We've updated our privacy policy. Click here to review the details. Tap here to review the details.
Activate your 30 day free trial to unlock unlimited reading.
Activate your 30 day free trial to continue reading.
Download to read offline
How do we develop machine learning models and systems taking fairness, accuracy, explainability, and transparency into account? How do we protect the privacy of users when building large-scale AI based systems? Model fairness and explainability and protection of user privacy are considered prerequisites for building trust and adoption of AI systems in high stakes domains such as hiring, lending, and healthcare. We will first motivate the need for adopting a “fairness, explainability, and privacy by design” approach when developing AI/ML models and systems for different consumer and enterprise applications from the societal, regulatory, customer, end-user, and model developer perspectives. We will then focus on the application of responsible AI techniques in practice through industry case studies. We will discuss the sociotechnical dimensions and practical challenges, and conclude with the key takeaways and open challenges.
How do we develop machine learning models and systems taking fairness, accuracy, explainability, and transparency into account? How do we protect the privacy of users when building large-scale AI based systems? Model fairness and explainability and protection of user privacy are considered prerequisites for building trust and adoption of AI systems in high stakes domains such as hiring, lending, and healthcare. We will first motivate the need for adopting a “fairness, explainability, and privacy by design” approach when developing AI/ML models and systems for different consumer and enterprise applications from the societal, regulatory, customer, end-user, and model developer perspectives. We will then focus on the application of responsible AI techniques in practice through industry case studies. We will discuss the sociotechnical dimensions and practical challenges, and conclude with the key takeaways and open challenges.
You just clipped your first slide!
Clipping is a handy way to collect important slides you want to go back to later. Now customize the name of a clipboard to store your clips.The SlideShare family just got bigger. Enjoy access to millions of ebooks, audiobooks, magazines, and more from Scribd.
Cancel anytime.Unlimited Reading
Learn faster and smarter from top experts
Unlimited Downloading
Download to take your learnings offline and on the go
You also get free access to Scribd!
Instant access to millions of ebooks, audiobooks, magazines, podcasts and more.
Read and listen offline with any device.
Free access to premium services like Tuneln, Mubi and more.
We’ve updated our privacy policy so that we are compliant with changing global privacy regulations and to provide you with insight into the limited ways in which we use your data.
You can read the details below. By accepting, you agree to the updated privacy policy.
Thank you!