How do we protect the privacy of users when building large-scale AI based systems? How do we develop machine learning models and systems taking fairness, accuracy, explainability, and transparency into account? Model fairness and explainability and protection of user privacy are considered prerequisites for building trust and adoption of AI systems in high stakes domains. We will first motivate the need for adopting a “fairness, explainability, and privacy by design” approach when developing AI/ML models and systems for different consumer and enterprise applications from the societal, regulatory, customer, end-user, and model developer perspectives. We will then focus on the application of privacy-preserving AI techniques in practice through industry case studies. We will discuss the sociotechnical dimensions and practical challenges, and conclude with the key takeaways and open challenges.