SlideShare a Scribd company logo

Why Did You Cover That Song?: Modeling N-th Order Derivative Creation with Content Popularity

CIKM 2016

1 of 1
Download to read offline
Why Did You Cover That Song?:
Modeling N-th Order Derivative Creation with Content Popularity
Kosetsu Tsukuda, Masahiro Hamasaki, Masataka Goto National Institute of Advanced Industrial Science and Technology (AIST)
Estimate Factors That Trigger N-th Order Derivative Creation
Contributions
Modeled n-th order derivative creation as a function of original work attractiveness, original work popularity, and derivative work popularity.
Quantitatively evaluated our model using music content dataset and showed the model adopting all three factors achieved the best result.
Qualitatively evaluated our model in terms of category characteristics, temporal development of factors, and creator characteristics.
Sing Dance Play
Oatt 14.6 17.3 42.5
Opop 40.0 21.7 40.0
Dpop 45.4 61.0 17.5
0
20
40
60
80
100
120
Apr-10 Oct-10 Apr-11 Oct-11 Apr-12 Oct-12
0
5
10
15
20
25
Nov-10 May-11 Nov-11 May-12 Nov-12
0
5
10
15
20
25
Jul-10 Jan-11 Jul-11 Jan-12 Jul-12 Jan-132010/4 2010/10 2011/4 2011/10 2012/4 2012/10 2010/11 2011/5 2011/11 2012/5 2012/11 2010/7 2011/1 2011/7 2012/1 2012/7 2013/1
Result 1: category characteristics
Result 2: temporal development of factors
Result 3: creator characteristics : creator
Factor 1 Factor 2 Factor 3
Original work’s attractiveness (Oatt) Original work’s popularity (Opop) Derivative work’s popularity (Dpop)
Original song
I cover this song because
I like the melody!
1 Hatsune Miku
Senbon Zakura
sm15630734
2 GUMI
Yakusoku no tane
sm15622476
3 GUMI
Dystopia・Zipangu
sm15603633
Original song rankingIf I cover this popular
original song, my cover
video might also
become popular!
1
2
3
Gurutamin
Senbon Zakura
sm16011082
Shamuon/Amatsuki
Panda Hero
sm16017797
Cover song ranking
Mitani Nana
Senbon Zakura
sm16013169
Other derivatives of
this work are popular,
so I would also like to
create one!
0 T
Rate
Rate at which creator posts a derivative work at time :
- is the original work’s attractiveness,
- is the probability that is influenced by Oatt,
- assumed to be constant in time.
0 T
Rate
Rate at which creator posts a derivative work at time :
- is the rank of the original work in the ranking,
- is the influence of original work’s popularity,
- is the probability that is influenced by Opop.
, , ,
Rate at which creator posts a derivative work at time :
- is the rank of the derivative work in the ranking,
- is the influence of derivative work’s popularity,
- is the probability that is influenced by Dpop.
0 TRate
, , ,
0
Marginalized joint distribution of and
, !|#, $, %, &, ', (
									 * , !|#, $, +, ,, -, ., % +|', ( ,|', ( -|', ( .|& /+/,/-/.
Sample 012 in the E-step of a stochastic EM procedure
3| , !∖ , #, $, %, &, ', ( ∝
, !∖ , 3|#, $, %, &, ', (
∖ , !∖ |#, $, %, &, ', (
: set of derivative work posting events of
all original works;
!: set of latent variables of all derivative
works of all original works;
Assume a Gamma prior for , , and ,
and a Dirichlet prior for 6 .
1
2
3 4 5 6 7
Sing: creators tend to follow fads and put a high priority on content popularity.
Dance: the ratio of Dpop is high because many creators imitate the choreography
proposed in a derivative work.
Play: creators play their favorite original songs without being affected by fads.
#ofderivativeworks
Derivative works of an original song in the “sing” category. Derivative works of an original song in the “dance” category. Derivative works of an original song in the “play” category.
For a creator in circle A, recommend original works similar to
the original works he/she used in the past.
For a creator in circle B, recommend original works because
he/she can compose original choreography.
For a creator in circle C, recommend popular content in the
derivative work ranking.
These days amateur creators who used
to be just consumers can also easily
create content (a.k.a. user generated
content). Since not all amateur creators
can create new content from scratch,
it is popular to use existing original
(1st generation) work as the basis for
new content: such content is called
derivative work.
Niconico Thingiverse
sm15630734 thing:398548
sm17483164 sm16309076sm18407945 thing:1541729thing:1481404
Sing Dance Play Resize drawers Add partitions
In this kind of derivative work
creation activity, a creator
influenced by 2nd gen content
can create 3rd gen content.
Similarly, Nth gen content
can be transformed into N+1th
gen content. Such derivative
work creation activity is called
N-th order derivative creation.
sm15630734
sm17703100
sm16066609
sm16094094
sm24854396
sm16394955
…
…
…
…
…
…
…
1st generation
2nd generation
3rd generation
Original song Original accessory case
(%)
Oatt Opop Dpop
Oatt
Sing
A
Opop Dpop
B
Oatt
Opop Dpop
Dance
C
Oatt
Opop Dpop
Play

Recommended

コンテンツの人気度を考慮したN次創作活動のモデル化(ポスター)
コンテンツの人気度を考慮したN次創作活動のモデル化(ポスター)コンテンツの人気度を考慮したN次創作活動のモデル化(ポスター)
コンテンツの人気度を考慮したN次創作活動のモデル化(ポスター)Kosetsu Tsukuda
 
コンテンツの人気度を考慮したN次創作活動のモデル化
コンテンツの人気度を考慮したN次創作活動のモデル化コンテンツの人気度を考慮したN次創作活動のモデル化
コンテンツの人気度を考慮したN次創作活動のモデル化Kosetsu Tsukuda
 
Year 13 proposal template
Year 13 proposal templateYear 13 proposal template
Year 13 proposal templateMatthewHazel1
 
Evaluation presentation.1
Evaluation presentation.1Evaluation presentation.1
Evaluation presentation.1guest0fb1c4
 
2. proposal 200606 version 2
2. proposal 200606 version 22. proposal 200606 version 2
2. proposal 200606 version 2Thea Jennings
 
Factual development and planning pro forma
Factual development and planning pro formaFactual development and planning pro forma
Factual development and planning pro formaTobyJackson9
 
Resume General
Resume GeneralResume General
Resume GeneralAmy Neral
 

More Related Content

Similar to Why Did You Cover That Song?: Modeling N-th Order Derivative Creation with Content Popularity

1.2 FMP Proposal 2022.docx
1.2 FMP Proposal 2022.docx1.2 FMP Proposal 2022.docx
1.2 FMP Proposal 2022.docxEmmaSams3
 
Sedgwick e0498336-d0105-sp7-module 01-31215a-01
Sedgwick e0498336-d0105-sp7-module 01-31215a-01Sedgwick e0498336-d0105-sp7-module 01-31215a-01
Sedgwick e0498336-d0105-sp7-module 01-31215a-01Colleen Sedgwick
 
Random Forests R vs Python by Linda Uruchurtu
Random Forests R vs Python by Linda UruchurtuRandom Forests R vs Python by Linda Uruchurtu
Random Forests R vs Python by Linda UruchurtuPyData
 
Proposal - FMP 2
Proposal - FMP 2Proposal - FMP 2
Proposal - FMP 2JoyLucyBuck
 
2nd Pitch
2nd Pitch2nd Pitch
2nd PitchLdowley
 
3. proposal mv 2018
3. proposal mv 20183. proposal mv 2018
3. proposal mv 2018MaxJones48
 
31 interesting ways to use audio in your class
31 interesting ways to use audio in your class31 interesting ways to use audio in your class
31 interesting ways to use audio in your classmrholdsworth
 
Essay On Stereo Imaging
Essay On Stereo ImagingEssay On Stereo Imaging
Essay On Stereo ImagingLori Gilbert
 
Media Art Presentation
Media Art PresentationMedia Art Presentation
Media Art Presentationnafets21
 

Similar to Why Did You Cover That Song?: Modeling N-th Order Derivative Creation with Content Popularity (20)

1.2 FMP Proposal 2022.docx
1.2 FMP Proposal 2022.docx1.2 FMP Proposal 2022.docx
1.2 FMP Proposal 2022.docx
 
Sedgwick e0498336-d0105-sp7-module 01-31215a-01
Sedgwick e0498336-d0105-sp7-module 01-31215a-01Sedgwick e0498336-d0105-sp7-module 01-31215a-01
Sedgwick e0498336-d0105-sp7-module 01-31215a-01
 
Random Forests R vs Python by Linda Uruchurtu
Random Forests R vs Python by Linda UruchurtuRandom Forests R vs Python by Linda Uruchurtu
Random Forests R vs Python by Linda Uruchurtu
 
Project overview eng
Project overview engProject overview eng
Project overview eng
 
Music
MusicMusic
Music
 
Proposal - FMP 2
Proposal - FMP 2Proposal - FMP 2
Proposal - FMP 2
 
Factual Proposal
Factual ProposalFactual Proposal
Factual Proposal
 
2nd Pitch
2nd Pitch2nd Pitch
2nd Pitch
 
3. proposal mv 2018
3. proposal mv 20183. proposal mv 2018
3. proposal mv 2018
 
Pitch
PitchPitch
Pitch
 
Portfolio of Works
Portfolio of WorksPortfolio of Works
Portfolio of Works
 
2. fmp research
2. fmp research2. fmp research
2. fmp research
 
2. fmp research
2. fmp research2. fmp research
2. fmp research
 
Proposal
ProposalProposal
Proposal
 
Factual proposal
Factual proposalFactual proposal
Factual proposal
 
31 interesting ways to use audio in your class
31 interesting ways to use audio in your class31 interesting ways to use audio in your class
31 interesting ways to use audio in your class
 
Factual Proposal
Factual ProposalFactual Proposal
Factual Proposal
 
Evaluation Question 1
Evaluation Question 1 Evaluation Question 1
Evaluation Question 1
 
Essay On Stereo Imaging
Essay On Stereo ImagingEssay On Stereo Imaging
Essay On Stereo Imaging
 
Media Art Presentation
Media Art PresentationMedia Art Presentation
Media Art Presentation
 

More from Kosetsu Tsukuda

【論文紹介】ProtoMF: Prototype-based Matrix Factorization for Effective and Explain...
【論文紹介】ProtoMF: Prototype-based Matrix Factorization for Effective and Explain...【論文紹介】ProtoMF: Prototype-based Matrix Factorization for Effective and Explain...
【論文紹介】ProtoMF: Prototype-based Matrix Factorization for Effective and Explain...Kosetsu Tsukuda
 
音楽聴取者の行動分析で理解する人と音楽とのインタラクション
音楽聴取者の行動分析で理解する人と音楽とのインタラクション音楽聴取者の行動分析で理解する人と音楽とのインタラクション
音楽聴取者の行動分析で理解する人と音楽とのインタラクションKosetsu Tsukuda
 
Explainable Recommendation for Repeat Consumption (RecSys 2020)
Explainable Recommendation for Repeat Consumption (RecSys 2020)Explainable Recommendation for Repeat Consumption (RecSys 2020)
Explainable Recommendation for Repeat Consumption (RecSys 2020)Kosetsu Tsukuda
 
繰り返し消費されるコンテンツを対象とした推薦理由の提示(IFAT142・登壇発表)
繰り返し消費されるコンテンツを対象とした推薦理由の提示(IFAT142・登壇発表)繰り返し消費されるコンテンツを対象とした推薦理由の提示(IFAT142・登壇発表)
繰り返し消費されるコンテンツを対象とした推薦理由の提示(IFAT142・登壇発表)Kosetsu Tsukuda
 
Kiite Cafe: 同じ楽曲を同じ瞬間に楽しんで「好き」が伝わる音楽発掘カフェ(SIGMUS132・登壇発表)
Kiite Cafe: 同じ楽曲を同じ瞬間に楽しんで「好き」が伝わる音楽発掘カフェ(SIGMUS132・登壇発表)Kiite Cafe: 同じ楽曲を同じ瞬間に楽しんで「好き」が伝わる音楽発掘カフェ(SIGMUS132・登壇発表)
Kiite Cafe: 同じ楽曲を同じ瞬間に楽しんで「好き」が伝わる音楽発掘カフェ(SIGMUS132・登壇発表)Kosetsu Tsukuda
 
Explainable Recommendation for Repeat Consumption(RecSys2020論文読み会)
Explainable Recommendation for Repeat Consumption(RecSys2020論文読み会)Explainable Recommendation for Repeat Consumption(RecSys2020論文読み会)
Explainable Recommendation for Repeat Consumption(RecSys2020論文読み会)Kosetsu Tsukuda
 
Explainable Recommendation for Repeat Consumption (RecSys 2020)
Explainable Recommendation for Repeat Consumption (RecSys 2020)Explainable Recommendation for Repeat Consumption (RecSys 2020)
Explainable Recommendation for Repeat Consumption (RecSys 2020)Kosetsu Tsukuda
 
Query/Task Satisfaction and Grid-based Evaluation Metrics Under Different Ima...
Query/Task Satisfaction and Grid-based Evaluation Metrics Under Different Ima...Query/Task Satisfaction and Grid-based Evaluation Metrics Under Different Ima...
Query/Task Satisfaction and Grid-based Evaluation Metrics Under Different Ima...Kosetsu Tsukuda
 
The Web Conference 2020 国際会議報告(ACM SIGMOD 日本支部第73回支部大会・依頼講演)
The Web Conference 2020 国際会議報告(ACM SIGMOD 日本支部第73回支部大会・依頼講演)The Web Conference 2020 国際会議報告(ACM SIGMOD 日本支部第73回支部大会・依頼講演)
The Web Conference 2020 国際会議報告(ACM SIGMOD 日本支部第73回支部大会・依頼講演)Kosetsu Tsukuda
 
DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...
DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...
DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...Kosetsu Tsukuda
 
ABCPRec:何を創作したかという情報がコンテンツの消費時に反映されるユーザ生成コンテンツ推薦手法(WebDB Forum 2019・登壇発表)
ABCPRec:何を創作したかという情報がコンテンツの消費時に反映されるユーザ生成コンテンツ推薦手法(WebDB Forum 2019・登壇発表)ABCPRec:何を創作したかという情報がコンテンツの消費時に反映されるユーザ生成コンテンツ推薦手法(WebDB Forum 2019・登壇発表)
ABCPRec:何を創作したかという情報がコンテンツの消費時に反映されるユーザ生成コンテンツ推薦手法(WebDB Forum 2019・登壇発表)Kosetsu Tsukuda
 
DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...
DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...
DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...Kosetsu Tsukuda
 
ABCPRec:ユーザの消費者としての役割と創作者としての役割の適応的対応付けによるユーザ生成コンテンツ推薦(第14回WI2研究会)
ABCPRec:ユーザの消費者としての役割と創作者としての役割の適応的対応付けによるユーザ生成コンテンツ推薦(第14回WI2研究会)ABCPRec:ユーザの消費者としての役割と創作者としての役割の適応的対応付けによるユーザ生成コンテンツ推薦(第14回WI2研究会)
ABCPRec:ユーザの消費者としての役割と創作者としての役割の適応的対応付けによるユーザ生成コンテンツ推薦(第14回WI2研究会)Kosetsu Tsukuda
 
ABCPRec: Adaptively Bridging Consumer and Producer Roles for User-Generated C...
ABCPRec: Adaptively Bridging Consumer and Producer Roles for User-Generated C...ABCPRec: Adaptively Bridging Consumer and Producer Roles for User-Generated C...
ABCPRec: Adaptively Bridging Consumer and Producer Roles for User-Generated C...Kosetsu Tsukuda
 
Lyric Jumper: A Lyrics-Based Music Exploratory Web Service by Modeling Lyrics...
Lyric Jumper: A Lyrics-Based Music Exploratory Web Service by Modeling Lyrics...Lyric Jumper: A Lyrics-Based Music Exploratory Web Service by Modeling Lyrics...
Lyric Jumper: A Lyrics-Based Music Exploratory Web Service by Modeling Lyrics...Kosetsu Tsukuda
 
Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...
Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...
Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...Kosetsu Tsukuda
 
Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...
Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...
Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...Kosetsu Tsukuda
 
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づき様々な歌詞に出会える歌詞探索サービス
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づき様々な歌詞に出会える歌詞探索サービス Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づき様々な歌詞に出会える歌詞探索サービス
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づき様々な歌詞に出会える歌詞探索サービス Kosetsu Tsukuda
 
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づく歌詞探索サービス
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づく歌詞探索サービスLyric Jumper:アーティストごとの歌詞トピックの傾向に基づく歌詞探索サービス
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づく歌詞探索サービスKosetsu Tsukuda
 
Taste or Addiction?: Using Play Logs to Infer Song Selection Motivation
Taste or Addiction?: Using Play Logs to Infer Song Selection MotivationTaste or Addiction?: Using Play Logs to Infer Song Selection Motivation
Taste or Addiction?: Using Play Logs to Infer Song Selection MotivationKosetsu Tsukuda
 

More from Kosetsu Tsukuda (20)

【論文紹介】ProtoMF: Prototype-based Matrix Factorization for Effective and Explain...
【論文紹介】ProtoMF: Prototype-based Matrix Factorization for Effective and Explain...【論文紹介】ProtoMF: Prototype-based Matrix Factorization for Effective and Explain...
【論文紹介】ProtoMF: Prototype-based Matrix Factorization for Effective and Explain...
 
音楽聴取者の行動分析で理解する人と音楽とのインタラクション
音楽聴取者の行動分析で理解する人と音楽とのインタラクション音楽聴取者の行動分析で理解する人と音楽とのインタラクション
音楽聴取者の行動分析で理解する人と音楽とのインタラクション
 
Explainable Recommendation for Repeat Consumption (RecSys 2020)
Explainable Recommendation for Repeat Consumption (RecSys 2020)Explainable Recommendation for Repeat Consumption (RecSys 2020)
Explainable Recommendation for Repeat Consumption (RecSys 2020)
 
繰り返し消費されるコンテンツを対象とした推薦理由の提示(IFAT142・登壇発表)
繰り返し消費されるコンテンツを対象とした推薦理由の提示(IFAT142・登壇発表)繰り返し消費されるコンテンツを対象とした推薦理由の提示(IFAT142・登壇発表)
繰り返し消費されるコンテンツを対象とした推薦理由の提示(IFAT142・登壇発表)
 
Kiite Cafe: 同じ楽曲を同じ瞬間に楽しんで「好き」が伝わる音楽発掘カフェ(SIGMUS132・登壇発表)
Kiite Cafe: 同じ楽曲を同じ瞬間に楽しんで「好き」が伝わる音楽発掘カフェ(SIGMUS132・登壇発表)Kiite Cafe: 同じ楽曲を同じ瞬間に楽しんで「好き」が伝わる音楽発掘カフェ(SIGMUS132・登壇発表)
Kiite Cafe: 同じ楽曲を同じ瞬間に楽しんで「好き」が伝わる音楽発掘カフェ(SIGMUS132・登壇発表)
 
Explainable Recommendation for Repeat Consumption(RecSys2020論文読み会)
Explainable Recommendation for Repeat Consumption(RecSys2020論文読み会)Explainable Recommendation for Repeat Consumption(RecSys2020論文読み会)
Explainable Recommendation for Repeat Consumption(RecSys2020論文読み会)
 
Explainable Recommendation for Repeat Consumption (RecSys 2020)
Explainable Recommendation for Repeat Consumption (RecSys 2020)Explainable Recommendation for Repeat Consumption (RecSys 2020)
Explainable Recommendation for Repeat Consumption (RecSys 2020)
 
Query/Task Satisfaction and Grid-based Evaluation Metrics Under Different Ima...
Query/Task Satisfaction and Grid-based Evaluation Metrics Under Different Ima...Query/Task Satisfaction and Grid-based Evaluation Metrics Under Different Ima...
Query/Task Satisfaction and Grid-based Evaluation Metrics Under Different Ima...
 
The Web Conference 2020 国際会議報告(ACM SIGMOD 日本支部第73回支部大会・依頼講演)
The Web Conference 2020 国際会議報告(ACM SIGMOD 日本支部第73回支部大会・依頼講演)The Web Conference 2020 国際会議報告(ACM SIGMOD 日本支部第73回支部大会・依頼講演)
The Web Conference 2020 国際会議報告(ACM SIGMOD 日本支部第73回支部大会・依頼講演)
 
DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...
DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...
DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...
 
ABCPRec:何を創作したかという情報がコンテンツの消費時に反映されるユーザ生成コンテンツ推薦手法(WebDB Forum 2019・登壇発表)
ABCPRec:何を創作したかという情報がコンテンツの消費時に反映されるユーザ生成コンテンツ推薦手法(WebDB Forum 2019・登壇発表)ABCPRec:何を創作したかという情報がコンテンツの消費時に反映されるユーザ生成コンテンツ推薦手法(WebDB Forum 2019・登壇発表)
ABCPRec:何を創作したかという情報がコンテンツの消費時に反映されるユーザ生成コンテンツ推薦手法(WebDB Forum 2019・登壇発表)
 
DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...
DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...
DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...
 
ABCPRec:ユーザの消費者としての役割と創作者としての役割の適応的対応付けによるユーザ生成コンテンツ推薦(第14回WI2研究会)
ABCPRec:ユーザの消費者としての役割と創作者としての役割の適応的対応付けによるユーザ生成コンテンツ推薦(第14回WI2研究会)ABCPRec:ユーザの消費者としての役割と創作者としての役割の適応的対応付けによるユーザ生成コンテンツ推薦(第14回WI2研究会)
ABCPRec:ユーザの消費者としての役割と創作者としての役割の適応的対応付けによるユーザ生成コンテンツ推薦(第14回WI2研究会)
 
ABCPRec: Adaptively Bridging Consumer and Producer Roles for User-Generated C...
ABCPRec: Adaptively Bridging Consumer and Producer Roles for User-Generated C...ABCPRec: Adaptively Bridging Consumer and Producer Roles for User-Generated C...
ABCPRec: Adaptively Bridging Consumer and Producer Roles for User-Generated C...
 
Lyric Jumper: A Lyrics-Based Music Exploratory Web Service by Modeling Lyrics...
Lyric Jumper: A Lyrics-Based Music Exploratory Web Service by Modeling Lyrics...Lyric Jumper: A Lyrics-Based Music Exploratory Web Service by Modeling Lyrics...
Lyric Jumper: A Lyrics-Based Music Exploratory Web Service by Modeling Lyrics...
 
Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...
Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...
Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...
 
Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...
Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...
Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...
 
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づき様々な歌詞に出会える歌詞探索サービス
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づき様々な歌詞に出会える歌詞探索サービス Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づき様々な歌詞に出会える歌詞探索サービス
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づき様々な歌詞に出会える歌詞探索サービス
 
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づく歌詞探索サービス
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づく歌詞探索サービスLyric Jumper:アーティストごとの歌詞トピックの傾向に基づく歌詞探索サービス
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づく歌詞探索サービス
 
Taste or Addiction?: Using Play Logs to Infer Song Selection Motivation
Taste or Addiction?: Using Play Logs to Infer Song Selection MotivationTaste or Addiction?: Using Play Logs to Infer Song Selection Motivation
Taste or Addiction?: Using Play Logs to Infer Song Selection Motivation
 

Recently uploaded

LLMs, LMMs, their Improvement Suggestions and the Path towards AGI.pdf
LLMs, LMMs, their Improvement Suggestions and the Path towards AGI.pdfLLMs, LMMs, their Improvement Suggestions and the Path towards AGI.pdf
LLMs, LMMs, their Improvement Suggestions and the Path towards AGI.pdfThomas Poetter
 
Bringing nullability into existing code - dammit is not the answer.pptx
Bringing nullability into existing code - dammit is not the answer.pptxBringing nullability into existing code - dammit is not the answer.pptx
Bringing nullability into existing code - dammit is not the answer.pptxMaarten Balliauw
 
Q1 Memory Fabric Forum: Intel Enabling Compute Express Link (CXL)
Q1 Memory Fabric Forum: Intel Enabling Compute Express Link (CXL)Q1 Memory Fabric Forum: Intel Enabling Compute Express Link (CXL)
Q1 Memory Fabric Forum: Intel Enabling Compute Express Link (CXL)Memory Fabric Forum
 
Introduction to Multimodal LLMs with LLaVA
Introduction to Multimodal LLMs with LLaVAIntroduction to Multimodal LLMs with LLaVA
Introduction to Multimodal LLMs with LLaVARobert McDermott
 
Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24
Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24
Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24Umar Saif
 
Q1 Memory Fabric Forum: XConn CXL Switches for AI
Q1 Memory Fabric Forum: XConn CXL Switches for AIQ1 Memory Fabric Forum: XConn CXL Switches for AI
Q1 Memory Fabric Forum: XConn CXL Switches for AIMemory Fabric Forum
 
Zi-Stick UBS Dongle ZIgbee from Aeotec manual
Zi-Stick UBS Dongle ZIgbee from  Aeotec manualZi-Stick UBS Dongle ZIgbee from  Aeotec manual
Zi-Stick UBS Dongle ZIgbee from Aeotec manualDomotica daVinci
 
From Challenger to Champion: How SpiraPlan Outperforms JIRA+Plugins
From Challenger to Champion: How SpiraPlan Outperforms JIRA+PluginsFrom Challenger to Champion: How SpiraPlan Outperforms JIRA+Plugins
From Challenger to Champion: How SpiraPlan Outperforms JIRA+PluginsInflectra
 
Power of 2024 - WITforce Odyssey.pptx.pdf
Power of 2024 - WITforce Odyssey.pptx.pdfPower of 2024 - WITforce Odyssey.pptx.pdf
Power of 2024 - WITforce Odyssey.pptx.pdfkatalinjordans1
 
Enhancing SaaS Performance: A Hands-on Workshop for Partners
Enhancing SaaS Performance: A Hands-on Workshop for PartnersEnhancing SaaS Performance: A Hands-on Workshop for Partners
Enhancing SaaS Performance: A Hands-on Workshop for PartnersThousandEyes
 
"AIRe - AI Reliability Engineering", Denys Vasyliev
"AIRe - AI Reliability Engineering", Denys Vasyliev"AIRe - AI Reliability Engineering", Denys Vasyliev
"AIRe - AI Reliability Engineering", Denys VasylievFwdays
 
"Journey of Aspiration: Unveiling the Path to Becoming a Technocrat and Entre...
"Journey of Aspiration: Unveiling the Path to Becoming a Technocrat and Entre..."Journey of Aspiration: Unveiling the Path to Becoming a Technocrat and Entre...
"Journey of Aspiration: Unveiling the Path to Becoming a Technocrat and Entre...shaiyuvasv
 
Leveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docx
Leveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docxLeveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docx
Leveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docxVotarikari Shravan
 
My self introduction to know others abut me
My self  introduction to know others abut meMy self  introduction to know others abut me
My self introduction to know others abut meManoj Prabakar B
 
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdfIntroducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdfSafe Software
 
H3 Platform CXL Solution_Memory Fabric Forum.pptx
H3 Platform CXL Solution_Memory Fabric Forum.pptxH3 Platform CXL Solution_Memory Fabric Forum.pptx
H3 Platform CXL Solution_Memory Fabric Forum.pptxMemory Fabric Forum
 
AWS reInvent 2023 recaps from Chicago AWS user group
AWS reInvent 2023 recaps from Chicago AWS user groupAWS reInvent 2023 recaps from Chicago AWS user group
AWS reInvent 2023 recaps from Chicago AWS user groupAWS Chicago
 
Breaking Barriers & Leveraging the Latest Developments in AI Technology
Breaking Barriers & Leveraging the Latest Developments in AI TechnologyBreaking Barriers & Leveraging the Latest Developments in AI Technology
Breaking Barriers & Leveraging the Latest Developments in AI TechnologySafe Software
 
The Future of Product, by Founder & CEO, Product School
The Future of Product, by Founder & CEO, Product SchoolThe Future of Product, by Founder & CEO, Product School
The Future of Product, by Founder & CEO, Product SchoolProduct School
 
Building Products That Think- Bhaskaran Srinivasan & Ashish Gupta
Building Products That Think- Bhaskaran Srinivasan & Ashish GuptaBuilding Products That Think- Bhaskaran Srinivasan & Ashish Gupta
Building Products That Think- Bhaskaran Srinivasan & Ashish GuptaISPMAIndia
 

Recently uploaded (20)

LLMs, LMMs, their Improvement Suggestions and the Path towards AGI.pdf
LLMs, LMMs, their Improvement Suggestions and the Path towards AGI.pdfLLMs, LMMs, their Improvement Suggestions and the Path towards AGI.pdf
LLMs, LMMs, their Improvement Suggestions and the Path towards AGI.pdf
 
Bringing nullability into existing code - dammit is not the answer.pptx
Bringing nullability into existing code - dammit is not the answer.pptxBringing nullability into existing code - dammit is not the answer.pptx
Bringing nullability into existing code - dammit is not the answer.pptx
 
Q1 Memory Fabric Forum: Intel Enabling Compute Express Link (CXL)
Q1 Memory Fabric Forum: Intel Enabling Compute Express Link (CXL)Q1 Memory Fabric Forum: Intel Enabling Compute Express Link (CXL)
Q1 Memory Fabric Forum: Intel Enabling Compute Express Link (CXL)
 
Introduction to Multimodal LLMs with LLaVA
Introduction to Multimodal LLMs with LLaVAIntroduction to Multimodal LLMs with LLaVA
Introduction to Multimodal LLMs with LLaVA
 
Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24
Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24
Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24
 
Q1 Memory Fabric Forum: XConn CXL Switches for AI
Q1 Memory Fabric Forum: XConn CXL Switches for AIQ1 Memory Fabric Forum: XConn CXL Switches for AI
Q1 Memory Fabric Forum: XConn CXL Switches for AI
 
Zi-Stick UBS Dongle ZIgbee from Aeotec manual
Zi-Stick UBS Dongle ZIgbee from  Aeotec manualZi-Stick UBS Dongle ZIgbee from  Aeotec manual
Zi-Stick UBS Dongle ZIgbee from Aeotec manual
 
From Challenger to Champion: How SpiraPlan Outperforms JIRA+Plugins
From Challenger to Champion: How SpiraPlan Outperforms JIRA+PluginsFrom Challenger to Champion: How SpiraPlan Outperforms JIRA+Plugins
From Challenger to Champion: How SpiraPlan Outperforms JIRA+Plugins
 
Power of 2024 - WITforce Odyssey.pptx.pdf
Power of 2024 - WITforce Odyssey.pptx.pdfPower of 2024 - WITforce Odyssey.pptx.pdf
Power of 2024 - WITforce Odyssey.pptx.pdf
 
Enhancing SaaS Performance: A Hands-on Workshop for Partners
Enhancing SaaS Performance: A Hands-on Workshop for PartnersEnhancing SaaS Performance: A Hands-on Workshop for Partners
Enhancing SaaS Performance: A Hands-on Workshop for Partners
 
"AIRe - AI Reliability Engineering", Denys Vasyliev
"AIRe - AI Reliability Engineering", Denys Vasyliev"AIRe - AI Reliability Engineering", Denys Vasyliev
"AIRe - AI Reliability Engineering", Denys Vasyliev
 
"Journey of Aspiration: Unveiling the Path to Becoming a Technocrat and Entre...
"Journey of Aspiration: Unveiling the Path to Becoming a Technocrat and Entre..."Journey of Aspiration: Unveiling the Path to Becoming a Technocrat and Entre...
"Journey of Aspiration: Unveiling the Path to Becoming a Technocrat and Entre...
 
Leveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docx
Leveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docxLeveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docx
Leveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docx
 
My self introduction to know others abut me
My self  introduction to know others abut meMy self  introduction to know others abut me
My self introduction to know others abut me
 
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdfIntroducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
 
H3 Platform CXL Solution_Memory Fabric Forum.pptx
H3 Platform CXL Solution_Memory Fabric Forum.pptxH3 Platform CXL Solution_Memory Fabric Forum.pptx
H3 Platform CXL Solution_Memory Fabric Forum.pptx
 
AWS reInvent 2023 recaps from Chicago AWS user group
AWS reInvent 2023 recaps from Chicago AWS user groupAWS reInvent 2023 recaps from Chicago AWS user group
AWS reInvent 2023 recaps from Chicago AWS user group
 
Breaking Barriers & Leveraging the Latest Developments in AI Technology
Breaking Barriers & Leveraging the Latest Developments in AI TechnologyBreaking Barriers & Leveraging the Latest Developments in AI Technology
Breaking Barriers & Leveraging the Latest Developments in AI Technology
 
The Future of Product, by Founder & CEO, Product School
The Future of Product, by Founder & CEO, Product SchoolThe Future of Product, by Founder & CEO, Product School
The Future of Product, by Founder & CEO, Product School
 
Building Products That Think- Bhaskaran Srinivasan & Ashish Gupta
Building Products That Think- Bhaskaran Srinivasan & Ashish GuptaBuilding Products That Think- Bhaskaran Srinivasan & Ashish Gupta
Building Products That Think- Bhaskaran Srinivasan & Ashish Gupta
 

Why Did You Cover That Song?: Modeling N-th Order Derivative Creation with Content Popularity

  • 1. Why Did You Cover That Song?: Modeling N-th Order Derivative Creation with Content Popularity Kosetsu Tsukuda, Masahiro Hamasaki, Masataka Goto National Institute of Advanced Industrial Science and Technology (AIST) Estimate Factors That Trigger N-th Order Derivative Creation Contributions Modeled n-th order derivative creation as a function of original work attractiveness, original work popularity, and derivative work popularity. Quantitatively evaluated our model using music content dataset and showed the model adopting all three factors achieved the best result. Qualitatively evaluated our model in terms of category characteristics, temporal development of factors, and creator characteristics. Sing Dance Play Oatt 14.6 17.3 42.5 Opop 40.0 21.7 40.0 Dpop 45.4 61.0 17.5 0 20 40 60 80 100 120 Apr-10 Oct-10 Apr-11 Oct-11 Apr-12 Oct-12 0 5 10 15 20 25 Nov-10 May-11 Nov-11 May-12 Nov-12 0 5 10 15 20 25 Jul-10 Jan-11 Jul-11 Jan-12 Jul-12 Jan-132010/4 2010/10 2011/4 2011/10 2012/4 2012/10 2010/11 2011/5 2011/11 2012/5 2012/11 2010/7 2011/1 2011/7 2012/1 2012/7 2013/1 Result 1: category characteristics Result 2: temporal development of factors Result 3: creator characteristics : creator Factor 1 Factor 2 Factor 3 Original work’s attractiveness (Oatt) Original work’s popularity (Opop) Derivative work’s popularity (Dpop) Original song I cover this song because I like the melody! 1 Hatsune Miku Senbon Zakura sm15630734 2 GUMI Yakusoku no tane sm15622476 3 GUMI Dystopia・Zipangu sm15603633 Original song rankingIf I cover this popular original song, my cover video might also become popular! 1 2 3 Gurutamin Senbon Zakura sm16011082 Shamuon/Amatsuki Panda Hero sm16017797 Cover song ranking Mitani Nana Senbon Zakura sm16013169 Other derivatives of this work are popular, so I would also like to create one! 0 T Rate Rate at which creator posts a derivative work at time : - is the original work’s attractiveness, - is the probability that is influenced by Oatt, - assumed to be constant in time. 0 T Rate Rate at which creator posts a derivative work at time : - is the rank of the original work in the ranking, - is the influence of original work’s popularity, - is the probability that is influenced by Opop. , , , Rate at which creator posts a derivative work at time : - is the rank of the derivative work in the ranking, - is the influence of derivative work’s popularity, - is the probability that is influenced by Dpop. 0 TRate , , , 0 Marginalized joint distribution of and , !|#, $, %, &, ', ( * , !|#, $, +, ,, -, ., % +|', ( ,|', ( -|', ( .|& /+/,/-/. Sample 012 in the E-step of a stochastic EM procedure 3| , !∖ , #, $, %, &, ', ( ∝ , !∖ , 3|#, $, %, &, ', ( ∖ , !∖ |#, $, %, &, ', ( : set of derivative work posting events of all original works; !: set of latent variables of all derivative works of all original works; Assume a Gamma prior for , , and , and a Dirichlet prior for 6 . 1 2 3 4 5 6 7 Sing: creators tend to follow fads and put a high priority on content popularity. Dance: the ratio of Dpop is high because many creators imitate the choreography proposed in a derivative work. Play: creators play their favorite original songs without being affected by fads. #ofderivativeworks Derivative works of an original song in the “sing” category. Derivative works of an original song in the “dance” category. Derivative works of an original song in the “play” category. For a creator in circle A, recommend original works similar to the original works he/she used in the past. For a creator in circle B, recommend original works because he/she can compose original choreography. For a creator in circle C, recommend popular content in the derivative work ranking. These days amateur creators who used to be just consumers can also easily create content (a.k.a. user generated content). Since not all amateur creators can create new content from scratch, it is popular to use existing original (1st generation) work as the basis for new content: such content is called derivative work. Niconico Thingiverse sm15630734 thing:398548 sm17483164 sm16309076sm18407945 thing:1541729thing:1481404 Sing Dance Play Resize drawers Add partitions In this kind of derivative work creation activity, a creator influenced by 2nd gen content can create 3rd gen content. Similarly, Nth gen content can be transformed into N+1th gen content. Such derivative work creation activity is called N-th order derivative creation. sm15630734 sm17703100 sm16066609 sm16094094 sm24854396 sm16394955 … … … … … … … 1st generation 2nd generation 3rd generation Original song Original accessory case (%) Oatt Opop Dpop Oatt Sing A Opop Dpop B Oatt Opop Dpop Dance C Oatt Opop Dpop Play