Kshivets esmo2021

Oleg Kshivets
Oleg Kshivetsthoracic/abdominal/general surgeon & surgical oncologist at Siauliai Public Hospital
Esophageal cancer cell dynamics significantly depended on
blood cell circuit, biochemical factors, hemostasis system,
cancer characteristics and anthropometric data
Kshivets Oleg
Surgery Department, Roshal Hospital, Roshal
Moscow, Russia
1433P
Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.
DECLARATION OF INTERESTS
Oleg Kshivets
No disclosures
Oleg Kshivets
ESOPHAGEAL CANCER CELL DYNAMICS SIGNIFICANTLY DEPENDED ON BLOOD CELL CIRCUIT, BIOCHEMICAL
FACTORS, HEMOSTASIS SYSTEM, CANCER CHARACTERISTICS AND ANTHROPOMETRIC DATA #1433P
Oleg Kshivets, MD, PhD
Surgery Department, Roshal Hospital, Roshal, Moscow, Russia
OBJECTIVE: We examined factors significantly affecting esophageal cancer (EC) cell dynamics.
METHODS: We analyzed data of 553 consecutive EC patients (ECP) (age=56.5±8.9 years; tumor size=6±3.5 cm)
radically operated and monitored in 1975-2021 (m=413, f=140; esophagogastrectomies (EG) Garlock=286, EG Lewis=267,
combined EG with resection of pancreas, liver, diaphragm, aorta, VCS, colon transversum, lung, trachea, pericardium,
splenectomy=153; adenocarcinoma=316, squamous=227, mix=10; T1=128, T2=115, T3=183, T4=127; N0=279, N1=70,
N2=204; G1=157, G2=141, G3=255; early EC=110, invasive=443; only surgery=423, adjuvant chemoimmunoradiotherapy-
AT=130: 5-FU+thymalin/taktivin+radiotherapy 45-50Gy). Variables selected for study were input levels of 45 blood
parameters, sex, age, TNMG, cell type, tumor size. Survival curves were estimated by the Kaplan-Meier method.
Differences in curves between groups of ECP were evaluated using a log-rank test. Regression, multivariate Cox
modeling, multi-factor clustering, discriminant analysis, structural equation modeling, Monte Carlo, bootstrap
simulation and neural networks computing were used to determine any significant dependence.
RESULTS: Overall life span (LS) was 1880.1±2226.6 days and cumulative 5-year survival (5YS) reached 52%, 10 years
– 45.6%, 20 years – 33.4%. AT significantly improved 5YS (67.9% vs. 48.5%) (P=0.00039 by log-rank test). Regression
modeling displayed EC cell dynamics significantly depended on: phase transition (PT) N0—N12 in terms of synergetics,
histology, G, EC growth, age, gender, localization, Hb, blood cells, glucose, residual nitrogen (P=0.000-0.033). Neural
networks simulation revealed relationships between EC cell dynamics and blood ESS (rank=1), segmented neutrophils
(2), age (3), Hb (4), leucocytes (5), monocytes (6), lymphocytes (7), protein (8), erythrocytes (9), thrombocytes (10), stick
neutrophils (11), eosinophils (12). Prediction was 87-91% by neural networks computing.
CONCLUSIONS: Esophageal cancer cell dynamics significantly depended on blood cell circuit, biochemical factors,
hemostasis system, cancer characteristics, anthropometric data.
DATA:
Males…………………………………….…………………………..…….413
Females…….......................................................................................140
Age=56.5±8.9 years Tumor Size=6±3.5 cm
Only Surgery.…..................................................................................423
Adjuvant Chemoimmunoradiotherapy (5FU + thymalin/taktivin, 5-6
cycles+ Radiotherapy 45-50Gy)........................................................130
RADICAL PROCEDURES (R0):
Esophagogastrectomies Garlock……………………….……………...286
Esophagogastrectomies Lewis..........................................................267
Combined sophagogastrectomies with Resection of Trachea, Aorta,
Liver, Vena Cava Superior, Vena Azygos, Diaphragm, Pancreas,
Colon Transversum, Pericardium, Splenectomy (R0)………….…...153
2 Field Lymph Node Dissection.……………...…………………..….…363
3 Field Lymph Node Dissection…………………………………..…….190
Intrathoracic Esophagogastroanastomosis……………….…………363
Neck Esophagogastroanastomosis……………….…………………..190
SURVIVAL RATE:
5-Year Survivors…………...................................................... 185 (33.4%)
10-Year Survivors……………………………………................ 99 (17.9%)
Losses……………………………………………………………..226 (40.9%)
General Life Span=1880.1±2226.6 days
For 5-Year Survivors=4295.7±2413.5 days
For 10-Year Survivors=5883±2296.6 days
For Losses=628.3±319.9 days
Cumulative 5-Year Survival……..……….........................................52%
Cumulative 10-Year Survival……..…...……………………………...45.6%
Cumulative 20-Year Survival………………………………………....33.4%
GENERAL ESOPHAGEAL CANCER PATIENTS SURVIVAL AFTER COMPLETE
ESOPHAGOGASTRECTOMIES (KAPLAN-MEIER) (N=553):
Survival Function
5-Year survival=52%; 10-Year Survival=45.6%; 20-Year Survival=33.4%.
Complete Censored
-5 0 5 10 15 20 25 30 35 40
Years after Esophagogastrectomies
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Cumulative
Proportion
Surviving
RESULTS OF UNIVARIATE ANALYSIS OF PHASE TRANSITION EARLY—INVASIVE
CANCER IN PREDICTION OF ESOPHAGEAL PATIENTS SURVIVAL (N=553):
Cumulative Proportion Surviving (Kaplan-Meier)
5-Year Survival of Early ECP=100%; 5-Year Survival of Invasive ECP=39%
(P=0.000 by Log-Rank Test).
Complete Censored
0 5 10 15 20 25 30 35 40
Years After Esophagogastrectomies
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Cumulative
Proportion
Surviving
Invasive Cancer, n=443
Early Cancer, n=110
RESULTS OF UNIVARIATE ANALYSIS OF PHASE TRANSITION N0—N1-2 IN
PREDICTION OF ESOPHAGEAL CANCER PATIENTS SURVIVAL (N=553):
Cumulative Proportion Surviving (Kaplan-Meier)
5-Year Survival of ECP with N0=73.3%; 5-Year Survival of ECP with N1-2=28.6%
(P=0.000 by Log-Rankn Test).
Complete Censored
0 5 10 15 20 25 30 35 40
Years after Esophagogastrectomies
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Cumulative
Proportion
Surviving ECP with N1-2, n=274
ECP wth N0, n=279
RESULTS OF UNIVARIATE ANALYSIS OF ADJUVANT CHEMOIMMUNORADIOTHERAPY IN
PREDICTION OF ESOHAGEAL CANCER PATIENTS SURVIVAL (N=553):
Cumulative Proportion Surviving (Kaplan-Meier)
5-Year Survival of ECP after AT=67.9%; 5-Year Surival after Surgery=48.5%
(P=0.00039 by Log-Rank Test)
Complete Censored
0 5 10 15 20 25 30 35 40
Years after Esophagogastrectomies
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Cumulative
Proportion
Surviving
Surgery, n=423
AT=130
RESULTS REGRESSION MODELING IN ESOPHAGEAL CANCER DYNAMICS (N=553):
Effect
D - Test of all effects Distribution :
NORMAL Link function: LOG
Degr. of
Freedom
Wald
Stat.
p
Intercept 1 28.61731 0.000000
Hemoglobin 1 14.92816 0.000112
Erythrocytes 1 15.59624 0.000078
Monocytes 1 10.42142 0.001246
Thrombocytes 1 12.09522 0.000506
Glucose 1 6.51270 0.010711
Residual Nitrogen 1 25.89537 0.000000
Stick Neutrophils 1 12.10752 0.000502
Stick Neutrophils abs 1 13.65376 0.000220
Monocytes abs 1 14.87247 0.000115
Age 1 9.49503 0.002060
Blood type 4 23.60901 0.000096
Phase Transition N0--N12 1 31.48910 0.000000
Sex 1 8.23048 0.004119
Histology 2 6.81760 0.033081
G1-3 2 50.16923 0.000000
Tumor Growth 2 13.28298 0.001305
Localization 1 12.46865 0.000414
Esophageal/Cardioesophageal Cancer 1 19.73187 0.000009
GRM RESULTS IN ESOPHAGEAL CANCER DYNAMICS (N=553):
Pareto Chart of t-Values for Coefficients; df=537
Variable: D
Sigma-restricted parameterization
2.200572
2.306073
2.360301
2.475662
2.751244
2.953211
3.215567
3.274652
3.620066
4.282686
5.14579
7.43675
7.832812
8.437223
11.54094
p=.05
t-Value (for Coefficient;Absolute Value)
OPERAT
AGE
CP
H_T
P1_4
FT
MASSA
EC_CEC
CHAR_GR
G1_3
LOC
THR
LOCAL
THR_CC
T
Effect
D
Param.
D
Std.Err
D
t
D
p
Intercept -2.348411.115311 -2.105610.035702
Coler Index -0.297870.126199 -2.360300.018617
Thrombocytes 0.010630.001429 7.436750.000000
Hemorrage Time 0.010540.004258 2.475660.013606
T1-4 1.465280.12696311.540940.000000
Age -0.021350.009260 -2.306070.021487
weight 0.020660.006424 3.215570.001380
G1-3 0.446440.104243 4.282690.000022
Tumor Growth -0.593810.164033 -3.620070.000322
Surgery type -1.173830.533421 -2.200570.028191
Localization 1.086310.138687 7.832810.000000
Phase Transition Early-Invasive Cancer -1.367740.463135 -2.953210.003283
Esophageal/Cardioesophageal Cancer 1.857990.567387 3.274650.001126
Thrombocytes/Cancer cells -0.003190.000378 -8.437220.000000
P1-4 0.492060.178848 2.751240.006137
u3 vs Others -2.004010.389447 -5.145790.000000
RESULTS OF NEURAL NETWORKS COMPUTING IN PREDICTION OF ESOPHAGEAL
CANCER DYNAMICS (N=553):
Neural Network : n=533
Baseline Error=0.000;
Area under ROC Curve=1.000;
Correct Classification Rate 100%
Rank Sensitivity
ESS 1 3.1e+77
Seggmented Neutrophils 2 3.8e+49
Age 3 2.7e+39
Hemoglobin 4 2.1e+32
Leucocytes 5 1.02e+30
Monocytes 6 4.4e+27
Lymphocytes 7 1.8e+18
Protein 8 1.2e+17
Erythrocytes 9 5.0e+16
Thrombocytes 10 3.6e+16
Stick Neutrophils 11 3.2e+16
Eosinophils 12 5.3e+15
RESULTS OF BOOTSTRAP SIMULATION IN PREDICTION OF ESOPHAGEAL CANCER
DYNAMICS (N=553):
Bootstrap Simulation n=553
Significant Factors
(Number of Samples=3333)
Rank Kendall’Tau-A P<
Healthy Cells/Cancer Cells 1 -0.835 0.000
Erythrocytes/Cancer Cells 2 -0.778 0.000
Thrombocytes/Cancer Cells 3 -0.710 0.000
Leucocytes/Cancer Cells 4 -0.677 0.000
Segmented Neutrophils/Cancer Cells 5 -0.635 0.000
Lymphocytes/Cancer Cells 6 -0.632 0.000
T1-4 7 0.544 0.000
P1-4 8 0.477 0.000
Monocytes/Cancer Cells 9 -0.459 0.000
PT Early---Invasive Cancer 10 0.317 0.000
PT N0---N12 11 0.276 0.000
Residual Nitrogen 12 0.220 0.000
Combined Procedures 13 -0.203 0.000
Tumor Growth 14 0.191 0.000
Stick Neutrophils/Cancer Cells 15 -0.178 0.000
Esophageal/Cardioesophageal Cancer 16 0.175 0.000
Hemorrhage Time 17 0.163 0.000
Surgery Type 18 0.160 0.000
Protein 19 -0.159 0.000
ESS 20 0.137 0.000
Bilirubin 20 -0.127 0.000
Thrombocytes 21 0.117 0.000
Erythrocytes tot 22 -0.116 0.000
Weight 23 0.097 0.01
AT 24 0.093 0.01
Stick Neutrophils 25 0.086 0.01
Age 26 0.078 0.05
Histology 27 0.075 0.05
Chlorides 28 -0.066 0.05
Color Index 29 -0.065 0.05
Stick Neutrophils tot 30 0.063 0.05
RESULTS OF KOHONEN SELF-ORGANIZING NEURAL NETWORKS COMPUTING IN PREDICTION OF
ESOPHAGEAL CANCER DYNAMICS (N=553):
ESOPHAGEAL CANCER DYNAMICS IN TERMS OF SYNERGETICS:
PROGNOSTIC EQUATION MODELS OF ESOPHAGEAL CANCER DYNAMICS
(N=553):
PROGNOSTIC EQUATION MODELS OF ESOPHAGEAL CANCER DYNAMICS
(N=553):
PROGNOSTIC EQUATION MODELS OF ESOPHAGEAL CANCER DYNAMICS
(N=553):
PROGNOSTIC EQUATION MODELS OF ESOPHAGEAL CANCER DYNAMICS
(N=553):
PROGNOSTIC SEPATH-MODEL OF ESOPHAGEAL CANCER DYNAMICS
(N=553):
Content of this presentation is copyright and responsibility of the author.
Permission is required for re-use.
Conclusion:
Esophageal cancer cell dynamics significantly depended on:
1) blood cell circuit;
2) biochemical factors;
3) hemostasis system;
4) cancer characteristics;
5) anthropometric data;
6) phase transition early-invasive cancer;
7) phase transition N0---N12;
8) localization;
9) cell ratio factors.
European Society for Medical Oncology (ESMO)
Via Ginevra 4, CH-6900 Lugano
T. +41 (0)91 973 19 00
esmo@esmo.org
esmo.org
● Address: Oleg Kshivets, M.D., Ph.D.
Consultant Thoracic, Abdominal, General
Surgeon & Surgical Oncologist
e-mail: okshivets@yahoo.com
skype: okshivets
http: //www.ctsnet.org/home/okshivets
1 of 23

Recommended

Combined Esophagogastrectomies: Survival Outcomes in Patients with Local Adva... by
Combined Esophagogastrectomies: Survival Outcomes in Patients with Local Adva...Combined Esophagogastrectomies: Survival Outcomes in Patients with Local Adva...
Combined Esophagogastrectomies: Survival Outcomes in Patients with Local Adva...Oleg Kshivets
16.3K views1 slide
Kshivets elcc2022 by
Kshivets elcc2022Kshivets elcc2022
Kshivets elcc2022Oleg Kshivets
691 views1 slide
Kshivets eso10 y2021 by
Kshivets eso10 y2021Kshivets eso10 y2021
Kshivets eso10 y2021Oleg Kshivets
7.2K views10 slides
Kshivets lc10 ys_wjarr by
Kshivets lc10 ys_wjarrKshivets lc10 ys_wjarr
Kshivets lc10 ys_wjarrOleg Kshivets
5.8K views15 slides
Kshivets iaslc denver2021 by
Kshivets iaslc denver2021Kshivets iaslc denver2021
Kshivets iaslc denver2021Oleg Kshivets
3.8K views20 slides
Kshivets O. Esophageal Cancer Surgery by
Kshivets O. Esophageal Cancer SurgeryKshivets O. Esophageal Cancer Surgery
Kshivets O. Esophageal Cancer SurgeryOleg Kshivets
1.1K views11 slides

More Related Content

What's hot

Kshivets Hong Kong Sydney2020 by
Kshivets Hong Kong Sydney2020Kshivets Hong Kong Sydney2020
Kshivets Hong Kong Sydney2020Oleg Kshivets
27.8K views20 slides
Kshivets O. Esophageal and Cardioesophageal Cancer Surgery by
Kshivets O. Esophageal and Cardioesophageal Cancer SurgeryKshivets O. Esophageal and Cardioesophageal Cancer Surgery
Kshivets O. Esophageal and Cardioesophageal Cancer SurgeryOleg Kshivets
1.2K views20 slides
Kshivets O. Lung Cancer Surgery by
Kshivets O. Lung Cancer SurgeryKshivets O. Lung Cancer Surgery
Kshivets O. Lung Cancer SurgeryOleg Kshivets
800 views31 slides
Kshivets ASCO Chicago2020 by
Kshivets ASCO Chicago2020Kshivets ASCO Chicago2020
Kshivets ASCO Chicago2020Oleg Kshivets
20.1K views1 slide
Kshivets O. Cardioesophageal Cancer Surgery by
Kshivets O. Cardioesophageal Cancer SurgeryKshivets O. Cardioesophageal Cancer Surgery
Kshivets O. Cardioesophageal Cancer SurgeryOleg Kshivets
728 views12 slides
Kshivets O. Lung Cancer Surgery: Synergetics and Prediction by
Kshivets O. Lung Cancer Surgery: Synergetics and PredictionKshivets O. Lung Cancer Surgery: Synergetics and Prediction
Kshivets O. Lung Cancer Surgery: Synergetics and PredictionOleg Kshivets
1K views22 slides

What's hot(20)

Kshivets Hong Kong Sydney2020 by Oleg Kshivets
Kshivets Hong Kong Sydney2020Kshivets Hong Kong Sydney2020
Kshivets Hong Kong Sydney2020
Oleg Kshivets27.8K views
Kshivets O. Esophageal and Cardioesophageal Cancer Surgery by Oleg Kshivets
Kshivets O. Esophageal and Cardioesophageal Cancer SurgeryKshivets O. Esophageal and Cardioesophageal Cancer Surgery
Kshivets O. Esophageal and Cardioesophageal Cancer Surgery
Oleg Kshivets1.2K views
Kshivets O. Lung Cancer Surgery by Oleg Kshivets
Kshivets O. Lung Cancer SurgeryKshivets O. Lung Cancer Surgery
Kshivets O. Lung Cancer Surgery
Oleg Kshivets800 views
Kshivets ASCO Chicago2020 by Oleg Kshivets
Kshivets ASCO Chicago2020Kshivets ASCO Chicago2020
Kshivets ASCO Chicago2020
Oleg Kshivets20.1K views
Kshivets O. Cardioesophageal Cancer Surgery by Oleg Kshivets
Kshivets O. Cardioesophageal Cancer SurgeryKshivets O. Cardioesophageal Cancer Surgery
Kshivets O. Cardioesophageal Cancer Surgery
Oleg Kshivets728 views
Kshivets O. Lung Cancer Surgery: Synergetics and Prediction by Oleg Kshivets
Kshivets O. Lung Cancer Surgery: Synergetics and PredictionKshivets O. Lung Cancer Surgery: Synergetics and Prediction
Kshivets O. Lung Cancer Surgery: Synergetics and Prediction
Oleg Kshivets1K views
Kshivets O. Lung Cancer Surgery: Prognosis by Oleg Kshivets
Kshivets O. Lung Cancer Surgery: PrognosisKshivets O. Lung Cancer Surgery: Prognosis
Kshivets O. Lung Cancer Surgery: Prognosis
Oleg Kshivets962 views
2021 esmo world_gi_poster_kshivets by Oleg Kshivets
2021 esmo world_gi_poster_kshivets2021 esmo world_gi_poster_kshivets
2021 esmo world_gi_poster_kshivets
Oleg Kshivets8.7K views
Kshivets O. Lung Cancer: Early Detection and Diagnosis by Oleg Kshivets
Kshivets O. Lung Cancer: Early Detection and Diagnosis Kshivets O. Lung Cancer: Early Detection and Diagnosis
Kshivets O. Lung Cancer: Early Detection and Diagnosis
Oleg Kshivets1K views
Kshivets O. Esophagogastric Cancer Surgery by Oleg Kshivets
Kshivets O. Esophagogastric Cancer SurgeryKshivets O. Esophagogastric Cancer Surgery
Kshivets O. Esophagogastric Cancer Surgery
Oleg Kshivets875 views
Kshivets O. Lung Cancer Surgery by Oleg Kshivets
Kshivets O. Lung Cancer SurgeryKshivets O. Lung Cancer Surgery
Kshivets O. Lung Cancer Surgery
Oleg Kshivets852 views
Kshivets wscts2019 sofia by Oleg Kshivets
Kshivets wscts2019 sofiaKshivets wscts2019 sofia
Kshivets wscts2019 sofia
Oleg Kshivets10.9K views
Kshivets iaslc singapore2020 by Oleg Kshivets
Kshivets iaslc singapore2020Kshivets iaslc singapore2020
Kshivets iaslc singapore2020
Oleg Kshivets29.6K views
Kshivets O. Lung Cancer Surgery by Oleg Kshivets
Kshivets O.  Lung Cancer SurgeryKshivets O.  Lung Cancer Surgery
Kshivets O. Lung Cancer Surgery
Oleg Kshivets64.6K views
Kshivets O. Esophageal Cancer Surgery by Oleg Kshivets
Kshivets O.  Esophageal Cancer SurgeryKshivets O.  Esophageal Cancer Surgery
Kshivets O. Esophageal Cancer Surgery
Oleg Kshivets795 views
Kshivets gc 10_ys_wjarr-2021-0659 by Oleg Kshivets
Kshivets gc 10_ys_wjarr-2021-0659Kshivets gc 10_ys_wjarr-2021-0659
Kshivets gc 10_ys_wjarr-2021-0659
Oleg Kshivets4.9K views
Kshivets barcelona2020 by Oleg Kshivets
Kshivets barcelona2020Kshivets barcelona2020
Kshivets barcelona2020
Oleg Kshivets21.8K views
Kshivets O. Synergetics and Survival of Lung Cancer Patients by Oleg Kshivets
Kshivets O. Synergetics and Survival of Lung Cancer PatientsKshivets O. Synergetics and Survival of Lung Cancer Patients
Kshivets O. Synergetics and Survival of Lung Cancer Patients
Oleg Kshivets7.8K views
Kshivets iaslc denver2015 by Oleg Kshivets
Kshivets iaslc denver2015Kshivets iaslc denver2015
Kshivets iaslc denver2015
Oleg Kshivets8.3K views

Similar to Kshivets esmo2021

Kshivets_SPB_WSCTS2022Eso.pdf by
Kshivets_SPB_WSCTS2022Eso.pdfKshivets_SPB_WSCTS2022Eso.pdf
Kshivets_SPB_WSCTS2022Eso.pdfOleg Kshivets
283 views19 slides
Esophageal Cancer: Precise Prediction by
Esophageal Cancer: Precise Prediction      Esophageal Cancer: Precise Prediction
Esophageal Cancer: Precise Prediction Oleg Kshivets
98 views19 slides
Kshivets barcelona2017 by
Kshivets barcelona2017Kshivets barcelona2017
Kshivets barcelona2017Oleg Kshivets
5.1K views1 slide
Kshivets eacts milan2018 by
Kshivets eacts milan2018Kshivets eacts milan2018
Kshivets eacts milan2018Oleg Kshivets
12K views22 slides
Kshivets IASLC_Vienna2016 by
Kshivets IASLC_Vienna2016Kshivets IASLC_Vienna2016
Kshivets IASLC_Vienna2016Oleg Kshivets
7.6K views1 slide
Kshivets O. Lung Cancer Surgery by
Kshivets O. Lung Cancer SurgeryKshivets O. Lung Cancer Surgery
Kshivets O. Lung Cancer SurgeryOleg Kshivets
1.1K views22 slides

Similar to Kshivets esmo2021(20)

Kshivets_SPB_WSCTS2022Eso.pdf by Oleg Kshivets
Kshivets_SPB_WSCTS2022Eso.pdfKshivets_SPB_WSCTS2022Eso.pdf
Kshivets_SPB_WSCTS2022Eso.pdf
Oleg Kshivets283 views
Esophageal Cancer: Precise Prediction by Oleg Kshivets
Esophageal Cancer: Precise Prediction      Esophageal Cancer: Precise Prediction
Esophageal Cancer: Precise Prediction
Oleg Kshivets98 views
Kshivets barcelona2017 by Oleg Kshivets
Kshivets barcelona2017Kshivets barcelona2017
Kshivets barcelona2017
Oleg Kshivets5.1K views
Kshivets eacts milan2018 by Oleg Kshivets
Kshivets eacts milan2018Kshivets eacts milan2018
Kshivets eacts milan2018
Oleg Kshivets12K views
Kshivets IASLC_Vienna2016 by Oleg Kshivets
Kshivets IASLC_Vienna2016Kshivets IASLC_Vienna2016
Kshivets IASLC_Vienna2016
Oleg Kshivets7.6K views
Kshivets O. Lung Cancer Surgery by Oleg Kshivets
Kshivets O. Lung Cancer SurgeryKshivets O. Lung Cancer Surgery
Kshivets O. Lung Cancer Surgery
Oleg Kshivets1.1K views
Kshivets_SPB_WSCTS2022Lung.pdf by Oleg Kshivets
Kshivets_SPB_WSCTS2022Lung.pdfKshivets_SPB_WSCTS2022Lung.pdf
Kshivets_SPB_WSCTS2022Lung.pdf
Oleg Kshivets275 views
Survival of Lung Cancer Patients after Lobectomies was Significantly Superior... by Oleg Kshivets
Survival of Lung Cancer Patients after Lobectomies was Significantly Superior...Survival of Lung Cancer Patients after Lobectomies was Significantly Superior...
Survival of Lung Cancer Patients after Lobectomies was Significantly Superior...
Oleg Kshivets78 views
Kshivets ASCVTS Moscow2018 by Oleg Kshivets
Kshivets ASCVTS Moscow2018Kshivets ASCVTS Moscow2018
Kshivets ASCVTS Moscow2018
Oleg Kshivets9.3K views
KshivetsWSCTS2023_Brazil.pdf by Oleg Kshivets
KshivetsWSCTS2023_Brazil.pdfKshivetsWSCTS2023_Brazil.pdf
KshivetsWSCTS2023_Brazil.pdf
Oleg Kshivets350 views
Kshivets wscts2018 ljubljana by Oleg Kshivets
Kshivets wscts2018 ljubljanaKshivets wscts2018 ljubljana
Kshivets wscts2018 ljubljana
Oleg Kshivets11.1K views
Kshivets O. Local Advanced Lung Cancer Surgery by Oleg Kshivets
Kshivets O. Local Advanced Lung Cancer Surgery Kshivets O. Local Advanced Lung Cancer Surgery
Kshivets O. Local Advanced Lung Cancer Surgery
Oleg Kshivets1.2K views
Kshivets barcelona2016 by Oleg Kshivets
Kshivets barcelona2016Kshivets barcelona2016
Kshivets barcelona2016
Oleg Kshivets5.8K views
Kshivets_IASLC_Singapore2023.pdf by Oleg Kshivets
Kshivets_IASLC_Singapore2023.pdfKshivets_IASLC_Singapore2023.pdf
Kshivets_IASLC_Singapore2023.pdf
Oleg Kshivets279 views
Kshivets O. Cardioesophageal Cancer Surgery by Oleg Kshivets
Kshivets O. Cardioesophageal Cancer SurgeryKshivets O. Cardioesophageal Cancer Surgery
Kshivets O. Cardioesophageal Cancer Surgery
Oleg Kshivets1.1K views
Kshivets O. Gastric Cancer Relapse Surgery by Oleg Kshivets
Kshivets O. Gastric Cancer Relapse SurgeryKshivets O. Gastric Cancer Relapse Surgery
Kshivets O. Gastric Cancer Relapse Surgery
Oleg Kshivets854 views

More from Oleg Kshivets

Kshivets_WCGIC2023.pdf by
Kshivets_WCGIC2023.pdfKshivets_WCGIC2023.pdf
Kshivets_WCGIC2023.pdfOleg Kshivets
407 views2 slides
Lung Cancer: 10-Year Survival by
Lung Cancer: 10-Year Survival           Lung Cancer: 10-Year Survival
Lung Cancer: 10-Year Survival Oleg Kshivets
40.2K views23 slides
Kshivets aats new_york2019 by
Kshivets aats new_york2019Kshivets aats new_york2019
Kshivets aats new_york2019Oleg Kshivets
29.8K views1 slide
Kshivets IASLC 2019 by
Kshivets IASLC 2019Kshivets IASLC 2019
Kshivets IASLC 2019Oleg Kshivets
12.1K views1 slide
Kshivets barcelona2019 by
Kshivets barcelona2019Kshivets barcelona2019
Kshivets barcelona2019Oleg Kshivets
9.9K views1 slide
Kshivets aats new_york2018 by
Kshivets aats new_york2018Kshivets aats new_york2018
Kshivets aats new_york2018Oleg Kshivets
12.1K views1 slide

More from Oleg Kshivets(7)

Lung Cancer: 10-Year Survival by Oleg Kshivets
Lung Cancer: 10-Year Survival           Lung Cancer: 10-Year Survival
Lung Cancer: 10-Year Survival
Oleg Kshivets40.2K views
Kshivets aats new_york2019 by Oleg Kshivets
Kshivets aats new_york2019Kshivets aats new_york2019
Kshivets aats new_york2019
Oleg Kshivets29.8K views
Kshivets IASLC 2019 by Oleg Kshivets
Kshivets IASLC 2019Kshivets IASLC 2019
Kshivets IASLC 2019
Oleg Kshivets12.1K views
Kshivets barcelona2019 by Oleg Kshivets
Kshivets barcelona2019Kshivets barcelona2019
Kshivets barcelona2019
Oleg Kshivets9.9K views
Kshivets aats new_york2018 by Oleg Kshivets
Kshivets aats new_york2018Kshivets aats new_york2018
Kshivets aats new_york2018
Oleg Kshivets12.1K views
Kshivets iaslc toronto2018 by Oleg Kshivets
Kshivets iaslc toronto2018Kshivets iaslc toronto2018
Kshivets iaslc toronto2018
Oleg Kshivets10.8K views

Recently uploaded

Working-across-sectors_fulldraftreport_Aug-2019.pdf by
Working-across-sectors_fulldraftreport_Aug-2019.pdfWorking-across-sectors_fulldraftreport_Aug-2019.pdf
Working-across-sectors_fulldraftreport_Aug-2019.pdfmanali9054
26 views37 slides
RENAL DIET by
RENAL DIET RENAL DIET
RENAL DIET RasmoniPradhan
6 views10 slides
AI in Healthcare SKH 25 Nov 23 by
AI in Healthcare SKH 25 Nov 23AI in Healthcare SKH 25 Nov 23
AI in Healthcare SKH 25 Nov 23Vaikunthan Rajaratnam
35 views140 slides
How do we use Orthotic Insoles for men and woman.pdf by
How do we use Orthotic Insoles for men and woman.pdfHow do we use Orthotic Insoles for men and woman.pdf
How do we use Orthotic Insoles for men and woman.pdfanilmk01
7 views7 slides
2.-A-qualitative-exploration-of-reasons-for-improvement-in-nutritional-status... by
2.-A-qualitative-exploration-of-reasons-for-improvement-in-nutritional-status...2.-A-qualitative-exploration-of-reasons-for-improvement-in-nutritional-status...
2.-A-qualitative-exploration-of-reasons-for-improvement-in-nutritional-status...manali9054
39 views23 slides
Adverse childhood experiences (ACE) by
Adverse childhood experiences (ACE)Adverse childhood experiences (ACE)
Adverse childhood experiences (ACE)intersectitdept
24 views17 slides

Recently uploaded(20)

Working-across-sectors_fulldraftreport_Aug-2019.pdf by manali9054
Working-across-sectors_fulldraftreport_Aug-2019.pdfWorking-across-sectors_fulldraftreport_Aug-2019.pdf
Working-across-sectors_fulldraftreport_Aug-2019.pdf
manali905426 views
How do we use Orthotic Insoles for men and woman.pdf by anilmk01
How do we use Orthotic Insoles for men and woman.pdfHow do we use Orthotic Insoles for men and woman.pdf
How do we use Orthotic Insoles for men and woman.pdf
anilmk017 views
2.-A-qualitative-exploration-of-reasons-for-improvement-in-nutritional-status... by manali9054
2.-A-qualitative-exploration-of-reasons-for-improvement-in-nutritional-status...2.-A-qualitative-exploration-of-reasons-for-improvement-in-nutritional-status...
2.-A-qualitative-exploration-of-reasons-for-improvement-in-nutritional-status...
manali905439 views
Adverse childhood experiences (ACE) by intersectitdept
Adverse childhood experiences (ACE)Adverse childhood experiences (ACE)
Adverse childhood experiences (ACE)
intersectitdept24 views
Treat Hearing Problems with the Best Audiologist and Aids in Kolkata by Happyears
Treat Hearing Problems with the Best Audiologist and Aids in KolkataTreat Hearing Problems with the Best Audiologist and Aids in Kolkata
Treat Hearing Problems with the Best Audiologist and Aids in Kolkata
Happyears15 views
NURSING AS A PROFESSION, CHARACTERISTICS OF NURSE,NURSING PRINCIPLES.pptx by Krishna Gandhi
NURSING AS A PROFESSION, CHARACTERISTICS OF NURSE,NURSING PRINCIPLES.pptxNURSING AS A PROFESSION, CHARACTERISTICS OF NURSE,NURSING PRINCIPLES.pptx
NURSING AS A PROFESSION, CHARACTERISTICS OF NURSE,NURSING PRINCIPLES.pptx
Krishna Gandhi38 views
What are the benefits of a dental crown.pdf by BridgesDental2
What are the benefits of a dental crown.pdfWhat are the benefits of a dental crown.pdf
What are the benefits of a dental crown.pdf
BridgesDental210 views
Communication and NPR Presentation.pptx by Winnie
Communication and NPR Presentation.pptxCommunication and NPR Presentation.pptx
Communication and NPR Presentation.pptx
Winnie 9 views
Sodium Sulphate Manufacturing Plant Project Report 2024 by AlinaEllis1
Sodium Sulphate Manufacturing Plant Project Report 2024Sodium Sulphate Manufacturing Plant Project Report 2024
Sodium Sulphate Manufacturing Plant Project Report 2024
AlinaEllis19 views
NURSING IS AN ART AND SCIENCE.pptx by Krishna Gandhi
NURSING IS AN ART AND SCIENCE.pptxNURSING IS AN ART AND SCIENCE.pptx
NURSING IS AN ART AND SCIENCE.pptx
Krishna Gandhi8 views
Presentation1 BLACKTOWN AND DRUITT HOSPITALS YOU ARE ALL SCUM.pptx by BraydenStoch2
Presentation1 BLACKTOWN AND DRUITT HOSPITALS YOU ARE ALL SCUM.pptxPresentation1 BLACKTOWN AND DRUITT HOSPITALS YOU ARE ALL SCUM.pptx
Presentation1 BLACKTOWN AND DRUITT HOSPITALS YOU ARE ALL SCUM.pptx
BraydenStoch210 views
What's Next for OPPS: A Look at the 2024 Final Rule by Health Catalyst
What's Next for OPPS: A Look at the 2024 Final RuleWhat's Next for OPPS: A Look at the 2024 Final Rule
What's Next for OPPS: A Look at the 2024 Final Rule
Health Catalyst233 views
Community-Engagement_SNEHA-Dissemination-15th-Nov.-2019.pdf by manali9054
Community-Engagement_SNEHA-Dissemination-15th-Nov.-2019.pdfCommunity-Engagement_SNEHA-Dissemination-15th-Nov.-2019.pdf
Community-Engagement_SNEHA-Dissemination-15th-Nov.-2019.pdf
manali905425 views
vital signs...ILAYARAJA SAMPATH by S ILAYA RAJA
vital signs...ILAYARAJA SAMPATHvital signs...ILAYARAJA SAMPATH
vital signs...ILAYARAJA SAMPATH
S ILAYA RAJA210 views
Compounding in hospitals.pptx by Komal Sathe
Compounding in hospitals.pptxCompounding in hospitals.pptx
Compounding in hospitals.pptx
Komal Sathe14 views

Kshivets esmo2021

  • 1. Esophageal cancer cell dynamics significantly depended on blood cell circuit, biochemical factors, hemostasis system, cancer characteristics and anthropometric data Kshivets Oleg Surgery Department, Roshal Hospital, Roshal Moscow, Russia 1433P
  • 2. Content of this presentation is copyright and responsibility of the author. Permission is required for re-use. DECLARATION OF INTERESTS Oleg Kshivets No disclosures Oleg Kshivets
  • 3. ESOPHAGEAL CANCER CELL DYNAMICS SIGNIFICANTLY DEPENDED ON BLOOD CELL CIRCUIT, BIOCHEMICAL FACTORS, HEMOSTASIS SYSTEM, CANCER CHARACTERISTICS AND ANTHROPOMETRIC DATA #1433P Oleg Kshivets, MD, PhD Surgery Department, Roshal Hospital, Roshal, Moscow, Russia OBJECTIVE: We examined factors significantly affecting esophageal cancer (EC) cell dynamics. METHODS: We analyzed data of 553 consecutive EC patients (ECP) (age=56.5±8.9 years; tumor size=6±3.5 cm) radically operated and monitored in 1975-2021 (m=413, f=140; esophagogastrectomies (EG) Garlock=286, EG Lewis=267, combined EG with resection of pancreas, liver, diaphragm, aorta, VCS, colon transversum, lung, trachea, pericardium, splenectomy=153; adenocarcinoma=316, squamous=227, mix=10; T1=128, T2=115, T3=183, T4=127; N0=279, N1=70, N2=204; G1=157, G2=141, G3=255; early EC=110, invasive=443; only surgery=423, adjuvant chemoimmunoradiotherapy- AT=130: 5-FU+thymalin/taktivin+radiotherapy 45-50Gy). Variables selected for study were input levels of 45 blood parameters, sex, age, TNMG, cell type, tumor size. Survival curves were estimated by the Kaplan-Meier method. Differences in curves between groups of ECP were evaluated using a log-rank test. Regression, multivariate Cox modeling, multi-factor clustering, discriminant analysis, structural equation modeling, Monte Carlo, bootstrap simulation and neural networks computing were used to determine any significant dependence. RESULTS: Overall life span (LS) was 1880.1±2226.6 days and cumulative 5-year survival (5YS) reached 52%, 10 years – 45.6%, 20 years – 33.4%. AT significantly improved 5YS (67.9% vs. 48.5%) (P=0.00039 by log-rank test). Regression modeling displayed EC cell dynamics significantly depended on: phase transition (PT) N0—N12 in terms of synergetics, histology, G, EC growth, age, gender, localization, Hb, blood cells, glucose, residual nitrogen (P=0.000-0.033). Neural networks simulation revealed relationships between EC cell dynamics and blood ESS (rank=1), segmented neutrophils (2), age (3), Hb (4), leucocytes (5), monocytes (6), lymphocytes (7), protein (8), erythrocytes (9), thrombocytes (10), stick neutrophils (11), eosinophils (12). Prediction was 87-91% by neural networks computing. CONCLUSIONS: Esophageal cancer cell dynamics significantly depended on blood cell circuit, biochemical factors, hemostasis system, cancer characteristics, anthropometric data.
  • 4. DATA: Males…………………………………….…………………………..…….413 Females…….......................................................................................140 Age=56.5±8.9 years Tumor Size=6±3.5 cm Only Surgery.…..................................................................................423 Adjuvant Chemoimmunoradiotherapy (5FU + thymalin/taktivin, 5-6 cycles+ Radiotherapy 45-50Gy)........................................................130
  • 5. RADICAL PROCEDURES (R0): Esophagogastrectomies Garlock……………………….……………...286 Esophagogastrectomies Lewis..........................................................267 Combined sophagogastrectomies with Resection of Trachea, Aorta, Liver, Vena Cava Superior, Vena Azygos, Diaphragm, Pancreas, Colon Transversum, Pericardium, Splenectomy (R0)………….…...153 2 Field Lymph Node Dissection.……………...…………………..….…363 3 Field Lymph Node Dissection…………………………………..…….190 Intrathoracic Esophagogastroanastomosis……………….…………363 Neck Esophagogastroanastomosis……………….…………………..190
  • 6. SURVIVAL RATE: 5-Year Survivors…………...................................................... 185 (33.4%) 10-Year Survivors……………………………………................ 99 (17.9%) Losses……………………………………………………………..226 (40.9%) General Life Span=1880.1±2226.6 days For 5-Year Survivors=4295.7±2413.5 days For 10-Year Survivors=5883±2296.6 days For Losses=628.3±319.9 days Cumulative 5-Year Survival……..……….........................................52% Cumulative 10-Year Survival……..…...……………………………...45.6% Cumulative 20-Year Survival………………………………………....33.4%
  • 7. GENERAL ESOPHAGEAL CANCER PATIENTS SURVIVAL AFTER COMPLETE ESOPHAGOGASTRECTOMIES (KAPLAN-MEIER) (N=553): Survival Function 5-Year survival=52%; 10-Year Survival=45.6%; 20-Year Survival=33.4%. Complete Censored -5 0 5 10 15 20 25 30 35 40 Years after Esophagogastrectomies 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Cumulative Proportion Surviving
  • 8. RESULTS OF UNIVARIATE ANALYSIS OF PHASE TRANSITION EARLY—INVASIVE CANCER IN PREDICTION OF ESOPHAGEAL PATIENTS SURVIVAL (N=553): Cumulative Proportion Surviving (Kaplan-Meier) 5-Year Survival of Early ECP=100%; 5-Year Survival of Invasive ECP=39% (P=0.000 by Log-Rank Test). Complete Censored 0 5 10 15 20 25 30 35 40 Years After Esophagogastrectomies 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Cumulative Proportion Surviving Invasive Cancer, n=443 Early Cancer, n=110
  • 9. RESULTS OF UNIVARIATE ANALYSIS OF PHASE TRANSITION N0—N1-2 IN PREDICTION OF ESOPHAGEAL CANCER PATIENTS SURVIVAL (N=553): Cumulative Proportion Surviving (Kaplan-Meier) 5-Year Survival of ECP with N0=73.3%; 5-Year Survival of ECP with N1-2=28.6% (P=0.000 by Log-Rankn Test). Complete Censored 0 5 10 15 20 25 30 35 40 Years after Esophagogastrectomies 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Cumulative Proportion Surviving ECP with N1-2, n=274 ECP wth N0, n=279
  • 10. RESULTS OF UNIVARIATE ANALYSIS OF ADJUVANT CHEMOIMMUNORADIOTHERAPY IN PREDICTION OF ESOHAGEAL CANCER PATIENTS SURVIVAL (N=553): Cumulative Proportion Surviving (Kaplan-Meier) 5-Year Survival of ECP after AT=67.9%; 5-Year Surival after Surgery=48.5% (P=0.00039 by Log-Rank Test) Complete Censored 0 5 10 15 20 25 30 35 40 Years after Esophagogastrectomies 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Cumulative Proportion Surviving Surgery, n=423 AT=130
  • 11. RESULTS REGRESSION MODELING IN ESOPHAGEAL CANCER DYNAMICS (N=553): Effect D - Test of all effects Distribution : NORMAL Link function: LOG Degr. of Freedom Wald Stat. p Intercept 1 28.61731 0.000000 Hemoglobin 1 14.92816 0.000112 Erythrocytes 1 15.59624 0.000078 Monocytes 1 10.42142 0.001246 Thrombocytes 1 12.09522 0.000506 Glucose 1 6.51270 0.010711 Residual Nitrogen 1 25.89537 0.000000 Stick Neutrophils 1 12.10752 0.000502 Stick Neutrophils abs 1 13.65376 0.000220 Monocytes abs 1 14.87247 0.000115 Age 1 9.49503 0.002060 Blood type 4 23.60901 0.000096 Phase Transition N0--N12 1 31.48910 0.000000 Sex 1 8.23048 0.004119 Histology 2 6.81760 0.033081 G1-3 2 50.16923 0.000000 Tumor Growth 2 13.28298 0.001305 Localization 1 12.46865 0.000414 Esophageal/Cardioesophageal Cancer 1 19.73187 0.000009
  • 12. GRM RESULTS IN ESOPHAGEAL CANCER DYNAMICS (N=553): Pareto Chart of t-Values for Coefficients; df=537 Variable: D Sigma-restricted parameterization 2.200572 2.306073 2.360301 2.475662 2.751244 2.953211 3.215567 3.274652 3.620066 4.282686 5.14579 7.43675 7.832812 8.437223 11.54094 p=.05 t-Value (for Coefficient;Absolute Value) OPERAT AGE CP H_T P1_4 FT MASSA EC_CEC CHAR_GR G1_3 LOC THR LOCAL THR_CC T Effect D Param. D Std.Err D t D p Intercept -2.348411.115311 -2.105610.035702 Coler Index -0.297870.126199 -2.360300.018617 Thrombocytes 0.010630.001429 7.436750.000000 Hemorrage Time 0.010540.004258 2.475660.013606 T1-4 1.465280.12696311.540940.000000 Age -0.021350.009260 -2.306070.021487 weight 0.020660.006424 3.215570.001380 G1-3 0.446440.104243 4.282690.000022 Tumor Growth -0.593810.164033 -3.620070.000322 Surgery type -1.173830.533421 -2.200570.028191 Localization 1.086310.138687 7.832810.000000 Phase Transition Early-Invasive Cancer -1.367740.463135 -2.953210.003283 Esophageal/Cardioesophageal Cancer 1.857990.567387 3.274650.001126 Thrombocytes/Cancer cells -0.003190.000378 -8.437220.000000 P1-4 0.492060.178848 2.751240.006137 u3 vs Others -2.004010.389447 -5.145790.000000
  • 13. RESULTS OF NEURAL NETWORKS COMPUTING IN PREDICTION OF ESOPHAGEAL CANCER DYNAMICS (N=553): Neural Network : n=533 Baseline Error=0.000; Area under ROC Curve=1.000; Correct Classification Rate 100% Rank Sensitivity ESS 1 3.1e+77 Seggmented Neutrophils 2 3.8e+49 Age 3 2.7e+39 Hemoglobin 4 2.1e+32 Leucocytes 5 1.02e+30 Monocytes 6 4.4e+27 Lymphocytes 7 1.8e+18 Protein 8 1.2e+17 Erythrocytes 9 5.0e+16 Thrombocytes 10 3.6e+16 Stick Neutrophils 11 3.2e+16 Eosinophils 12 5.3e+15
  • 14. RESULTS OF BOOTSTRAP SIMULATION IN PREDICTION OF ESOPHAGEAL CANCER DYNAMICS (N=553): Bootstrap Simulation n=553 Significant Factors (Number of Samples=3333) Rank Kendall’Tau-A P< Healthy Cells/Cancer Cells 1 -0.835 0.000 Erythrocytes/Cancer Cells 2 -0.778 0.000 Thrombocytes/Cancer Cells 3 -0.710 0.000 Leucocytes/Cancer Cells 4 -0.677 0.000 Segmented Neutrophils/Cancer Cells 5 -0.635 0.000 Lymphocytes/Cancer Cells 6 -0.632 0.000 T1-4 7 0.544 0.000 P1-4 8 0.477 0.000 Monocytes/Cancer Cells 9 -0.459 0.000 PT Early---Invasive Cancer 10 0.317 0.000 PT N0---N12 11 0.276 0.000 Residual Nitrogen 12 0.220 0.000 Combined Procedures 13 -0.203 0.000 Tumor Growth 14 0.191 0.000 Stick Neutrophils/Cancer Cells 15 -0.178 0.000 Esophageal/Cardioesophageal Cancer 16 0.175 0.000 Hemorrhage Time 17 0.163 0.000 Surgery Type 18 0.160 0.000 Protein 19 -0.159 0.000 ESS 20 0.137 0.000 Bilirubin 20 -0.127 0.000 Thrombocytes 21 0.117 0.000 Erythrocytes tot 22 -0.116 0.000 Weight 23 0.097 0.01 AT 24 0.093 0.01 Stick Neutrophils 25 0.086 0.01 Age 26 0.078 0.05 Histology 27 0.075 0.05 Chlorides 28 -0.066 0.05 Color Index 29 -0.065 0.05 Stick Neutrophils tot 30 0.063 0.05
  • 15. RESULTS OF KOHONEN SELF-ORGANIZING NEURAL NETWORKS COMPUTING IN PREDICTION OF ESOPHAGEAL CANCER DYNAMICS (N=553):
  • 16. ESOPHAGEAL CANCER DYNAMICS IN TERMS OF SYNERGETICS:
  • 17. PROGNOSTIC EQUATION MODELS OF ESOPHAGEAL CANCER DYNAMICS (N=553):
  • 18. PROGNOSTIC EQUATION MODELS OF ESOPHAGEAL CANCER DYNAMICS (N=553):
  • 19. PROGNOSTIC EQUATION MODELS OF ESOPHAGEAL CANCER DYNAMICS (N=553):
  • 20. PROGNOSTIC EQUATION MODELS OF ESOPHAGEAL CANCER DYNAMICS (N=553):
  • 21. PROGNOSTIC SEPATH-MODEL OF ESOPHAGEAL CANCER DYNAMICS (N=553):
  • 22. Content of this presentation is copyright and responsibility of the author. Permission is required for re-use. Conclusion: Esophageal cancer cell dynamics significantly depended on: 1) blood cell circuit; 2) biochemical factors; 3) hemostasis system; 4) cancer characteristics; 5) anthropometric data; 6) phase transition early-invasive cancer; 7) phase transition N0---N12; 8) localization; 9) cell ratio factors.
  • 23. European Society for Medical Oncology (ESMO) Via Ginevra 4, CH-6900 Lugano T. +41 (0)91 973 19 00 esmo@esmo.org esmo.org ● Address: Oleg Kshivets, M.D., Ph.D. Consultant Thoracic, Abdominal, General Surgeon & Surgical Oncologist e-mail: okshivets@yahoo.com skype: okshivets http: //www.ctsnet.org/home/okshivets