How do we protect privacy of users when building large-scale AI based systems? How do we develop machine learned models and systems taking fairness, accountability, and transparency into account? With the ongoing explosive growth of AI/ML models and systems, these are some of the ethical, legal, and technical challenges encountered by researchers and practitioners alike. In this talk, we will first motivate the need for adopting a "fairness and privacy by design" approach when developing AI/ML models and systems for different consumer and enterprise applications. We will then focus on the application of fairness-aware machine learning and privacy-preserving data mining techniques in practice, by presenting case studies spanning different LinkedIn applications (such as fairness-aware talent search ranking, privacy-preserving analytics, and LinkedIn Salary privacy & security design), and conclude with the key takeaways and open challenges.