733 766 799 832 865 898 931 964 997 6 39 72 105 138 171 204 237 270 303 336 369 402 435 468 501 534 567 600 633 666 699 732 765 798 831 864 897 930 963 996 5 38 71 104 137 170 203 236 269 302 335 368 401 434 467 500 533 566 599 632 665 698 731 764 797 830 863 896 929 962 995 4 37 70 103 136 169 202 235 268 301 334 367 400 433 466 499 532 565 598 631 664 697 730 763 796 829 862 895 928 961 994 3 36 69 102 135 168 201 234 267 300 333 366 399 432 465 498 531 564 597 630 663 696 729 762 795 828 861 894 927 960 993 2 35 68 101 134 167 200 233 266 299 332 365 398 431 464 497 530 563 596 629 662 695 728 761 794 827 860 893 926 959 992 1 34 67 100 133 166 199 232 265 298 331 364 397 430 463 496 529 562 595 628 661 694 727 760 793 826 859 892 925 958 991 dairies 386 386 416 416 416 415 381 537 348 537 371 470 569 637 669 176 273 273 176 800 800 387 669 353 feedlots cont 618 479 444 512 508 478 454 586 384 483 517 682 547 715 413 411 714 777 548 469 438 437 651 447 443 446 507 476 421 585 417 450 516 649 849 748 414 209 636 669 581 471 436 617 480 477 513 541 509 453 552 385 484 518 616 514 716 177 515 405 684 481 476 546 540 475 487 584 418 482 550 615 882 683 241 372 650 414 538 506 388 553 449 485 648 605 749 816 571 504 539 420 551 451 515 583 604 781 419 537 505 486 519 549 613 636 717 418 572 452 582 551 580 571 782 386 538 452 848 603 814
  • 42. Results Run #2 221 total cells 11 fewer cells Avg. price per acre (197 common cells) $56.38 Avg. hauling distance 9.3 miles 33 66 99 132 165 198 231 264 297 330 363 396 429 462 495 528 561 594 627 660 693 726 759 792 825 858 891 924 957 990 1023 32 65 98 131 164 197 230 263 296 329 362 395 428 461 494 527 560 593 626 659 692 725 758 791 824 857 890 923 956 989 1022 31 64 97 130 163 196 229 262 295 328 361 394 427 460 493 526 559 592 625 658 691 724 757 790 823 856 889 922 955 988 1021 30 63 96 129 162 195 228 261 294 327 360 393 426 459 492 525 558 591 624 657 690 723 756 789 822 855 888 921 954 987 1020 29 62 95 128 161 194 227 260 293 326 359 392 425 458 491 524 557 590 623 656 689 722 755 788 821 854 887 920 953 986 1019 28 61 94 127 160 193 226 259 292 325 358 391 424 457 490 523 556 589 622 655 688 721 754 787 820 853 886 919 952 985 1018 27 60 93 126 159 192 225 258 291 324 357 390 423 456 489 522 555 588 621 654 687 720 753 786 819 852 885 918 951 984 1017 26 59 92 125 158 191 224 257 290 323 356 389 422 455 488 521 554 587 620 653 686 719 752 785 818 851 884 917 950 983 1016 25 58 91 124 157 190 223 256 289 322 355 388 421 454 487 520 553 586 619 652 685 718 751 784 817 850 883 916 949 982 1015 24 57 90 123 156 189 222 255 288 321 354 387 420 453 486 519 552 585 618 651 684 717 750 783 816 849 882 915 948 981 1014 23 56 89 122 155 188 221 254 287 320 353 386 419 452 485 518 551 584 617 650 683 716 749 782 815 848 881 914 947 980 1013 22 55 88 121 154 187 220 253 286 319 352 385 418 451 484 517 550 583 616 649 682 715 748 781 814 847 880 913 946 979 1012 21 54 87 120 153 186 219 252 285 318 351 384 417 450 483 516 549 582 615 648 681 714 747 780 813 846 879 912 945 978 1011 20 53 86 119 152 185 218 251 284 317 350 383 416 449 482 515 548 581 614 647 680 713 746 779 812 845 878 911 944 977 1010 19 52 85 118 151 184 217 250 283 316 349 382 415 448 481 514 547 580 613 646 679 712 745 778 811 844 877 910 943 976 1009 18 51 84 117 150 183 216 249 282 315 348 381 414 447 480 513 546 579 612 645 678 711 744 777 810 843 876 909 942 975 1008 17 50 83 116 149 182 215 248 281 314 347 380 413 446 479 512 545 578 611 644 677 710 743 776 809 842 875 908 941 974 1007 16 49 82 115 148 181 214 247 280 313 346 379 412 445 478 511 544 577 610 643 676 709 742 775 808 841 874 907 940 973 1006 15 48 81 114 147 180 213 246 279 312 345 378 411 444 477 510 543 576 609 642 675 708 741 774 807 840 873 906 939 972 1005 14 47 80 113 146 179 212 245 278 311 344 377 410 443 476 509 542 575 608 641 674 707 740 773 806 839 872 905 938 971 1004 13 46 79 112 145 178 211 244 277 310 343 376 409 442 475 508 541 574 607 640 673 706 739 772 805 838 871 904 937 970 1003 12 45 78 111 144 177 210 243 276 309 342 375 408 441 474 507 540 573 606 639 672 705 738 771 804 837 870 903 936 969 1002 11 44 77 110 143 176 209 242 275 308 341 374 407 440 473 506 539 572 605 638 671 704 737 770 803 836 869 902 935 968 1001 10 43 76 109 142 175 208 241 274 307 340 373 406 439 472 505 538 571 604 637 670 703 736 769 802 835 868 901 934 967 1000 9 42 75 108 141 174 207 240 273 306 339 372 405 438 471 504 537 570 603 636 669 702 735 768 801 834 867 900 933 966 999 8 41 74 107 140 173 206 239 272 305 338 371 404 437 470 503 536 569 602 635 668 701 734 767 800 833 866 899 932 965 998 7 40 73 106 139 172 205 238 271 304 337 370 403 436 469 502 535 568 601 634 667 700 733 766 799 832 865 898 931 964 997 6 39 72 105 138 171 204 237 270 303 336 369 402 435 468 501 534 567 600 633 666 699 732 765 798 831 864 897 930 963 996 5 38 71 104 137 170 203 236 269 302 335 368 401 434 467 500 533 566 599 632 665 698 731 764 797 830 863 896 929 962 995 4 37 70 103 136 169 202 235 268 301 334 367 400 433 466 499 532 565 598 631 664 697 730 763 796 829 862 895 928 961 994 3 36 69 102 135 168 201 234 267 300 333 366 399 432 465 498 531 564 597 630 663 696 729 762 795 828 861 894 927 960 993 2 35 68 101 134 167 200 233 266 299 332 365 398 431 464 497 530 563 596 629 662 695 728 761 794 827 860 893 926 959 992 1 34 67 100 133 166 199 232 265 298 331 364 397 430 463 496 529 562 595 628 661 694 727 760 793 826 859 892 925 958 991 dairies 386 386 416 416 416 415 447 538 316 538 306 470 569 637 669 245 306 306 245 605 800 387 636 353 feedlots cont 618 444 512 454 586 384 483 517 682 547 715 413 411 714 777 548 469 438 437 651 443 446 421 585 417 450 516 649 849 748 414 476 636 669 581 471 436 617 477 513 453 552 385 484 518 616 514 716 510 515 405 684 476 546 487 584 418 482 550 615 882 683 509 372 650 538 388 553 449 485 648 513 749 540 816 504 420 551 451 515 583 481 781 506 419 537 486 519 549 613 512 717 539 418 452 582 551 580 479 782 505 386 452 848 480 814 451 579 446 815

Editor's Notes

  1. Introduce this question as a researchable question as we drill down into the quantitative level. We are first exploring the manure flow stream because we are manure guys.
  2. This body of work originated as a systems I class project. The original project question posed was “Is it economically feasible to use manure as a fuel for ethanol production?” In order to answer that question, one would have to be presented a set of conditions and the answer “yes” or “no. This is not a systems question. A better question would be… ”under what conditions is it economically feasible to use manure as a fuel source for ethanol production?” In fact, why would we consider manure in the first place? …We’ll get to that.
  3. This body of work originated as a systems I class project. The original project question posed was “Is it economically feasible to use manure as a fuel for ethanol production?” In order to answer that question, one would have to be presented a set of conditions and the answer “yes” or “no. This is not a systems question. A better question would be… ”under what conditions is it economically feasible to use manure as a fuel source for ethanol production?” In fact, why would we consider manure in the first place? …We’ll get to that.
  4. This body of work originated as a systems I class project. The original project question posed was “Is it economically feasible to use manure as a fuel for ethanol production?” In order to answer that question, one would have to be presented a set of conditions and the answer “yes” or “no. This is not a systems question. A better question would be… ”under what conditions is it economically feasible to use manure as a fuel source for ethanol production?” In fact, why would we consider manure in the first place? …We’ll get to that.
  5. MNV for the area of concern. Discus the nutrient thresholds and associated diminishing returns with application beyond them.
  6. Explain that HHV of manure is a function of ash and moisture content. We as researchers spent a lot of time figuring out how to manage for low ash, high BTU manure.
  7. Introduce our manure value calculator model. List main assumptions: 1) fertilizer values are for one growing season – crop requirements are determined by soil test. 2) assumes landfill will accept ash fraction from EtOH plant, etc. Mention that most of the model parameters are adjustable variables. Notice we have no flow associated with the model, this is a calculation module that will provide data for flow direction.
  8. Generic conceptual transaction model. We are not sure of the “shape” of the area between PB and PA.
  9. Introduce market structures according to Zering
  10. Market structure flow chart, explain how storage or regulatory pressure may lead to expedited manure removal.
  11. Market structure flow chart, explain how storage or regulatory pressure may lead to expedited manure removal.