Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Julia meetup bangalore

925 views

Published on

Julia meetup @ InMobi 19/4/2014

  • Be the first to comment

Julia meetup bangalore

  1. 1. Github Stats
  2. 2. Commits
  3. 3. Code Frequency
  4. 4. Strings
  5. 5. Character julia> ’x’ ’x’ julia> typeof(ans) Char
  6. 6. Character julia> ’A’ < ’a’ True julia> ’A’ + 1 ’B’
  7. 7. String julia> str = “Hello, world.” “Hello, world.” julia> str[1] ’H’ julia> str[4:9] "lo, wo“
  8. 8. String julia> greet = "Hello" "Hello“ julia> whom = "world" "world“ julia> string(greet, ", ", whom, ".n") "Hello, world.n"
  9. 9. Introduction to DataFrames
  10. 10. julia> Pkg.add("DataFrames") julia> Pkg.add("RDatasets") julia> using DataFrames julia> using RDatasets
  11. 11. julia> v = @data([NA, 3, 2, 5, 4]) julia> mean(v)
  12. 12. The NA type: Represents a missing value Like NULL in some systems Poisons other values Like NaN for floating point numbers
  13. 13. julia> 1 + NA NA julia> 1 > NA NA julia> isna(NA) true
  14. 14. A DataFrame is a list of DataVector's DataFrame's allow mixed indexing: Columns by number Columns by name Rows + Columns by number + number Rows + Columns by number + name
  15. 15. df = DataFrame() df[:A] = 1:8 df[:B] = ["M", "F", "F", "M", "F", "M", "M", "F"] df
  16. 16. using Rdatasets iris = dataset("datasets", "iris") head(iris)

×