Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Sustainability of tall buildings: structural design and intelligent technologies

Presentation at the Department of Structural and Geotechnical Engineering of the Sapienza University of Rome.

  • Login to see the comments

Sustainability of tall buildings: structural design and intelligent technologies

  1. 1. Sustainability of tall buildings: structural design and intelligent technologies Konstantinos Gkoumas Dipartimento di Ingegneria Strutturale e Geotecnica July 11 2014 Dipartimento di Ingegneria Strutturale e Geotecnica Faculty of Architecture (Room11B), Via Antonio Gramsci 53, Rome
  2. 2. Konstantinos Gkoumas 11/07/2014 Sustainability of tall buildings: structural design and intelligent technologies Page 2 Personal profile Appointments 2011-present Research Fellow (PostDoc), Department of Structural and Geotechnical Engineering - Sapienza University of Rome. Research on dependability and energy harvesting for structures and infrastructures. 2009-’10 Postdoctoral Fellow (German Academic Exchange Service), Institut für Numerische und Angewandte Mathematik, Universität Göttingen, Germany. 2005-’08 Professional Engineer (part-time) at Co.Re. Ingegneria Srl., Rome. 2004-’07 PhD Student, Department of Hydraulics, Transportation and Roads - Sapienza University of Rome.
  3. 3. Sustainability of tall buildings: structural design and intelligent technologies Page 3 Sustainability Overview SUSTAINABILITY SOCIAL ENVIRONMENTAL ECONOMIC SUSTAINABLE DEVELOPMENT: “Development that meets the needs of the present without compromising the ability of future generations to meet their own needs.” (Brundtland Commission, 1987) Konstantinos Gkoumas 11/07/2014
  4. 4. Steel Material • 40% of resources from recycling • Manufacturing process with controlled environmental impact • Material durability • High recycling rate Construction Phase • prefabrication/ offsite manufacture Design and Service Life • Weight reduction of structure • Creation of versatile spaces • Longevity and robustness of steel components • Simple incorporation of renewable energy generation systems End of Life • Easy dismantling • Reusability/Reciclability Source: Foster + Partners Hearst Tower USA, 2000 - 2006 Sustainability of tall buildings: structural design and intelligent technologies Page 4 SUSTAINABILITY IN STRUCTURES Material Used Resource Efficient Site Planning Non Pollution Energy Efficiency Structural Form Sustainability Use of steel and structural form Konstantinos Gkoumas 11/07/2014
  5. 5. Sustainability of tall buildings: structural design and intelligent technologies Page 5 SUSTAINABILITY IN STRUCTURES Material Used Resource Efficient Site Planning Non Pollution Energy Efficiency Structural Form Sustainability Building automation and energy harvesting Konstantinos Gkoumas 11/07/2014
  6. 6. Sustainability of tall buildings: structural design and intelligent technologies Page 6 SUSTAINABILITY IN STRUCTURES Material Used Resource Efficient Site Planning Non Pollution Energy Efficiency Structural Form Sustainability Diagrid, building automation and energy harvesting Diagrid: double façade - chimney effect Konstantinos Gkoumas 11/07/2014
  7. 7. Sustainability of tall buildings: structural design and intelligent technologies Page 7 Sustainability Tall buildings Ali, M. M., Moon, K. S. (2007). Structural Development in Tall Buildings: Current Trends and Future Prospects. Architectural Science Review, Vol. 50, pp. 205-223. Interior structures Konstantinos Gkoumas 11/07/2014
  8. 8. Sustainability of tall buildings: structural design and intelligent technologies Page 8 Sustainability Tall buildings Ali, M. M., Moon, K. S. (2007). Structural Development in Tall Buildings: Current Trends and Future Prospects. Architectural Science Review, Vol. 50, pp. 205-223. Interior structuresExterior structures Konstantinos Gkoumas 11/07/2014
  9. 9. Sustainability of tall buildings: structural design and intelligent technologies Page 9 Diagrid structure Diagrid module Mele, E., Toreno, M., Brandonisio, G. and Del Luca, A. (2014). Diagrid structures for tall buildings: case studies and design considerations. The Structural Design of Tall and Special Buildings. Wiley Online Library, Vol. 23, No. 2, pp. 124-145. effect of gravity load effect of overturning moment effect of shear force Konstantinos Gkoumas 11/07/2014
  10. 10. Sustainability of tall buildings: structural design and intelligent technologies Page 10 Diagrid structure Initial configuration and diagrid schemes Outrigger Structure Diagrid Structures 42° 60° 75° 160m 36 m Konstantinos Gkoumas 11/07/2014
  11. 11. Sustainability of tall buildings: structural design and intelligent technologies Page 11 Original Structure: Outrigger Improved Structure: Diagrid Perimetral Structure Internal Structure Diagrid structure Structural configuration Konstantinos Gkoumas 11/07/2014
  12. 12. Sustainability of tall buildings: structural design and intelligent technologies Page 12 SLS Dead Gk Tamp Qk Qn W+X W-X W+Y W-Y COMB5 1 1 1 0,7 0,5 1 - - - COMB6 1 1 1 0,7 0,5 - 1 - - COMB7 1 1 1 0,7 0,5 - - 1 - COMB8 1 1 1 0,7 0,5 - - - 1 ULS Dead Gk Tamp Qk Qn W+X W-X W+Y W-Y COMB5 1,3 1,3 1,3 1,05 0,75 1,5 - - - COMB6 1,3 1,3 1,3 1,05 0,75 - 1,5 - - COMB7 1,3 1,3 1,3 1,05 0,75 - - 1,5 - COMB8 1,3 1,3 1,3 1,05 0,75 - - - 1,5 Acronym Description Color Outrigger Outrigger Structure Diagrid 42° Diagrid Structure with inclination of diagonal members of 42° Diagrid 60° Diagrid Structure with inclination of diagonal members of 60° Diagrid 75° Diagrid Structure with inclination of diagonal members of 75° Outrigger 42° 60° 75° P (ton) 8052 6523 5931 5389 Saving (%) - 19 26 33 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 P(ton) Weight Diagrid structure Analyses and comparisons Konstantinos Gkoumas 11/07/2014
  13. 13. Sustainability of tall buildings: structural design and intelligent technologies Page 13 Diagrid structure Modal analysis T1 T2 T3 T4 T5 T6 Outrigger 3.7 3.6 2.5 1.2 1.1 0.8 Diagrid 42° 3.1 3.1 1.7 1.0 1.0 0.8 Diagrid 60° 3.3 3.3 1.9 1.0 1.0 0.9 Diagrid 75° 3.7 3.6 2.8 1.3 1.2 1.2 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 T(s) First six periods Traslational in Y direction Traslational in X direction Rotational around Z axis Traslational in Y direction Traslational in X direction Rotational around Z axis Konstantinos Gkoumas 11/07/2014
  14. 14. Sustainability of tall buildings: structural design and intelligent technologies Page 14 Diagrid structure SLS - load combinations SLS Dead Gk Tamp Qk Qn W+X W-X W+Y W-Y COMB5 1 1 1 0,7 0,5 1 - - - COMB6 1 1 1 0,7 0,5 - 1 - - COMB7 1 1 1 0,7 0,5 - - 1 - COMB8 1 1 1 0,7 0,5 - - - 1 HORIZONTAL DISPLACEMENTS COMB Outrigger Diagrid42° Diagrid60° Diagrid75° Acronym Description Color Outrigger Outrigger Structure Diagrid 42° Diagrid Structure with inclination of diagonal members of 42° Diagrid 60° Diagrid Structure with inclination of diagonal members of 60° Diagrid 75° Diagrid Structure with inclination of diagonal members of 75° Konstantinos Gkoumas 11/07/2014
  15. 15. Sustainability of tall buildings: structural design and intelligent technologies Page 15 Diagrid structure Horizontal displacements 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 16 32 48 64 80 96 112 128 144 160 U1 (m) Z(m) Diagrid 42° Diagrid 60° Outrigger Diagrid 75° SLS limit Outrigger Diagrid42° Diagrid60° Diagrid75° Konstantinos Gkoumas 11/07/2014
  16. 16. Sustainability of tall buildings: structural design and intelligent technologies Page 16 Diagrid structure ULS - load combinations, pushover Outrigger Diagrid42° Diagrid60° Diagrid75° Acronym Description Color Outrigger Outrigger Structure Diagrid 42° Diagrid Structure with inclination of diagonal members of 42° Diagrid 60° Diagrid Structure with inclination of diagonal members of 60° Diagrid 75° Diagrid Structure with inclination of diagonal members of 75° ULS Dead Gk Tamp Qk Qn W+X W-X W+Y W-Y DEAD 1 - - - - - - - - VERT 1 1 1 - - - - - - +STATIC PUSHOVER FORCES PUSHOVER DEAD VERT Konstantinos Gkoumas 11/07/2014
  17. 17. Sustainability of tall buildings: structural design and intelligent technologies Page 17 Diagrid structure COMB 5 U.L.S. DIAGRID 42° DIAGRID 60° DIAGRID 75° Diagrid 42° Interior Columns 3% 97% Shear Interior Columns Diagrid 11% 89% Normal Interior Columns Diagrid 2% 97% 1% Shear Interior Columns Diagrid/ Edge Columns 11% 45% 44% Normal Interior Columns Diagrid/ Edge Columns 5% 95% Shear Interior Columns Diagrid 7% 93% Normal Interior Columns Diagrid Diagrid 60° Diagrid 75° Interior Columns Interior Columns Konstantinos Gkoumas 11/07/2014
  18. 18. Sustainability of tall buildings: structural design and intelligent technologies Page 18 Diagrid structure Diagrid 60°: Pushover (YZ Sections) 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 F(kN) U1 (m) Pushover Step25 Step28 Step37 Step44 Step51 Step67 Step 67Step 51Step 44Step 37Step 25 Konstantinos Gkoumas 11/07/2014
  19. 19. Sustainability of tall buildings: structural design and intelligent technologies Page 19 Diagrid structure Diagrid 60°: Pushover+Vert (YZ Sections) 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 F(kN) U1 (m) Pushover+Vert Step11 Step16 Step39 Step47 Step55 Step 47 Step 55Step 39Step 11 VERT Konstantinos Gkoumas 11/07/2014
  20. 20. Sustainability of tall buildings: structural design and intelligent technologies Page 20 Diagrid structure Comparison of capacity curves 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 F(kN) U1 (m) Pushover 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 U1 (m) Pushover+Vert Outrigger Diagrid 42° Diagrid 60° Diagrid 75° 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 U1 (m) Pushover+Dead DEAD VERT Konstantinos Gkoumas 11/07/2014
  21. 21. Sustainability of tall buildings: structural design and intelligent technologies Page 21 Diagrid structure Definition of significant properties R=Fmax (Strength) K=Fy/Dy (Stiffness) m=Dmax/Dy (Ductility) Konstantinos Gkoumas 11/07/2014
  22. 22. Sustainability of tall buildings: structural design and intelligent technologies Page 22 Diagrid structure Comparison of significant properties Outrigger Diagrid 42° Diagrid 60° Diagrid 75° Pushover+Vert Pushover+Vert Pushover+Vert Pushover+Vert Strength (R) – kN 94775 110185 104972 97131 Stiffness (K) – kN/m 77143 80615 71306 60897 Ductility (m) 1,535 3,587 5,681 2,564 Weight (P) - Ton 8052 6523 5931 5389 Weighted average (W.A.) of significant properties Outrigger Diagrid 42° Diagrid 60° Diagrid 75° Pushover+Vert Pushover+Vert Pushover+Vert Pushover+Vert Strength (R) – kN 94775 110185 104972 97131 Stiffness (K) – kN/m 77143 80615 71306 60897 Ductility (m) 1,535 3,587 5,681 2,564 Weight (P) - Ton 8052 6523 5931 5389 W.A. 4,20 5,97 7,25 5,08 Konstantinos Gkoumas 11/07/2014
  23. 23. Sustainability of tall buildings: structural design and intelligent technologies Page 23 Diagrid structure Comparison of Mechanical Properties 0 0.5 1 1.5 2 2.5 3 3.5 4 R/R0 K/K0 m/m0 1,2 ((P0- P)/P0+1) Pushover+Vert Outrigger Diagrid 42° Diagrid 60° Diagrid 75° Konstantinos Gkoumas 11/07/2014
  24. 24. Sustainability of tall buildings: structural design and intelligent technologies Page 24 Diagrid structure Diagrid 60°: Robustness checks D1,L1 D1,L2 D2,L1 D2,L2 D3,L1 D3,L2 0 20000 40000 60000 80000 100000 120000 140000 0 0.5 1 1.5 2 2.5 3 F(kN) U1 (m) Pushover D1,L1 D1,L2 D2,L1 D2,L2 D3,L1 D3,L2 INTATTA Konstantinos Gkoumas 11/07/2014
  25. 25. Sustainability of tall buildings: structural design and intelligent technologies Page 25 Diagrid Future research – apply simplified robustness indexes (1) Olmati, P., Gkoumas, K., Brando, F. and Cao, L., (2013). Consequence-based robustness assessment of a steel truss bridge. Steel and Composite Structures, Vol. (14), No (4), pp. 379-395. Konstantinos Gkoumas 11/07/2014
  26. 26. Sustainability of tall buildings: structural design and intelligent technologies Page 26 Diagrid Future research – apply simplified robustness indexes (2) Kun λi un Eigenvalues Kdam λi dam Consequence factor Robustness index Nafday, A.M. (2011), “Consequence-based structural design approach for black swan events”, Structural Safety, Vol. 33, No. (1), pp. 108-114. Olmati, P., Gkoumas, K., Brando, F. and Cao, L., (2013). Consequence-based robustness assessment of a steel truss bridge. Steel and Composite Structures, Vol. (14), No (4), pp. 379-395. Konstantinos Gkoumas 11/07/2014
  27. 27. Sustainability of tall buildings: structural design and intelligent technologies Page 27 Diagrid Future research – apply simplified robustness indexes (3) d1 d2d3 d4 d5 d7 d6 37 59 42 45 35 38 23 63 41 58 55 65 62 77 0 20 40 60 80 100 1 2 3 4 5 6 7 Robustness% Scenario Cf max Robustness 42 45 35 38 23 58 55 65 62 77 3 4 5 6 7 Scenario Cf max Robustness 83 87 88 53 60 86 64 17 13 12 47 40 14 36 0 20 40 60 80 100 1 2 3 4 5 6 7 Robustness% Scenario Cf max Robustness Damage scenario Damage scenario d3 d4 d5 d6 d7 d1 d2 d3 d4 d5 d6 d7 Pier 6Pier 7 North Pier 6 Konstantinos Gkoumas 11/07/2014
  28. 28. Sustainability of tall buildings: structural design and intelligent technologies Page 28 Energy harvesting Introduction Fonte: Konstantinos Gkoumas 11/07/2014
  29. 29. Sustainability of tall buildings: structural design and intelligent technologies Page 29 Energy Harvesting (EH) can be defined as the sum of all those processes that allow to capture the freely available energy in the environment and convert it in (electric) energy that can be used or stored. Resources Sun Water Wind Temperature differential Mechanical vibrations Acoustic waves Magnetic fields Extraction systems Magnetic Induction Electrostatic Piezoelectric Photovoltaic Thermal Energy Radiofrequency Radiant Energy Energy harvesting Sources Harvesting Conversion Use Storage Energy harvesting is the process of extracting energy from the environment or from a surrounding system and converting it to useable electrical energy. Konstantinos Gkoumas 11/07/2014
  30. 30. Sustainability of tall buildings: structural design and intelligent technologies Page 30 Image courtesy of enocean-alliance® http://www.enocean-alliance.org Energy sustainability BAS (Building Automation Systems) • EH devices are used for powering remote monitoring sensors (e.g. temperature sensors, air quality sensors), also those placed inside heating, ventilation, and air conditioning (HVAC) ducts. • These sensors are very important for the minimization of energy consumption in large buildings Konstantinos Gkoumas 11/07/2014
  31. 31. Sustainability of tall buildings: structural design and intelligent technologies Page 31 Energy sustainability BAS (Building Automation Systems) Currently: • Power is provided by batteries or EH devices based on thermal or RF methods • Sensors work intermittently (to consume less power ~ 100µW) An EH sensor based on piezoelectric material has several advantages being capable to provide up to 10-15 times more power than currently used devices leading to additional applications or longer operation time. Image courtesy of enocean-alliance® http://www.enocean-alliance.org Konstantinos Gkoumas 11/07/2014
  32. 32. Sustainability of tall buildings: structural design and intelligent technologies Page 32 Piezoelectric energy harvesting Design of a piezoelectric bender - issues Konstantinos Gkoumas 11/07/2014
  33. 33. Sustainability of tall buildings: structural design and intelligent technologies Page 33 Piezoelectric energy harvesting Piezoelectric bender with tip mass Konstantinos Gkoumas 11/07/2014
  34. 34. Sustainability of tall buildings: structural design and intelligent technologies Page 34 Piezoelectric bender Principal bibliography Weinstein, L. A., Cacan, M. R., So, P. M. and Wrigth, P. K. (2012). Vortex shedding induced energy harvesting from piezoelectric materials in heating, ventilation and air conditioning flows. Smart Materials and Structures. Vol. 21, 10pp. Wu, N., Wang, Q. and Xie, X. (2013). Wind energy harvesting with a piezoelectric harvester. Smart Materials and Structures, Vol. 22, No. 9. Konstantinos Gkoumas 11/07/2014
  35. 35. Sustainability of tall buildings: structural design and intelligent technologies Page 35 Piezoelectric energy harvesting The vortex shedding effect A body, immersed in a current flow, produces a wake made of vortices that periodically detach alternatively from the body itself with a frequency ns. AVOID THE DRAWBACK: By setting the aerodynamic fin to undergo in VS regime it is possible to obtain the maximum efficiency in terms of energy extraction CNR-DT 207/2008 Konstantinos Gkoumas 11/07/2014
  36. 36. Sustainability of tall buildings: structural design and intelligent technologies Page 36 Design of a bender made of a certain material with a piezoelectric patch, which can experiment the resonance (lock-in) with the external force deriving from the Vortex Shedding phenomenon. The lock-in conditions produce the highest level of power. Dimensions Materials Configurations Dimensions Added mass Design points Piezoelectric bender Parametric analyses Konstantinos Gkoumas 11/07/2014
  37. 37. Sustainability of tall buildings: structural design and intelligent technologies Page 37 Piezoelectric bender Parametric analyses LEAD ZIRCONATE TITANATE Density ρ 7800 kg/m3 Young Modulus E 6.6 x103 N/m2 Poisson ratio υ 0.2 Relative dielectric constant kT 3 1800 Permittivity ε 1.602 x10-8 F/m Piezoelectric constant d31 -190 x10-12 m/V (C/N) ELEMENTS DIMENSIONS VALUES (m) BENDER l 0.06÷0.2 m b 0.001÷0.08 m d 0.02÷0.05 m a 0.01 PIEZOELECTRIC PATCH l1 0.0286 b1 0.0017 d1 0.0127 ADDED MASS l2 variable b2 0.01 d2 d MATERIAL E (N/m2) ρ (kg/m3) Aluminum Lead Konstantinos Gkoumas 11/07/2014
  38. 38. Sustainability of tall buildings: structural design and intelligent technologies Page 38 Piezoelectric bender Voltage output for different bender lengths -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ΔV2(V) t (s) (x10-3) ΔV2 (Length) l=0.15 l=0.16 l=0.17 l=0.18 l=0.19 l=0.20 Konstantinos Gkoumas 11/07/2014
  39. 39. Sustainability of tall buildings: structural design and intelligent technologies Page 39 0 2 4 6 8 10 12 0.02 0.03 0.04 0.05 CriticalVelocity(m/s) d (m) Critical Velocity (Width) The Critical Velocity increases with the thickness and the width, it decreases with the length. 0 5 10 15 20 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 CriticalVelocity(m/s) b (m) Critical Velocity (Thickness) 0 10 20 30 40 50 60 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 CriticalVelocity(m/s) l (m) Critical Velocity (Length) Piezoelectric bender Parametric analyses Operational velocity range Konstantinos Gkoumas 11/07/2014
  40. 40. Sustainability of tall buildings: structural design and intelligent technologies Page 40 Piezoelectric bender Mass (material) parametric analyses – aluminum bender High frequencies High critical velocities Operational velocity range Konstantinos Gkoumas 11/07/2014
  41. 41. Sustainability of tall buildings: structural design and intelligent technologies Page 41 Piezoelectric bender Tip-mass parametric analyses 0.00 0.01 0.02 0.03 0.04 0.05 0.06 2 2.5 3 3.5 4 4.5 5 MassLegnth(m) Critical Velocity (m/s) Mass length (vcr) 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.15 0.16 0.17 0.18 0.19 0.2 Masslength(m) l (m) Mass Length (Bender Length) 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.003 0.0035 0.004 0.0045 0.005 0.0055 0.006 Masslength(m) b (m) Mass Length (Bender Thickness) vcr = 3,5 m/s vcr = 3,5 m/s vcr = 2-5 m/s Konstantinos Gkoumas 11/07/2014
  42. 42. Sustainability of tall buildings: structural design and intelligent technologies Page 42 FICTICIOUS MATERIAL Young Modulus E 3.45 x1010 N/m2 Density ρ 7000 kg/m3 Piezoelectric bender Power output Konstantinos Gkoumas 11/07/2014
  43. 43. Sustainability of tall buildings: structural design and intelligent technologies Page 43 Piezoelectric energy harvesting Future research (1) From: NSF Proposal 2013, MECHANICAL MODELS OF LOADS AND DEVICES FOR GREEN ENERGY HARVESTING AND SUSTAINABLE INFRASTRUCTURE SYSTEMS Paolo Bocchini (Lehigh University), Konstantinos Gkoumas and Francesco Petrini Air flow FAPED Flow Activated Piezo Electric Devices Konstantinos Gkoumas 11/07/2014
  44. 44. Sustainability of tall buildings: structural design and intelligent technologies Page 44 Piezoelectric energy harvesting Future research (2) SAPEB Squeezing Activated Piezo Electric Bearings F F SAPEB Kim, S-H, Ahn, J-H, Chung, H-M and Kang, H-W (2011). Analysis of piezoelectric effects on various loading conditions for energy harvesting in a bridge system, Sensors and Actuators A: Physical, Vol. 167, No (2), pp. 468-483. Ha, D-H, Kim, D, Choo, J.F. and Goo, N.S. (2011). Energy harvesting and monitoring using bridge bearing with built-in piezoelectric material. The 7th International Conference on Networked Computing (INC), pp. 129 – 132. From: NSF Proposal 2013, MECHANICAL MODELS OF LOADS AND DEVICES FOR GREEN ENERGY HARVESTING AND SUSTAINABLE INFRASTRUCTURE SYSTEMS Paolo Bocchini (Lehigh University), Konstantinos Gkoumas and Francesco Petrini Konstantinos Gkoumas 11/07/2014
  45. 45. Sustainability of tall buildings: structural design and intelligent technologies Page 45 Sustainability of tall buildings: structural design and intelligent technologies Thank you! Konstantinos Gkoumas 11/07/2014

×