460 operations - 4.6

3,894 views

Published on

Published in: Business, Technology
0 Comments
3 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
3,894
On SlideShare
0
From Embeds
0
Number of Embeds
12
Actions
Shares
0
Downloads
257
Comments
0
Likes
3
Embeds 0
No embeds

No notes for slide

460 operations - 4.6

  1. 1. History of Manufacturing <ul><li>Dysfunction </li></ul><ul><li>Work Alienation </li></ul><ul><li>Quality </li></ul><ul><li>Machinery </li></ul><ul><li>Engineering </li></ul>Pascal Dennis, pp. 1-11
  2. 2. What is Value? <ul><li>Value </li></ul><ul><ul><li>A capability provided to a customer at the right time at an appropriate price, as defined in each case by the customer </li></ul></ul><ul><ul><li>Specify value from the perspective of the final customer or end user </li></ul></ul><ul><ul><li>Ask how your current products and processes disappoint your customer’s value expectations? </li></ul></ul>
  3. 3. Design and Improve Value <ul><li>Value </li></ul><ul><ul><li>Measured by the amount that customers (buyers) are willing to pay for a product or service </li></ul></ul><ul><ul><li>A business is profitable if the value it creates exceeds the cost of performing the value activities </li></ul></ul><ul><li>Value Chain </li></ul><ul><ul><li>A system linking an organization’s interdependent technological and economic value activities that are performed to do business </li></ul></ul><ul><ul><li>The entire chain of value creation from materials to production to final consumption, involving multiple companies . Supply chain + final customer </li></ul></ul><ul><li>Competitive Advantage </li></ul><ul><ul><li>To gain competitive advantage over it rivals, an organization must either perform these activities at a lower cost or perform them in a way that leads to differentiation and a premium price (or more value-added) </li></ul></ul>
  4. 4. Value System <ul><li>The value chain of suppliers who provide inputs (raw materials, components, and purchased services) to the firm’s value chain that passes its products through its distribution value chains to a purchased input to the value chain of the buyer </li></ul>Operations 468: Manufacturing and Supply Chain Strategy Operations 460: Designing Operations
  5. 5. Value System for Bread <ul><li>Supply Chain Data </li></ul><ul><ul><li>Unit: 1 loaf </li></ul></ul><ul><ul><li>Wheat </li></ul></ul><ul><ul><ul><li>$0.25 </li></ul></ul></ul><ul><ul><li>Transportation </li></ul></ul><ul><ul><ul><li>$0.08 </li></ul></ul></ul><ul><ul><li>Flour Processing </li></ul></ul><ul><ul><ul><li>$0.15 </li></ul></ul></ul><ul><ul><li>Bread-Making </li></ul></ul><ul><ul><ul><li>$0.44 </li></ul></ul></ul><ul><ul><li>Price Markup </li></ul></ul><ul><ul><ul><li>$0.21 </li></ul></ul></ul>Firm Value Chain Value Streams
  6. 6. Value Stream <ul><li>Definition </li></ul><ul><ul><li>Entire set of activities (both value added and non-value added) required to design, order, and make from raw material to the finished good a specific product, product family, or service that seeks to eliminate waste and optimize the productive system in order to satisfy the final customer </li></ul></ul><ul><ul><li>Includes all the activities needed to proceed from </li></ul></ul><ul><ul><ul><li>Concept to launch (Design) </li></ul></ul></ul><ul><ul><ul><li>Order to delivery (Build) </li></ul></ul></ul><ul><ul><ul><li>Delivery to recycle (Sustain) </li></ul></ul></ul>
  7. 7. Value and Perfect Process <ul><li>All value is the result of a value stream (process) and specified by the customer </li></ul><ul><li>Every organization searches for the perfect process </li></ul><ul><li>Every activity within the process must be: </li></ul><ul><ul><li>Valuable </li></ul></ul><ul><ul><li>Capable (Six Sigma) </li></ul></ul><ul><ul><li>Available (Total Productive Maintenance) </li></ul></ul><ul><ul><li>Adequate (Theory of Constraints) </li></ul></ul><ul><ul><li>Flexible (Toyota Production System) </li></ul></ul><ul><li>Failure along any of these dimensions produces waste </li></ul>
  8. 8. Definitions of Lean <ul><li>Process for doing more with less and less – less human effort, less equipment, less time, and less space – while coming closer and closer to providing customers exactly what they want </li></ul><ul><ul><li>James Womack and Daniel T. Jones </li></ul></ul><ul><li>A systematic approach to identifying and eliminating waste through continuous improvement by flowing the product at the pull rate of the customer in pursuit of perfection </li></ul><ul><li>Process of analyzing information and material flows in manufacturing environments and continuously improving the process to achieve enhanced value for the customer </li></ul>
  9. 9. Lean Thinking <ul><li>Cost reduction principle (Toyota) </li></ul><ul><ul><li>Price (Fixed) – Cost = Profit </li></ul></ul><ul><ul><li>Reduce internal costs to ensure profit </li></ul></ul><ul><li>Fundamental objectives </li></ul><ul><ul><li>Concentrate on each product, service, and its value stream rather than organizations, assets, technologies, and career paths </li></ul></ul><ul><ul><li>Ask which activities are waste and which activities truly create value </li></ul></ul><ul><ul><li>Enhance the value and eliminate the waste (muda) to optimize the whole value stream! </li></ul></ul><ul><li>Lean Core Goals </li></ul><ul><ul><li>PQCDSM </li></ul></ul>
  10. 10. House of Lean
  11. 11. Toyota-House of Lean Pascal Dennis, pp. 20
  12. 12. A3 Thinking for Hard Times
  13. 13. Lean Enterprise Principles <ul><li>Specify value in the eyes of the customer </li></ul><ul><li>Identify and map the value stream </li></ul><ul><li>Eliminate the 8 deadly wastes </li></ul><ul><li>Make value and work flow </li></ul><ul><li>Pull work at the rate of customer demand </li></ul><ul><li>Involve and empower employees </li></ul><ul><li>Continuously improve (kaizen) in the pursuit of perfection </li></ul>
  14. 14. Lean Culture <ul><li>Organizational Culture </li></ul><ul><ul><li>The specific collection of assumptions, beliefs, values, and normal behavior that are shared by people and groups in an organization and that control the way they interact with each other and with stakeholders outside the organization </li></ul></ul><ul><li>Lean Culture </li></ul><ul><ul><li>Plan-Do-Check-Act (PDCA) </li></ul></ul><ul><ul><li>Standardization </li></ul></ul><ul><ul><ul><li>Standard Work and Problem Solving (5 Whys) </li></ul></ul></ul><ul><ul><li>Visual Management </li></ul></ul><ul><ul><ul><li>5S, Good housekeeping, Visual Controls </li></ul></ul></ul><ul><ul><li>Teamwork </li></ul></ul><ul><ul><ul><li>Safety, Security, No Executive Privileges, Genchi Genbutsu (“Go See”) </li></ul></ul></ul><ul><ul><li>Paradox </li></ul></ul><ul><ul><ul><li>Jidoka, Changing Standards, Single Piece Flow, Takt Time, Perfection </li></ul></ul></ul><ul><ul><li>Intensity </li></ul></ul><ul><ul><ul><li>Identify Muda (Waste), Kaizen (continuous improvement) </li></ul></ul></ul><ul><ul><li>Lean as a Path </li></ul></ul><ul><ul><ul><li>Humility, Lifelong Learning, Respect for People </li></ul></ul></ul>
  15. 15. Team Presentations <ul><li>Project: Value Stream Mapping </li></ul><ul><ul><li>Project Progress Report </li></ul></ul><ul><ul><ul><li>5 minutes for Presentation </li></ul></ul></ul><ul><ul><li>Structure of Final Project Presentation </li></ul></ul><ul><ul><ul><li>15 Minutes for Presentation </li></ul></ul></ul><ul><ul><ul><ul><li>10 Minutes for Presentation </li></ul></ul></ul></ul><ul><ul><ul><ul><li>5 Minutes for Questions </li></ul></ul></ul></ul><ul><ul><ul><li>Maximum 10 PowerPoint Slides </li></ul></ul></ul><ul><ul><ul><ul><li>Including Introductory and Conclusions Slides </li></ul></ul></ul></ul><ul><ul><ul><li>All team members must participate </li></ul></ul></ul><ul><ul><ul><li>Invite Company Contact Person to Attend </li></ul></ul></ul><ul><ul><li>Peer Evaluations </li></ul></ul>Designing and Improving Operations
  16. 16. Characteristics of Effective Teams <ul><li>A clear purpose (mission or objective) </li></ul><ul><li>Agreed upon goals that relate to the purpose </li></ul><ul><li>Clear roles and equitable work assignments </li></ul><ul><li>Full participation by all members </li></ul><ul><li>Informal and relaxed climate </li></ul><ul><li>Effective listening and asking questions </li></ul><ul><li>Accountability for commitments </li></ul><ul><li>Consensus decision-making in a timely manner </li></ul><ul><li>Shared leadership </li></ul><ul><li>External relations with stakeholders and for resources </li></ul><ul><li>Open and honest communication </li></ul><ul><li>Personal relationships build on trust and respect </li></ul><ul><li>Civilized disagreement and no avoiding conflict </li></ul><ul><li>Diversity of styles, skills, and responsibilities </li></ul><ul><li>Self-assessment and periodic examination </li></ul>
  17. 17. Project Team Meetings <ul><li>Value Stream Mapping Project </li></ul><ul><ul><li>Current State Value Stream Map and make recommendations </li></ul></ul><ul><ul><li>See Course Outline, pages 2-4 </li></ul></ul><ul><ul><li>Blackboard </li></ul></ul><ul><ul><ul><li>APICS Style Guideline </li></ul></ul></ul><ul><ul><ul><li>Team Meeting/Attendance Record </li></ul></ul></ul><ul><ul><li>Project Structure </li></ul></ul><ul><ul><ul><li>Overview of Corporation </li></ul></ul></ul><ul><ul><ul><li>Value Stream Mapping Process </li></ul></ul></ul><ul><ul><ul><li>Detailed Value Stream Map </li></ul></ul></ul><ul><ul><ul><li>Improvement Recommendations </li></ul></ul></ul><ul><ul><ul><li>References and Acknowledgements </li></ul></ul></ul><ul><li>Team Meeting Session </li></ul><ul><ul><li>Introduction of team members </li></ul></ul><ul><ul><li>Exchange major, telephone, email </li></ul></ul><ul><ul><li>Discuss schedules for meeting times </li></ul></ul><ul><ul><li>Coordinator arranges the first meeting </li></ul></ul>
  18. 18. Six Steps to Lean
  19. 19. Eight Major Wastes <ul><li>D </li></ul>Acronym: D O W N T I M E Overproduction efects <ul><li>O </li></ul>verproduction <ul><li>W </li></ul><ul><li>T </li></ul><ul><li>N </li></ul><ul><li>I </li></ul><ul><li>M </li></ul><ul><li>E </li></ul>aiting time on-utilized people ransportation nventory otion xtra processing
  20. 20. Categories of Activities <ul><li>Value Added (VA) – Actual Work </li></ul><ul><ul><li>Steps in the value stream that increase the worth of a product or service for which the customer is willing to pay </li></ul></ul><ul><ul><li>Ask 3 questions </li></ul></ul><ul><ul><ul><li>Is this something the customer would be willing to pay for? </li></ul></ul></ul><ul><ul><ul><li>Has it physically improved the form, fit, or function of the product or service? </li></ul></ul></ul><ul><ul><ul><li>Was it done right the first time? </li></ul></ul></ul>
  21. 21. Definition of Waste <ul><li>Waste ( Muda ) </li></ul><ul><ul><li>Anything other than the minimum amount of equipment, materials, parts, space, and workers’ time which are absolutely essential to add value to the product or service </li></ul></ul><ul><ul><li>Any activity that consumes resources but creates no value to the product or service </li></ul></ul><ul><ul><li>Waste only adds cost and time, not value </li></ul></ul><ul><li>Factors to Remember about Waste </li></ul><ul><ul><li>Waste is really a symptom rather than a root cause of the problem </li></ul></ul><ul><ul><li>Waste points to problems within the system (at both process and value stream levels) </li></ul></ul><ul><ul><li>You need to find and address causes of waste </li></ul></ul>
  22. 22. Categories of Waste <ul><li>Type I Waste (Muda) – Auxiliary Work </li></ul><ul><ul><li>Adds no value but is necessary </li></ul></ul><ul><ul><li>Toyota Motor Corporation of Japan calls this “Non-Value Added Work” (NVA) </li></ul></ul><ul><ul><li>Training, facilities, inspection, payroll </li></ul></ul><ul><li>Type II Waste (Muda) </li></ul><ul><ul><li>Adds no value and avoidable </li></ul></ul><ul><ul><li>Walking, rework, searching for tools, transportation, setups, meetings </li></ul></ul><ul><li>Most of engineering and manufacturing efforts fall under which category? </li></ul>
  23. 23. Distribution of Activities
  24. 24. House of Lean-Eight Wastes
  25. 25. Video: “Mercury Marine” <ul><li>Overview of Manufacturing Process </li></ul><ul><ul><li>122 individual steps to make a Driveshaft Housing </li></ul></ul><ul><ul><li>27 production steps – about 20% of the total number </li></ul></ul><ul><ul><li>Travel distance = 20,793 feet (about 4 miles) </li></ul></ul><ul><ul><li>1,496 hours in process (about 19 weeks) </li></ul></ul><ul><ul><li>106 people touched assembly or paperwork </li></ul></ul><ul><li>Discussion Questions </li></ul><ul><ul><li>Identify and provide examples of 4 types of process waste depicted in the video </li></ul></ul><ul><ul><li>Identify potential activities that could be conducted in parallel and increase the capacity of the current process </li></ul></ul><ul><ul><li>How can Mercury Marine utilize kaizen events to improve their supply chain process? </li></ul></ul>
  26. 26. Overproduction Waste Overproduction
  27. 27. Overproduction True Efficiency – 8 operators 100 pieces Apparent Efficiency – 10 operators 120 pieces Current State – 10 operators 100 pieces Customer “ But I only need 100 pieces”
  28. 28. Inventory Waste
  29. 29. Apex Cell Layout <ul><li>Too much walking distance Ample space for accumulating WIP </li></ul><ul><li>Inside of cell too wide Tube bender needs modification </li></ul><ul><li>Lead-off and final operations too far apart Out tray for bender obstructs walking </li></ul>Before applying guidelines After applying guidelines
  30. 30. Waste in U.S. Manufacturing <ul><li>Waste in Manufacturing Facilities is Usually Disguised as: </li></ul><ul><ul><li>Lost Time </li></ul></ul><ul><ul><li>Injury Accident </li></ul></ul><ul><ul><li>Scrap </li></ul></ul><ul><ul><li>Rework </li></ul></ul><ul><ul><li>Equipment Setups </li></ul></ul><ul><ul><li>Equipment Downtime </li></ul></ul><ul><ul><li>Inspection </li></ul></ul><ul><ul><li>Inventory Storage </li></ul></ul><ul><ul><li>Counting Inventory </li></ul></ul><ul><ul><li>Supplier Lead Times </li></ul></ul><ul><ul><li>Product Test </li></ul></ul><ul><ul><li>Other </li></ul></ul>
  31. 31. Commentary on Waste <ul><li>“ One of the most noteworthy accomplishments in keeping the price of products low is the gradual shortening of the production cycle. The longer an article is in the process of manufacture and the more it is moved about, the greater is its ultimate cost” </li></ul><ul><li>Who said this? </li></ul><ul><li>When was it said? </li></ul>
  32. 32. Muri, Mura, Muda <ul><li>Muri </li></ul><ul><ul><li>Strain, difficulty, hard to do </li></ul></ul><ul><ul><li>Overburdening equipment or operators by requiring them to run at a higher or harder pace with more force or longer period of time than equipment design or management allows (ergonomics) </li></ul></ul><ul><li>Mura </li></ul><ul><ul><li>Irregularity, variability </li></ul></ul><ul><ul><li>Unevenness or fluctuation in a production plan, operation or an uneven work pace in an operation causing operators to hurry and then wait </li></ul></ul><ul><li>Muda </li></ul>Muri = overburdened Mura = unevenness, fluctuation, variation Muda = waste No Muri, Mura, or Muda
  33. 33. House of Lean-Kaizen
  34. 34. Kaizen Principles <ul><li>Kaikaku is the radical improvement of an activity to eliminate non-value-adding waste (also called breakthrough, flow or system kaizen) </li></ul><ul><li>Kaizen is the continuous, incremental improvement of an activity to create more value with less waste (muda) (also called process kaizen) </li></ul><ul><li>Kaizen focus on the gemba , the gembutsu , and the genjitsu to succeed </li></ul>Kai Change zen Good <ul><ul><li>Gemba “the actual place” </li></ul></ul><ul><ul><ul><li>In manufacturing, value is created on the shop floor – the gemba </li></ul></ul></ul><ul><ul><ul><li>People working in the gemba know best how to improve </li></ul></ul></ul><ul><ul><li>Gembutsu – “the actual product” </li></ul></ul><ul><ul><ul><li>Parts, tools, machines, and equipment </li></ul></ul></ul><ul><ul><li>Genjitsu – “the actual facts” </li></ul></ul><ul><ul><ul><li>Facts on the company from reliable, observed data most often collected from the gemba </li></ul></ul></ul>                                    
  35. 35. DVD: “Toast Kaizen” <ul><li>Outline </li></ul><ul><ul><li>Produced by Greater Boston Manufacturing Partnership (GBMP) </li></ul></ul><ul><li>Organization </li></ul><ul><ul><li>Analysis of Current State making toast and improving the system </li></ul></ul><ul><ul><li>Toast-Making Value Stream Process </li></ul></ul><ul><ul><ul><li>Equipment Toaster </li></ul></ul></ul><ul><ul><ul><li>Operator Bruce Hamilton </li></ul></ul></ul><ul><ul><ul><li>Materials Bread, Plate, Butter, and Knife </li></ul></ul></ul><ul><ul><ul><li>Customer Mrs. Bruce Hamilton </li></ul></ul></ul><ul><li>Lean Thinking </li></ul><ul><ul><li>Direct observation of value stream processes </li></ul></ul><ul><ul><li>Develop effective counter-measures through kaizen </li></ul></ul>
  36. 36. DVD: “Toast Kaizen” <ul><li>Waste </li></ul><ul><ul><li>Waste is identified through direct observation </li></ul></ul><ul><ul><li>Taichi Ohno and Shigeo Shingo </li></ul></ul><ul><ul><ul><li>Identifying waste is more important than eliminating the waste </li></ul></ul></ul><ul><li>Participant Question </li></ul><ul><ul><li>What suggestions do you have for eliminating waste and improving the toast making system for Bruce? </li></ul></ul>
  37. 37. What is Work ? <ul><li>Definition of Work </li></ul><ul><ul><li>Human motions involved in producing products </li></ul></ul><ul><ul><li>These actions can be divided into three categories </li></ul></ul><ul><ul><ul><li>Value-added or creating </li></ul></ul></ul><ul><ul><ul><ul><li>Movements directly necessary for making products, such as assembling, welding, drilling, and painting </li></ul></ul></ul></ul><ul><ul><ul><li>Incidental or Non-valued added work </li></ul></ul></ul><ul><ul><ul><ul><li>Motions that operators must perform to make products but which do not create value from the standpoint of the customer </li></ul></ul></ul></ul><ul><ul><ul><li>Waste </li></ul></ul></ul><ul><ul><ul><ul><li>Motions that create no value and which can be eliminated </li></ul></ul></ul></ul><ul><li>Work element </li></ul><ul><ul><li>Smallest increment of work that could be moved to another person </li></ul></ul>
  38. 38. Exercise 1: Apex Manufacturing <ul><li>Apex Welding Process </li></ul><ul><ul><li>Process flow diagram </li></ul></ul><ul><ul><li>Table of work elements and work element times for welded part </li></ul></ul><ul><li>Assignment </li></ul><ul><ul><li>Review the process flow diagram </li></ul></ul><ul><ul><li>Review the 14 work element steps </li></ul></ul><ul><ul><li>Under the Motion Category, categorize each work element as only one of the following: </li></ul></ul><ul><ul><ul><li>W = Waste </li></ul></ul></ul><ul><ul><ul><li>I = Incidental (non-valued added) Work </li></ul></ul></ul><ul><ul><ul><li>V = Value-Added Work </li></ul></ul></ul>14 Work Elements = 50 Seconds
  39. 39. Exercise 1: Apex Work Classification
  40. 40. Exercise 1: Apex Flow Diagram
  41. 41. Standard Work <ul><li>Definition </li></ul><ul><ul><li>Lean techniques in continuous flow production to assure maximum performance through kaizen by minimizing waste through the best combination of operator and machine </li></ul></ul><ul><li>Objective </li></ul><ul><ul><li>Establish precise procedures for each operator’s work in a production process based upon: </li></ul></ul><ul><ul><ul><li>Takt Time – rate at which products must be made in a process to meet customer demand </li></ul></ul></ul><ul><ul><ul><li>Work Sequence – order in which an operator performs task within takt time in a given process </li></ul></ul></ul><ul><ul><ul><li>Standard Work In-Process (SWIP) Inventory – units, including those in machines, required to keep the process operating smoothly without the operator standing in front of a machine </li></ul></ul></ul>
  42. 42. Standard Work Benefits <ul><li>Process Stability </li></ul><ul><ul><li>Satisfy productivity, quality, cost, delivery, safety, and morale </li></ul></ul><ul><li>Clear Start and Stop Points for Each Process </li></ul><ul><li>Organizational Learning </li></ul><ul><ul><li>Retains operator and process knowledge </li></ul></ul><ul><li>Assess Current Condition and Identify Problems </li></ul><ul><ul><li>Is the process smooth or are workers failing behind and why? </li></ul></ul><ul><li>Employee Involvement and Pokayoke (mistake proofing) </li></ul><ul><li>Kaizen </li></ul><ul><ul><li>Standard Work provides stable process for improvement </li></ul></ul><ul><li>Training </li></ul><ul><ul><li>Basis for employee training </li></ul></ul>
  43. 43. Standard Work Definitions <ul><li>Takt Time </li></ul><ul><ul><li>Available production time divided by customer demand </li></ul></ul><ul><ul><li>Establishes the rate or rhythm for Standard Work </li></ul></ul><ul><ul><ul><li> Available Production Time </li></ul></ul></ul><ul><ul><li>Takt Time = </li></ul></ul><ul><ul><ul><li> Customer Demand </li></ul></ul></ul><ul><li>Cycle Time </li></ul><ul><ul><li>Operator Cycle Time </li></ul></ul><ul><ul><ul><li>The time it takes an operator to complete all the work elements at the station before repeating them, as timed by direct observation, including walking, load/unload, inspection </li></ul></ul></ul><ul><ul><li>Machine Cycle Time </li></ul></ul><ul><ul><ul><li>Time a machine requires to complete all of its operations on one piece </li></ul></ul></ul>
  44. 44. Standard Work Definitions <ul><li>Total Product Cycle Time or Production Lead Time </li></ul><ul><ul><li>The time it takes one unit or piece to move all the way through a process or value stream </li></ul></ul><ul><ul><li>At the plant level, this is termed door-to-door </li></ul></ul><ul><li>Total Operators Required </li></ul><ul><ul><li>Total Product Cycle Time divided by Takt Time </li></ul></ul><ul><ul><li>Total Product Cycle Time </li></ul></ul><ul><ul><ul><li>Sum of individual operator cycle times </li></ul></ul></ul><ul><ul><li> Total Total Product Cycle Time </li></ul></ul><ul><ul><li>Operators = </li></ul></ul><ul><ul><li> Required Takt Time </li></ul></ul>
  45. 45. Perspectives on Standard Work <ul><li>Benefits </li></ul><ul><ul><li>Documentation of the Current State process for all shifts </li></ul></ul><ul><ul><li>Reductions in variability </li></ul></ul><ul><ul><li>Easier training of new operators </li></ul></ul><ul><ul><li>Reductions in injuries and strain </li></ul></ul><ul><ul><li>Baseline for kaizen activities </li></ul></ul><ul><ul><ul><li>Exposes problems and facilitates problem-solving </li></ul></ul></ul><ul><ul><ul><li>Helps standardize effort </li></ul></ul></ul><ul><li>Prerequisites </li></ul><ul><ul><li>Activities must be: </li></ul></ul><ul><ul><ul><li>Observable </li></ul></ul></ul><ul><ul><ul><li>Repetitive </li></ul></ul></ul><ul><ul><ul><li>Based upon on human motion </li></ul></ul></ul>
  46. 46. Standard Work Diagrams <ul><li>Basic documentation for Standard Work </li></ul><ul><ul><li>Standard Work Chart </li></ul></ul><ul><ul><ul><li>Schematic of the physical layout of a cell or process </li></ul></ul></ul><ul><ul><li>Time Observation Form </li></ul></ul><ul><ul><ul><li>Concentrates on manual and walking work elements </li></ul></ul></ul><ul><ul><li>Standard Work Combination Sheet </li></ul></ul><ul><ul><ul><li>Integrates manual, machine, and walking work elements </li></ul></ul></ul><ul><ul><li>Operator Balance Chart (OBC) </li></ul></ul><ul><ul><ul><li>Shows the total operator cycle time of each operator in a cell or process </li></ul></ul></ul><ul><ul><li>Production or Process Capacity Chart </li></ul></ul><ul><ul><ul><li>Studies total machine time including any load/unload </li></ul></ul></ul>
  47. 47. Operator Balance Chart and Design <ul><li>Observe and record actual times </li></ul><ul><li>Conduct “paper” kaizen” </li></ul><ul><li>Eliminate waste, minimize incidental work </li></ul><ul><li>Ignore walking times </li></ul><ul><li>Check equipment capacity </li></ul><ul><li>Compute Number of Operators = Work content / takt time </li></ul><ul><li>Plan the work for one operator </li></ul><ul><li>Develop Operator Balance Chart </li></ul><ul><li>Debugging = 2-4 weeks </li></ul>
  48. 48. Time Work Elements <ul><li>Collect real time at processes thru direct observation </li></ul><ul><li>Observe an operator qualified to perform the job </li></ul><ul><li>Position yourself so you can see the operator’s hand motions </li></ul><ul><li>Time each work element separately, not the total time required to perform a sequence of work elements </li></ul><ul><li>Time the operator’s complete cycle of work elements from start to finish several times </li></ul><ul><li>Always separate operator time from machine time </li></ul><ul><li>Select the lowest repeatable time for each element </li></ul><ul><li>Avoid using standard time or time-and-motion studies </li></ul><ul><li>Time work not the operator </li></ul><ul><li>Remember shop floor courtesy </li></ul>
  49. 49. Time Observation-Current State Map
  50. 50. Exercise: Time Observation Studies <ul><li>Objective </li></ul><ul><ul><li>Educate students on the basic process of time studies by demonstrating work sequence, work elements, Standard Work-in-Process (SWIP) inventory, quality checks, and observation points for data collection </li></ul></ul><ul><li>Manufacturing Scenario </li></ul><ul><ul><li>Materials </li></ul></ul><ul><ul><ul><li>3 Machine Posters </li></ul></ul></ul><ul><ul><ul><li>Supply of 3” x 5” Post-In Notes, Masking Tape, Marking Pen </li></ul></ul></ul><ul><ul><ul><li>Stopwatches, Calculators, and Time Observation Sheets </li></ul></ul></ul><ul><ul><li>Standard Work Sheet </li></ul></ul><ul><ul><li>Raw Material Storage Location </li></ul></ul><ul><ul><li>3 Machines positioned 10-15 feet apart in sequence </li></ul></ul><ul><ul><li>Finished Goods Storage Location </li></ul></ul><ul><ul><li>Single Operator </li></ul></ul><ul><ul><li>2 Industrial Engineers </li></ul></ul>
  51. 51. Exercise: Time Observation Studies <ul><li>Before Exercise </li></ul><ul><ul><li>Description of Machine Posters and symbols </li></ul></ul><ul><ul><li>Identify Work Elements </li></ul></ul><ul><ul><ul><li>Work element </li></ul></ul></ul><ul><ul><ul><ul><li>the smallest increment of work that could be moved to another person </li></ul></ul></ul></ul><ul><ul><ul><li>Discussion of work elements </li></ul></ul></ul><ul><ul><ul><li>List each work element on Time Observation Form </li></ul></ul></ul><ul><ul><li>Determine time observation points </li></ul></ul><ul><ul><ul><li>Point where work elements start and stop </li></ul></ul></ul><ul><ul><ul><li>Operator calls out “TIME” where observation should be made </li></ul></ul></ul><ul><li>Exercise </li></ul><ul><ul><li>1 Operator </li></ul></ul><ul><ul><li>2 Industrial Engineers </li></ul></ul><ul><ul><ul><li>1 - Watch stopwatch and call out “TIME” at each observation point </li></ul></ul></ul><ul><ul><ul><li>2 - Record continuous times on Time Observation Form </li></ul></ul></ul>
  52. 52. Exercise: Standard Work Sheet 1
  53. 53. Exercise: First Simulation Run <ul><li>Instructor (Operator) says START </li></ul><ul><li>Pick up Post-It from Raw Materials Location </li></ul><ul><li>Load Post-It on Machine 1 and Press Start Button TIME </li></ul><ul><li>Wait for Machine 1 Cycle Time ………… 10 seconds TIME </li></ul><ul><li>Unload from Machine 1 and Walk to Machine 2 TIME </li></ul><ul><li>Load Part on Machine 2 and Press Start Button TIME </li></ul><ul><li>Wait for Machine 2 Cycle Time………….. 8 seconds TIME </li></ul><ul><li>Unload Part and Perform Quality Check TIME </li></ul><ul><li>Walk to Machine 3 TIME </li></ul><ul><li>Load Part on Machine 3 and Press Start Button TIME </li></ul><ul><li>Wait for Machine 3 Cycle Time…………. 12 seconds TIME </li></ul><ul><li>Unload Part and Place Part in Finished Goods TIME </li></ul><ul><li>Walk back to Raw Material Location TIME </li></ul>
  54. 54. Time Observation Form <ul><li>Measure Manual and Walking Time for a Process </li></ul><ul><ul><li>Total Operating Time (Process Cycle Time) = Manual Work plus Walking Time </li></ul></ul><ul><ul><li>Observe the process 2 - 3 times to understand the sequence of tasks </li></ul></ul><ul><ul><li>Enter component tasks on Time Observation Form (TOF) </li></ul></ul><ul><li>Measure Time </li></ul><ul><ul><li>Without turning off the stopwatch, record continuous time at the end of each component task and enter values in black in the Top Half of the square provided </li></ul></ul><ul><ul><li>Note any exceptional tasks or times observed </li></ul></ul><ul><li>Calculate Time for Each Task </li></ul><ul><ul><li>When cycles completed, for each task, subtract stopwatch time from previous task time value </li></ul></ul><ul><ul><li>Enter task time in Red in the Bottom Half of the square provided </li></ul></ul><ul><li>Find the Time for One Process Cycle (columns) </li></ul><ul><ul><li>Enter in Red the sum of the task times for each observation cycle </li></ul></ul><ul><li>Select the lowest cycle time over all observations (do not include abnormal values) </li></ul><ul><li>Determine times for each component task (rows) </li></ul><ul><ul><li>Select the lowest or lowest repeated time (do not include exceptions) </li></ul></ul><ul><ul><li>Adjust large component tasks to match the lowest cycle time (do not change the cycle time) </li></ul></ul><ul><ul><li>Enter adjusted component task times in Red </li></ul></ul>
  55. 55. Time Observation Form Example Problems and Exercises
  56. 56. Time Observation Form Example
  57. 57. First Simulation Run <ul><li>Perform simulation </li></ul><ul><ul><li>Single Operator processes the work </li></ul></ul><ul><ul><li>Conduct 5 cycles through the machines </li></ul></ul><ul><ul><li>Industrial Engineers collect time observation data </li></ul></ul><ul><li>Questions </li></ul><ul><ul><li>What is the slowest Cycle Time over the observations? </li></ul></ul><ul><ul><li>How much time did the Operator spend waiting? </li></ul></ul><ul><ul><li>If the Operator works 27,000 seconds per day, what is the capacity in units per shift of the process? </li></ul></ul><ul><ul><li>What changes might reduce or eliminate waiting time? </li></ul></ul>
  58. 58. Exercise: Standard Work Sheet 2
  59. 59. Exercise: Second Simulation Run <ul><li>Perform total process after the Instructor says START </li></ul><ul><li>Pick up Post-It from Raw Materials Location </li></ul><ul><li>Unload Processed Post-It from Machine 1 </li></ul><ul><li>Load New Part on Machine 1 and Press Start Button……………………….. TIME </li></ul><ul><ul><li>Machine 1 Cycle Time… 10 seconds </li></ul></ul><ul><li>Walk to Machine 2 with Processed Part from Machine 1…………………… TIME </li></ul><ul><li>Unload Processed Part from Machine 2 </li></ul><ul><li>Load Processed Part from Machine 1 and Press Start Button……………… TIME </li></ul><ul><ul><li>Machine 2 Cycle Time… 8 seconds </li></ul></ul><ul><li>Perform Quality Check on Processed Part Removed from Machine 2...…… TIME </li></ul><ul><li>Walk to Machine 3 with Processed/Approved Part from Machine 2……….. TIME </li></ul><ul><li>Unload Part from Machine 3 and Load Processed Part from Machine 2 </li></ul><ul><li>Press Start Button and Place Part in Finished Goods Location…………….. TIME </li></ul><ul><ul><li>Machine 3 Cycle Time… 12 seconds </li></ul></ul><ul><li>Walk back to Raw Material Storage Location……………………………….. TIME </li></ul>
  60. 60. Second Simulation Run <ul><li>Perform simulation </li></ul><ul><ul><li>One Unit of Standard Work-in-Process Inventory at each Machine </li></ul></ul><ul><ul><li>Single Operator processes the work and conducts 5 cycles </li></ul></ul><ul><ul><li>Industrial Engineers collect time observation data </li></ul></ul><ul><li>Questions </li></ul><ul><ul><li>What is the slowest Cycle Time over the 5 observations? </li></ul></ul><ul><ul><li>How much time did the Operator spend waiting? </li></ul></ul><ul><ul><li>If the Operator works 27,000 seconds per day, what is the capacity in units per shift of the process? </li></ul></ul><ul><ul><li>What changes might reduce or eliminate waste in the process? </li></ul></ul><ul><ul><ul><li>Decrease walking by placing Machines closer together </li></ul></ul></ul><ul><ul><ul><li>Install automatic ejecting devices on machines </li></ul></ul></ul><ul><ul><ul><li>Reduce machine cycle times </li></ul></ul></ul>
  61. 61. Time Observation Form Example
  62. 62. Standard Work Combination Sheet <ul><li>Filling out a Standard Work Combination Sheet </li></ul><ul><ul><li>Indicate the sequence of steps in the operation and description of operations </li></ul></ul><ul><ul><li>Manual times drawn from the Time Observation Form and Machine (Auto) times collected from the Process Capacity Form </li></ul></ul><ul><ul><li>Walk time associated with each task </li></ul></ul><ul><li>Operation Time for Each Task (Symbols) </li></ul><ul><ul><li>Manual work </li></ul></ul><ul><ul><li>Machine (Auto) </li></ul></ul><ul><ul><li>Walking </li></ul></ul><ul><ul><li>Wait time </li></ul></ul><ul><ul><li>Takt Time Red Line </li></ul></ul><ul><li>Total Manual Time </li></ul><ul><ul><li>Total the manual times for each task required to complete one cycle </li></ul></ul><ul><li>Total Wait Time </li></ul><ul><ul><li>Total the wait time for each task required to complete one cycle </li></ul></ul><ul><li>Total Walk Time </li></ul><ul><ul><li>Total walk times observed to complete one cycle </li></ul></ul><ul><li>Total Operating Time </li></ul><ul><ul><li>Total Operating Time = Total Manual Time + Total Walk Time </li></ul></ul>
  63. 63. Standard Combination Sheet Example
  64. 64. Operator Balance Chart <ul><li>Objectives </li></ul><ul><ul><li>Identify where operators are under-utilized and where their process cycle time is greater than the takt time </li></ul></ul><ul><ul><li>Leads to more detailed analysis of the process using the Standard Work Combination Sheet </li></ul></ul><ul><li>Constructing an Operator Balance Chart </li></ul><ul><ul><li>Use the data (best time) from the Time Observation Sheet </li></ul></ul><ul><ul><li>The vertical axis shows time, horizontal axis shows operator </li></ul></ul><ul><ul><li>Draw an individual bar showing the cycle time for each operator </li></ul></ul><ul><ul><li>Write the total time at the top of each bar </li></ul></ul><ul><ul><li>Draw a horizontal line in Red , indicating the takt time </li></ul></ul><ul><ul><li>Calculate operator requirements as sum of cycle times (Total Product Cycle Time) divided by takt time </li></ul></ul><ul><ul><ul><li>Number of Operators Required = (Total Product Cycle Time) / Takt Time </li></ul></ul></ul>
  65. 65. Operator Balance Chart
  66. 66. Exercise: Standard Work Sheet 3
  67. 67. Exercise 2: Apex Manufacturing <ul><li>Apex Welding Process </li></ul><ul><ul><li>Table of work elements and work element times for welded part </li></ul></ul><ul><li>Assignment </li></ul><ul><ul><li>Calculate the Takt Time </li></ul></ul><ul><ul><ul><li>Available Time per Shift </li></ul></ul></ul><ul><ul><li>Construct the Operator Balance Chart (OBC) </li></ul></ul><ul><ul><ul><li>Draw line for Takt Time </li></ul></ul></ul><ul><ul><ul><li>Assign Work Elements using Work Element times </li></ul></ul></ul><ul><ul><ul><li>Operator Cycle < Takt Time </li></ul></ul></ul><ul><ul><li>Calculate the Number of Operators Required </li></ul></ul>
  68. 68. Exercise 1: Apex Flow Diagram
  69. 69. Exercise 1: Apex Work Classification
  70. 70. Guidelines for Number of Operators
  71. 71. Process Study and Kaizen <ul><li>Process Study Form </li></ul><ul><ul><li>Best way to do the job </li></ul></ul><ul><ul><li>Repeatedly observed actual work </li></ul></ul><ul><li>Paper Kaizen </li></ul><ul><ul><li>Approach of immediately leaving out waste </li></ul></ul><ul><ul><ul><li>Do not include any walking as a work element </li></ul></ul></ul><ul><ul><ul><li>Do not include getting raw material or placing parts on tables </li></ul></ul></ul><ul><ul><ul><li>Do not include out-of-cycle work for operators as work elements </li></ul></ul></ul><ul><ul><ul><ul><li>Periodic work like feeding a machine every 25 pieces </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Getting a bin of parts or making a quality check </li></ul></ul></ul></ul><ul><ul><ul><li>Do not include operators waiting for machines to cycle </li></ul></ul></ul><ul><ul><ul><li>Do not include time for removing finished parts from machines when you believe that automatic eject could be introduced </li></ul></ul></ul>
  72. 72. Paper Kaizen – Operator Activity Chart <ul><li>Detail the specific work elements of each worker </li></ul><ul><li>Displays cumulative time to perform one product cycle </li></ul><ul><li>Shows the interaction between Operator and Machine </li></ul><ul><ul><li>Called an Operator -Machine Chart </li></ul></ul><ul><li>Highlights waste and non-valued added activities </li></ul><ul><li>Perform paper kaizen to develop Future State of new standard work content </li></ul>
  73. 73. Exercise 3: Apex Manufacturing <ul><li>Apex Welding Process </li></ul><ul><ul><li>Table of work elements and work element times for welded part </li></ul></ul><ul><li>Assignment </li></ul><ul><ul><li>Paper Kaizen </li></ul></ul><ul><ul><ul><li>What steps would you eliminate in the process? </li></ul></ul></ul><ul><ul><li>Construct the Operator Balance Chart (OBC) </li></ul></ul><ul><ul><ul><li>Draw line for Takt Time </li></ul></ul></ul><ul><ul><ul><li>Assign Work Elements using Work Element times </li></ul></ul></ul><ul><ul><li>Calculate the Number of Operators Required </li></ul></ul>
  74. 74. Exercise 1: Apex Work Classification
  75. 75. Assembly Line Balancing <ul><li>Steps in Assembly Line Balancing (ALB) </li></ul><ul><ul><li>Construct Precedence Diagram </li></ul></ul><ul><ul><li>Estimate Task Times </li></ul></ul><ul><ul><ul><li>Time Observation Form </li></ul></ul></ul><ul><ul><li>Compute Cycle Time or Takt Time </li></ul></ul><ul><ul><li>Theoretical Number of Work Stations </li></ul></ul><ul><li>Assignment Heuristics </li></ul><ul><ul><li>Assign tasks to work stations </li></ul></ul><ul><ul><li>Assignment Heuristics </li></ul></ul><ul><ul><ul><li>Longest Operation Time </li></ul></ul></ul><ul><ul><ul><li>Largest Number of Followers </li></ul></ul></ul><ul><ul><ul><li>Largest Positional Weight </li></ul></ul></ul><ul><ul><li>Calculate efficiency of solution </li></ul></ul>
  76. 76. Line Balancing Procedure <ul><li>Determine the tasks (work elements) required to complete one finished unit and the sequence in which the tasks must be performed </li></ul><ul><li>Construct an assembly precedence diagram </li></ul><ul><li>Estimate task times </li></ul><ul><ul><li>Amount of time it takes a worker using standard times to perform each task </li></ul></ul><ul><li>Determine the takt or cycle time </li></ul><ul><ul><li>Amount of time between successive units coming off the line </li></ul></ul>
  77. 77. Assembly Line Balancing <ul><li>Product Layout - Assembly Line </li></ul><ul><ul><li>Progressive assembly linked by some material handling device </li></ul></ul><ul><li>Assembly Line Balancing Algorithm </li></ul><ul><ul><li>1. Develop precedence diagram and work element times </li></ul></ul><ul><ul><li>2. Determine the Cycle Time (CT): </li></ul></ul><ul><ul><ul><li>CT = Available Work Time / Required output per day in units </li></ul></ul></ul><ul><ul><li>3. Determine Theoretical Minimum Number of work stations (N t ) </li></ul></ul><ul><ul><ul><li>N t = Sum of task times (T) / Cycle Time (CT) </li></ul></ul></ul><ul><ul><li>4. Select Assignment Heuristics </li></ul></ul><ul><ul><li>5. Assign tasks until sum of task times equals cycle time </li></ul></ul><ul><ul><li>6. Evaluate the efficiency of the assignment solution </li></ul></ul><ul><ul><ul><li>Efficiency = Sum of task times / [ ( N a ) * Cycle Time (CT) ] </li></ul></ul></ul><ul><ul><li>7. If efficiency is unsatisfactory, apply different assignment heuristics </li></ul></ul>
  78. 78. Assembly Line Example
  79. 79. Assembly Line Diagram
  80. 80. Assembly Line Balancing <ul><li>Product Layout - Assembly Line </li></ul><ul><ul><li>Progressive assembly linked by some material handling device </li></ul></ul><ul><li>Assembly Line Balancing Algorithm </li></ul><ul><ul><li>1. Develop precedence diagram, current cycle times, work elements </li></ul></ul><ul><ul><li>2. Determine the Cycle Time (CT): </li></ul></ul><ul><ul><ul><li>CT = Available Work Time / Required output per day in units </li></ul></ul></ul><ul><ul><li>3. Determine Theoretical minimum number of work stations (N t ) </li></ul></ul><ul><ul><ul><li>N t = Sum of task times (T) / Cycle Time (CT) </li></ul></ul></ul><ul><ul><li>4. Select Assignment Heuristics </li></ul></ul><ul><ul><li>5. Assign tasks until sum of task times equals cycle time </li></ul></ul><ul><ul><li>6. Evaluate the efficiency of the assignment solution </li></ul></ul><ul><ul><ul><li>Efficiency = Sum of task times / [ ( N a ) * Cycle Time (CT) ] </li></ul></ul></ul><ul><ul><li>7. If efficiency is unsatisfactory, apply different assignment heuristics </li></ul></ul>
  81. 81. Assignment Heuristics <ul><li>Largest Number of Followers </li></ul><ul><ul><li>Assign tasks to work stations by selecting the feasible task that has the largest number of tasks following it back through the sequence of assembly </li></ul></ul><ul><li>Longest Operation Time </li></ul><ul><ul><li>Assign tasks to work stations by selecting the feasible task that has the longest operation time </li></ul></ul><ul><li>Largest Ranked Positional Weight </li></ul><ul><ul><li>Ranked positional weight is the sum of a specific task’s operation time and the times of all the tasks that follow it back through the sequence of assembly </li></ul></ul><ul><ul><li>Assign tasks to work stations by selecting the feasible task that has the largest ranked positional weight. </li></ul></ul>
  82. 82. Assembly Line Balancing <ul><li>Steps in Assembly Line Balancing (ALB) </li></ul><ul><ul><li>Construct Precedence Diagram </li></ul></ul><ul><ul><li>Estimate Task Times </li></ul></ul><ul><ul><ul><li>Time Observation Form </li></ul></ul></ul><ul><ul><li>Compute Cycle Time or Takt Time </li></ul></ul><ul><ul><li>Theoretical Number of Work Stations </li></ul></ul><ul><li>Assignment Heuristics </li></ul><ul><ul><li>Assign tasks to work stations </li></ul></ul><ul><ul><li>Assignment Heuristics </li></ul></ul><ul><ul><ul><li>Longest Operation Time </li></ul></ul></ul><ul><ul><ul><li>Largest Number of Followers </li></ul></ul></ul><ul><ul><ul><li>Largest Positional Weight </li></ul></ul></ul><ul><ul><li>Calculate efficiency of solution </li></ul></ul>
  83. 83. Assembly Line Work Stations 1 4 3 5 2
  84. 84. Assembly Line - LOT
  85. 85. Ranked Positional Weights
  86. 86. Assembly Solution - RPW
  87. 87. Assembly Line Exercise 1 <ul><li>Exercise Reading </li></ul><ul><ul><li>Assembly Line Balancing Exercise 1 </li></ul></ul><ul><ul><li>Reliance Motor Corporation (RMC) </li></ul></ul><ul><li>Production data </li></ul><ul><ul><li>Available work time = 27,600 seconds </li></ul></ul><ul><ul><li>Output requirement = 460 motors </li></ul></ul><ul><li>Review the table with the assembly line tasks, duration, immediate predecessors </li></ul><ul><li>Complete the following assignment: </li></ul><ul><ul><li>Construct the precedence diagram </li></ul></ul><ul><ul><li>What is the cycle time and theoretical minimum number of work stations? </li></ul></ul><ul><ul><li>Apply (1) Longest Operation Time and (2) Largest Positional Weight heuristics to assign tasks to work stations </li></ul></ul><ul><ul><li>What is the resulting efficiency of the assembly line? </li></ul></ul>Blackboard OPS 460 > Assignments > Assembly Line Balancing
  88. 88. Assembly Exercise 1 Network
  89. 89. Assembly Line Exercise 2 <ul><li>Exercise Reading </li></ul><ul><ul><li>Assembly Line Balancing Exercise 2 </li></ul></ul><ul><ul><li>Vancouver Racer Corporation </li></ul></ul><ul><li>Production data </li></ul><ul><ul><li>Available work time = 27,000 seconds </li></ul></ul><ul><ul><li>Output requirement = 300 racers </li></ul></ul><ul><li>Review the table with the assembly line tasks, duration, immediate predecessors </li></ul><ul><li>Complete the following assignment: </li></ul><ul><ul><li>Construct the precedence diagram </li></ul></ul><ul><ul><li>What is the cycle time and theoretical minimum number of work stations? </li></ul></ul><ul><ul><li>Apply (1) Longest Operation Time and (2) Largest Number of Followers heuristics to assign tasks to work stations </li></ul></ul><ul><ul><li>What is the resulting efficiency of the assembly line? Answer: 91.1.% </li></ul></ul>Blackboard OPS 460 > Assignments > Assembly Line Balancing
  90. 90. Improve Cycle Time <ul><li>The longest task time is the shortest or minimum cycle time </li></ul><ul><li>Options for reducing the cycle or takt time below the longest task time duration </li></ul><ul><ul><li>Split the task </li></ul></ul><ul><ul><li>Share the task </li></ul></ul><ul><ul><li>Use parallel workstations </li></ul></ul><ul><ul><li>Use a more highly skilled worker </li></ul></ul><ul><ul><li>Work overtime </li></ul></ul><ul><ul><li>Redesign the product to reduce task time </li></ul></ul><ul><ul><li>Redesign the assembly process or workplace to reduce task time </li></ul></ul>
  91. 91. Superior Facility Layouts <ul><li>Manufacturing Operations </li></ul><ul><ul><li>Straight-line flow pattern </li></ul></ul><ul><ul><li>Backtracking minimized </li></ul></ul><ul><ul><li>Production setup and run times are predictable </li></ul></ul><ul><ul><li>Minimum work-in-process inventory </li></ul></ul><ul><ul><li>Visible and open floor plans </li></ul></ul><ul><ul><li>Bottleneck operations controlled </li></ul></ul><ul><ul><li>Workstations located close to each other </li></ul></ul><ul><ul><li>Orderly material handling </li></ul></ul><ul><ul><li>Flexible </li></ul></ul><ul><li>Service Operations </li></ul><ul><ul><li>Simple service flow pattern </li></ul></ul><ul><ul><li>Sufficient waiting areas </li></ul></ul><ul><ul><li>Easy communication with customers </li></ul></ul><ul><ul><li>Easily maintained customer surveillance </li></ul></ul><ul><ul><li>Clear exit and entry points </li></ul></ul><ul><ul><li>Customers only see necessary processes </li></ul></ul><ul><ul><li>Minimum movement </li></ul></ul><ul><ul><li>Lack of clutter </li></ul></ul><ul><ul><li>High sales volume per square foot </li></ul></ul>

×