SlideShare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
SlideShare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Successfully reported this slideshow.
Activate your 30 day free trial to unlock unlimited reading.
State of the Domain-Adaptive Machine Translation by Intento (November 2018)
In this report, we have evaluated 6 modern domain-adaptive NMT engines on Biomedical dataset (English to German). ModernMT, Globalese, Google AutoML, IBM Custom NMT, Microsoft Custom Translate, and Tilde. We explored how they compare by performance (using reference-based scores, linguistic quality analysis and automatic quality estimation), total cost of ownership, dataset size requirements, training time, data protection policy and how to start using this advanced technology.
In this report, we have evaluated 6 modern domain-adaptive NMT engines on Biomedical dataset (English to German). ModernMT, Globalese, Google AutoML, IBM Custom NMT, Microsoft Custom Translate, and Tilde. We explored how they compare by performance (using reference-based scores, linguistic quality analysis and automatic quality estimation), total cost of ownership, dataset size requirements, training time, data protection policy and how to start using this advanced technology.
60.
by Intento (https://inten.to)
November 2018
Konstantin Savenkov
ks@inten.to
2150 Shattuck Ave
Berkeley CA 94705
60
STATE OF THE
DOMAIN-ADAPTIVE
MACHINE TRANSLATION