Julia meetup bangalore

848 views

Published on

Julia meetup @ InMobi 19/4/2014

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
848
On SlideShare
0
From Embeds
0
Number of Embeds
8
Actions
Shares
0
Downloads
9
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Julia meetup bangalore

  1. 1. Github Stats
  2. 2. Commits
  3. 3. Code Frequency
  4. 4. Strings
  5. 5. Character julia> ’x’ ’x’ julia> typeof(ans) Char
  6. 6. Character julia> ’A’ < ’a’ True julia> ’A’ + 1 ’B’
  7. 7. String julia> str = “Hello, world.” “Hello, world.” julia> str[1] ’H’ julia> str[4:9] "lo, wo“
  8. 8. String julia> greet = "Hello" "Hello“ julia> whom = "world" "world“ julia> string(greet, ", ", whom, ".n") "Hello, world.n"
  9. 9. Introduction to DataFrames
  10. 10. julia> Pkg.add("DataFrames") julia> Pkg.add("RDatasets") julia> using DataFrames julia> using RDatasets
  11. 11. julia> v = @data([NA, 3, 2, 5, 4]) julia> mean(v)
  12. 12. The NA type: Represents a missing value Like NULL in some systems Poisons other values Like NaN for floating point numbers
  13. 13. julia> 1 + NA NA julia> 1 > NA NA julia> isna(NA) true
  14. 14. A DataFrame is a list of DataVector's DataFrame's allow mixed indexing: Columns by number Columns by name Rows + Columns by number + number Rows + Columns by number + name
  15. 15. df = DataFrame() df[:A] = 1:8 df[:B] = ["M", "F", "F", "M", "F", "M", "M", "F"] df
  16. 16. using Rdatasets iris = dataset("datasets", "iris") head(iris)

×