Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Formulação do
Problema
CAPÍTULO 2
Aluna: Amanda Reis Silva
Formulação do problema
1. Formulação Do Problema
• Reconhecimento do problema;
• Revisão das descobertas anteriores;
2. So...
Passo do Reconhecimento do Problema
➢Análise quantitativa começa com o reconhecimento do problema a ser resolvido/decisão ...
Identificação dos Stakeholders na
Análise
➢Nesse passo, vale a pena refletir sobre quem são os stakeholders da análise e c...
Que Tipo de História Analítica Está se
Contando?
➢ Foco em como desenvolver respostas/ideias para a decisão;
➢Histórias de...
Passo do Reconhecimento do Problema
➢Escopo do problema: É importante não limitar prematuramente o escopo do problema ou
d...
Passo de Revisão das Descobertas
Anteriores
➢Deve-se investigar todas as descobertas correlatas anteriores após o reconhec...
Solução do problema
CAPÍTULO 3
Passo da modelagem
➢Modelo é representação deliberadamente simplificada do problema;
➢Modelos são comparáveis a caricatura...
Passo da coleta de dados
(mensuração):
➢O passo seguinte é coletar dados e medir variáveis selecionadas.
➢Primeiro organiz...
Tipos de dados
➢Dados secundários:
• Dados já coletados por outrem.
➢Dados primários:
• Variáveis medidas pelo próprio pes...
Passo da análise de dados
➢A análise de dados resulta na descoberta de padrões consistentes, ou seja, a relação entre as
v...
Tipos de modelos
➢Vários são os modelos adotados por analistas e organizações para decidir sobre os dados;
➢Três questões ...
Resultados:
Comunicação e ação
CAPÍTULO 4
Resultados: Comunicação e ação
➢Último estágio do referencial;
➢Os analistas podem tornar os resultados de suas pesquisas ...
Métodos modernos de comunicação
dos resultados
➢A analítica visual (visualização de dados) progrediu muito nos últimos ano...
Métodos modernos de comunicação
dos resultados
➢As apresentações ou relatórios não são os únicos produtos possíveis dos pr...
Analítica quantitativa
e criatividade
CAPÍTULO 5
Analítica quantitativa e criatividade
➢ A criatividade e analítica não são conceitos antagônicos, mas sim, não raro, ideia...
Rápida revisão dos seis passos
➢No passo de reconhecimento e formulação do problema, a criatividade é
extremamente útil e ...
Os quatro estágios de raciocínio
analítico criativo
➢O processo criativo segue esses passos sequenciais:
• Preparação: con...
Imersão e trabalho árduo como fonte
de criatividade e insight
➢Criatividade é insight que de súbito ilumina a solução do p...
Desenvolvimento de
recursos de análise
quantitativa
CAPÍTULO 6
Desenvolvimento de recursos de
análise quantitativa
➢Segundo Aristóteles, os hábitos, ou que se faz repetidamente, define ...
Desenvolvimento de recursos de
análise quantitativa
➢Atitudes quantitativas:
• É necessário manter-se aberto ao aprendizad...
Desenvolvimento de recursos de
análise quantitativa
➢Atitudes quantitativas <-> Conhecimento quantitativo;
➢Compreensão da...
Desenvolvimento de recursos de
análise quantitativa
➢Hábitos quantitativos-> Praticando com regularidade e persistência os...
Hábitos quantitativos <->
Métodos/conhecimentos quantitativos
➢Nessa fase, é preciso estudar os fundamentos para compreend...
Trabalhando com os
quants
CAPÍTULO 7
Trabalhando com os quants
➢O que se descreve no capítulo é um conjunto de relacionamento entre três conjuntos de
atores:
•...
Atribuições analíticas
➢Atribuições analíticas a serem exercidas pela pessoa de negócio:
• Aprender alguma coisa de matemá...
Cientista de Dados
➢Profissionais capacitados em estatística, ciência da computação e/ou matemática capazes de
analisar gr...
Referências
DAVENPORT, T; KIM, J. Dados Demais. 1. ed. Rio de Janeiro: Elsevier, 2013.
Disponível em: <http://www.sas.com/...
Upcoming SlideShare
Loading in …5
×

6 Passos de uma análise quantitativa - Dados Demais

1,390 views

Published on

Apresentação para o grupo de estudos do L3P sobre os 6 passos de uma análise quantitativa utilizando o livro: "Dados Demais"
Pesquisadora: Amanda Reis Silva

Published in: Data & Analytics
  • Be the first to comment

6 Passos de uma análise quantitativa - Dados Demais

  1. 1. Formulação do Problema CAPÍTULO 2 Aluna: Amanda Reis Silva
  2. 2. Formulação do problema 1. Formulação Do Problema • Reconhecimento do problema; • Revisão das descobertas anteriores; 2. Solução Do Problema • Modelagem e seleção das variáveis; • Coleta de dados; • Análise dos dados; 3. Resultados: Comunicação e Ação • Apresentação dos resultados e adoção de providências.
  3. 3. Passo do Reconhecimento do Problema ➢Análise quantitativa começa com o reconhecimento do problema a ser resolvido/decisão a ser tomada; ➢Situações que levam a esse primeiro estágio: • Pura curiosidade; • Experiências no trabalho; • Necessidade de decisão ou ação; • Situações em andamento, exigindo atenção; • Desenvolvimento/contestação de teorias existentes/pesquisas passadas; • Aceitação de ofertas de projetos/estimativa da disponibilidade de financiamento. ➢O fator mais importante no estágio de reconhecimento do problema é compreender plenamente a questão e sua importância;
  4. 4. Identificação dos Stakeholders na Análise ➢Nesse passo, vale a pena refletir sobre quem são os stakeholders da análise e como se sentem em relação ao problema; ➢Componentes comuns desse processo: 1. Indentificar todos os stakeholders; 2. Registrar as necessidades dos stakeholders; 3. Avaliar e analisar os interesses e influências dos stakeholders; 4. Administrar as expectativas dos stakeholders; 5. Tomar providências; 6. Revisar o status e repetir. ➢ A análise de stakeholders destina-se a identificar quem são os principais responsáveis pelas decisões e a maneira mais provável de convencê-los quanto aos resultados;
  5. 5. Que Tipo de História Analítica Está se Contando? ➢ Foco em como desenvolver respostas/ideias para a decisão; ➢Histórias de CSI; ➢Histórias Eureca; ➢Histórias de Cientista Maluco; ➢Histórias de Pesquisas; ➢Histórias de Predições; ➢Histórias “Eis o que aconteceu”.
  6. 6. Passo do Reconhecimento do Problema ➢Escopo do problema: É importante não limitar prematuramente o escopo do problema ou decisão; ➢“Seja específico sobre o que quer descobrir”: É necessário ter criado uma descrição clara da questão, com definições concretas dos principais itens ou variáveis a serem estudadas; ➢Em pesquisa quantitativa, faz muita diferença a maneira como as coisas são definidas;
  7. 7. Passo de Revisão das Descobertas Anteriores ➢Deve-se investigar todas as descobertas correlatas anteriores após o reconhecimento do problema; ➢Basicamente perguntamos: “Já se contou antes história semelhante a esta?”; ➢Reformulação do problema.
  8. 8. Solução do problema CAPÍTULO 3
  9. 9. Passo da modelagem ➢Modelo é representação deliberadamente simplificada do problema; ➢Modelos são comparáveis a caricaturas. Boa caricatura é aquela em que os traços especiais são escolhidos com convicção e eficácia; ➢George Box, estatístico famoso, observou que “todos os modelos são falhos, mas alguns são úteis; ➢Como selecionar as variáveis e descobrir como elas se relacionam umas com as outras? • Hipóteses; • Hipóteses serão testadas mais tarde; isso que diferencia da intuição, por exemplo.
  10. 10. Passo da coleta de dados (mensuração): ➢O passo seguinte é coletar dados e medir variáveis selecionadas. ➢Primeiro organiza-se o problema reconhecido que se tornam dados depois da mensuração. ➢Se as variáveis que estão sendo reunidas foram medidas e analisadas com frequência por outrem, esse passo será muito simples. ➢Maneiras de medir as variáveis: • Variáveis binárias; • Variáveis categóricas (nominais); • Variáveis ordinais; • Variáveis numéricas (intervalo e razão).
  11. 11. Tipos de dados ➢Dados secundários: • Dados já coletados por outrem. ➢Dados primários: • Variáveis medidas pelo próprio pesquisador. ➢Dados estruturados e não estruturados: • Dados estruturados são aqueles em forma de fileiras e colunas; • Dados não estruturados se apresentam em fluxo contínuo, exemplo: textos. •Agora, na era do Big Data, organizações lidam no dia a dia com vários petabytes (1.000.000.000.000.000 unidade de dados); •Esse tipo de dado requer muitas filtragens, classificações e outras formas de triagem para poder ser analisados;
  12. 12. Passo da análise de dados ➢A análise de dados resulta na descoberta de padrões consistentes, ou seja, a relação entre as variáveis embutidas nos dados; ➢A análise de dados pode ser realizado por meio da utilização de um relatório ou de fornecedores de software para categoria de análise na qual se tenta usar a estatística. ➢Microsoft Excel, pode fazer algumas análises estatísticas e analítica visual, assim como elaborar relatórios, embora não seja o mais robusto quando se tem muitos dados a processar.
  13. 13. Tipos de modelos ➢Vários são os modelos adotados por analistas e organizações para decidir sobre os dados; ➢Três questões a serem consideradas na identificação do modelo adequado: • Quantidade de variáveis a serem analisadas; • Se envolve questões de descrição ou de inferência; • Níveis de medida que se dispõe nas variáveis de interesse. ➢Nenhum modelo dura para sempre.
  14. 14. Resultados: Comunicação e ação CAPÍTULO 4
  15. 15. Resultados: Comunicação e ação ➢Último estágio do referencial; ➢Os analistas podem tornar os resultados de suas pesquisas mais interessantes e atraentes, a fim de inspirar mais ações; ➢A essência desse estagio é descrever o problema e contar a história por trás dele; ➢Depois de identificar essas relações, o significado delas deve ser interpretado, descrito e apresentado de maneira relevante para o problema; ➢Os analistas mais bem sucedidos são aqueles que “contam uma história com dados”; ➢Um erro trágico é pensar que o público se sente confortável com termos técnicos e os métodos estatísticos abordados. Grande parte não compreende um relatório altamente técnico;
  16. 16. Métodos modernos de comunicação dos resultados ➢A analítica visual (visualização de dados) progrediu muito nos últimos anos; ➢Propósitos e tipos de analítica visual: ◦ Ver as relações entre pontos de dados-> Gráfico de dispersão Matriz de dispersão Mapa de calor Diagrama de rede ◦ Compara conjunto de frequências ou valores-> Gráfico de barras Histograma Gráfico de bolhas ◦ Mostrar as altas e baixas de uma variável em relação a outra-> Gráfico de linha Gráfico de pilha ◦ Ver as partes de um todo e como se relacionam-> Gráfico de setores ou de pizza Mapa de árvore ◦ Compreender dados ao longo de área geográfica-> Sobrepor dados resumidos em mapas geográficos ◦ Analisar ocorrências em textos-> Nuvem de tags Rede de frases
  17. 17. Métodos modernos de comunicação dos resultados ➢As apresentações ou relatórios não são os únicos produtos possíveis dos projetos analíticos. O melhor seria se os analistas se empenhassem na produção de resultados bem próximos da criação de valor. ➢Os cientistas de dados se concentram em áreas de desenvolvimento de produtos. O objetivo é desenvolver protótipos de produtos e novos atributos de produtos; ➢A chave do sucesso é planejar e executar bem o passo inicial e o passo final do processo.
  18. 18. Analítica quantitativa e criatividade CAPÍTULO 5
  19. 19. Analítica quantitativa e criatividade ➢ A criatividade e analítica não são conceitos antagônicos, mas sim, não raro, ideias correlatas e complementares; ➢ As aplicações mais bem sucedidas da analítica são altamente criativas e criatividade é componente importante das abordagens analíticas à solução de problemas;
  20. 20. Rápida revisão dos seis passos ➢No passo de reconhecimento e formulação do problema, a criatividade é extremamente útil e importante; ➢No passo da Revisão das descobertas anteriores, a identificação das mesmas e a escolha das técnicas analíticas, que talvez sejam relevantes, envolvem criatividade; ➢No passo da modelagem, a escolha de variáveis em um modelo às vezes é obvia, mas às vezes, pode ser criativo; ➢Decidir que dados coletar pode ser muito criativo; ➢O passo de análise de dados não é aquele em que mais se exige criatividade. O seu uso pode causar problema; ➢O passo da apresentação de resultados e adoção de providências é envolvido por muita criatividade.
  21. 21. Os quatro estágios de raciocínio analítico criativo ➢O processo criativo segue esses passos sequenciais: • Preparação: construção dos fundamentos para a solução do problema; • Imersão: engajamento intenso com a solução do problema e com os dados disponíveis (luta em busca de respostas); • Incubação: internalização do problema na mente subconsciente, na expectativa de que se desenvolvam prováveis conexões inusitadas abaixo do nível de consciência; • Insight: o grande avanço na compreensão de como o problema pode ser resolvido por meio da análise quantitativa.
  22. 22. Imersão e trabalho árduo como fonte de criatividade e insight ➢Criatividade é insight que de súbito ilumina a solução do problema; ➢Qual é a fonte da criatividade? ➢Cho Jung Era, ator coreano, assevera que a inspiração não surge de repente, mas, sim, jorra de longa duração de trabalho exaustivo e de dimensão persistente; ➢A intuição é habilidade que se pode desenvolver basicamente pela repetição contínua da análise quantitativa e por outros meios; ➢Georg Hegel, filosofo alemão, achava que apenas quem raciocina de maneira altamente analítica é capaz de ter intuições puras e verdadeiras.
  23. 23. Desenvolvimento de recursos de análise quantitativa CAPÍTULO 6
  24. 24. Desenvolvimento de recursos de análise quantitativa ➢Segundo Aristóteles, os hábitos, ou que se faz repetidamente, define como ser configura seu destino, conforme o fluxograma: Pensamentos Ações Hábitos Caráter Destino
  25. 25. Desenvolvimento de recursos de análise quantitativa ➢Atitudes quantitativas: • É necessário manter-se aberto ao aprendizado de números; • O inumerismo/incapacidade de executar e entender operações aritméticas, aflige muita gente esclarecida e bem informada • Pensadores quantitativos cultivam certas habilidades, atitudes e hábitos a que recorrem sempre que precisam tomar decisões baseadas em números; • Ser amigo dos dados; • Recorrer à internet sempre para aprender conceitos numéricos. • Ampliação da curiosidade;
  26. 26. Desenvolvimento de recursos de análise quantitativa ➢Atitudes quantitativas <-> Conhecimento quantitativo; ➢Compreensão das leis da probabilidade e da aleatoriedade;
  27. 27. Desenvolvimento de recursos de análise quantitativa ➢Hábitos quantitativos-> Praticando com regularidade e persistência os seguintes hábitos quantitativos, é possível cultivar atitudes quantitativas: • Exija números; • Nunca confie nos números: • Não raro, os números estão ultrapassados e, portanto, não refletem a realidade; • As dúvidas em relação aos números devem ser concentradas nas três categorias: relevância, exatidão e interpretação correta. • Desconfie principalmente dos argumentos de causação; • Faça perguntas; • Práticas de análises quantitativas.
  28. 28. Hábitos quantitativos <-> Métodos/conhecimentos quantitativos ➢Nessa fase, é preciso estudar os fundamentos para compreender e executar análises quantitativas. Os cursos a fazer primeiro são Estatística Elementar e Métodos de Pesquisa; ➢As atividades que envolvem análise quantitativa ocorrem como parte de processos e de contextos sociais; • O primeiro passo para adquirir prática de “contar histórias com dados” é escrever um relatório. • Formar uma comunidade de análise quantitativa; • Realizar seminários com regularidade;
  29. 29. Trabalhando com os quants CAPÍTULO 7
  30. 30. Trabalhando com os quants ➢O que se descreve no capítulo é um conjunto de relacionamento entre três conjuntos de atores: • Decididores de empresas; • Profissionais de negócios; • Analista quantitativo ou cientista de dados. ➢Há boas razoes para a interação desses três grupos; ➢O objetivo é então tomar decisões analíticas e, ao mesmo tempo preservar o papel do instinto dos executivos e de outros profissionais;
  31. 31. Atribuições analíticas ➢Atribuições analíticas a serem exercidas pela pessoa de negócio: • Aprender alguma coisa de matemática e de estatística; • Compreender e questionar as premissas; • Pressionar quando não compreender. ➢O que esperar dos profissionais da analítica: • Aprender o negócio e interessar-se pelos seus problemas; • Conversar em linguagem de negócios; • Explicar qualquer termo técnico; • Dispor-se a desenvolver relacionamentos; • Não fazer os executivos se sentirem estúpidos.
  32. 32. Cientista de Dados ➢Profissionais capacitados em estatística, ciência da computação e/ou matemática capazes de analisar grandes volumes de dados e extrair deles insights que criem novas oportunidades de negócio; ➢Devem ser capazes de capturar, armazenar, gerenciar e analisar grandes volumes de dados que devem ser interpretados e utilizados de maneira coerente e concisa de modo que a empresa possa utilizá-los a seu favor; ➢Usualmente esse profissional é formado em estatística, matemática ou ciências da computação. ➢Habilidades necessárias: • Saber programação; • Ser capaz de criar modelos estatísticos; • Ter o conhecimento e domínio apropriado de negócios; • Compreender as diferentes plataformas de Big Data e como elas funcionam.
  33. 33. Referências DAVENPORT, T; KIM, J. Dados Demais. 1. ed. Rio de Janeiro: Elsevier, 2013. Disponível em: <http://www.sas.com/pt_br/insights/analytics/cientistas-de-dados.html> Acesso: 01. set.2015 Disponível em: <http://up.mackenzie.br/lato-sensu/sao-paulo/tecnologia-da-informacao/ciencia-de- dados-big-data-analytics/> Acesso: 01.set.2015 Disponível em: <http://www.brasilmaisti.com.br/index.php/pt/2014-08-01-19-12-05/a-blog/240-cientista- de-dados-a-profissao-do-futuro> Acesso: 01.set.2015 Disponível em: <http://blog.corujadeti.com.br/cientista-de-dados-o-profissional-de-big-data/> Acesso: 01.set.2015 Disponível em: <http://www.portal-administracao.com/2014/07/stakeholders-significado- classificacao.html> Acesso: 01.set.2015

×