Steel silo failure case study

3,167 views

Published on

This report is for real case study

Published in: Design
3 Comments
2 Likes
Statistics
Notes
No Downloads
Views
Total views
3,167
On SlideShare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
112
Comments
3
Likes
2
Embeds 0
No embeds

No notes for slide

Steel silo failure case study

  1. 1. Review Report Client Cement Company Unburned clinker steel silo   11/18/2011     11/18/2011  Eng.Amed Saeed Civil      0  Eng.Khaled Eid,Msc,PE Civil   Date  Written by   Reviewed by   Approved by   Version            This report is copyright to RHI written and upload with some modification to hide the client name for educational propose for any comments please email khaled_eid@yahoo.com       
  2. 2. 2            Contents 1  Introduction .......................................................................................................................................... 3 2  Unburned clinker silo ............................................................................................................................ 3  2.1  Received documents and drawings .............................................................................................. 4  2.2  Review methodology .................................................................................................................... 5 3  Analysis input data ................................................................................................................................ 5  3.1  Finite Element Program ................................................................................................................ 5  3.2  Temperature effect ....................................................................................................................... 6  3.3  Wind load ...................................................................................................................................... 6 4  Design  ................................................................................................................................................... 6  . 4.1.1  Silo wall ................................................................................................................................. 6  4.1.2  Silo bottom hopper ............................................................................................................... 7  4.1.3  Silo roof ................................................................................................................................. 7  4.1.4  Silo supporting concrete structure ....................................................................................... 7 5  Fabrication and erection ....................................................................................................................... 8 6  Summary and conclusion ...................................................................................................................... 9 7  Recommendation .................................................................................................................................. 9 References .................................................................................................................................................. 10 Appendix 1 ................................................................................................................................................. 11 Appendix 2 ................................................................................................................................................. 12 Appendix 3 ................................................................................................................................................. 13     
  3. 3. 3           1 Introduction Client Cement (CLIENT) plant  is located in Client, El‐karak Jordon 90 Km south Amman. The dry process plant has a  production of 5000 ton per day started commissioning in September 2010.   Mechanically designed by XXX, Germany referred  in this report as “the mechanical designer”.    Managed by the  consultant HOLTEC, India  referred in this report as “the consultant”.   Civil design engineer TEM, Turkey referred in this  report as the” designer or civil designer”.   The contractor is the MID CONTRACTING,  AMMAN referred in this report as” the  contractor”. At  the  request  of  Client  cement  from  RHI  to  review  the structural  design  and  construction  integrity  for  the unburned clinker silo RHI visited the site on 29th of November 2011and talked to  concerned  parties  then  inspected  the  silo,  it  was noticed the silo is empty and material is accumulated on the  concrete  platform  below  as  a  sign  of  emergency discharge. Stair access was covered with material in such it  is    during  initial  filling  operation  the  silo  bottom  deformed  as  shown  and  there  are  is  sign  of deformation at the supporting ring beam also there is a crushing in the bearing area at the silo support Refer to appendix 1 for photos. 2 Unburned clinker silo The under burnet silo is designed to store the rejected clinker so it may be recycled  by some ratio in the process again. Usually stored in silos either steel or concrete. In our case it is a steel silo with a designed capacity of 1500 ton based on clinker density of 1.3 ton/m3, the silo diameter is 10 meter and height of 16.0 meter with a flat  bottom hopper bottom diameter of 7.5 meter and height of 3.75 meter. The silo is supported at level 15.2 on four concrete beams supported in four  concrete columns.  
  4. 4. 4          2.1 Received documents and drawings These drawing were submitted by Client Cement Company as the latest general arrangement drawings. Fabrication details of under burner “XXX”                  841‐89‐756‐B A sheet 1 Fabrication details of under burner “XXX”                                         841‐89‐756‐B A sheet 2  Clinker transport and storage gernal arrangement     841‐27‐249‐U A  KCP‐15‐C‐001_05.dwg  ( 15‐UNBURNT CLINKER HOPPER)  FOUNDATION PLAN KCP‐15‐C‐002_01.dwg  ( 15‐UNBURNT CLINKER HOPPER)  +2.500 LEVEL FORMWORK PLAN KCP‐15‐C‐003_01.dwg  ( 15‐UNBURNT CLINKER HOPPER)  +5.900 LEVEL FORMWORK PLAN KCP‐15‐C‐004_02.dwg  ( 15‐UNBURNT CLINKER HOPPER)  +8.400 LEVEL FORMWORK PLAN KCP‐15‐C‐005_00.dwg  ( 15‐UNBURNT CLINKER HOPPER)  +15.200 LEVEL FORMWORK PLAN KCP‐15‐C‐006_01.dwg  ( 15‐UNBURNT CLINKER HOPPER)  COLUMN APPLICATION PLAN ‐ C1‐C2‐C3 KCP‐15‐C‐007_00.dwg  ( 15‐UNBURNT CLINKER HOPPER)  +2.500 LEVEL SLAB REINFORCEMENT                            PLAN KCP‐15‐C‐008_01.dwg  ( 15‐UNBURNT CLINKER HOPPER)  +5.900 LEVEL SLAB REINFORCEMENT                  PLAN KCP‐15‐C‐009_02.dwg  ( 15‐UNBURNT CLINKER HOPPER)  +8.400 LEVEL SLAB REINFORCEMENT                  PLAN KCP‐15‐C‐010_00.dwg  ( 15‐UNBURNT CLINKER HOPPER)  +15.200 LEVEL SLAB REINFORCEMENT                  PLAN KCP‐15‐C‐011_00.dwg  ( 15‐UNBURNT CLINKER HOPPER)  REBAR DETAILS OF FOUNDATIONS KCP‐15‐C‐011_01.dwg  ( 15‐UNBURNT CLINKER HOPPER)  REBAR DETAILS OF FOUNDATIONS KCP‐15‐C‐012_00.dwg   ( 15‐UNBURNT CLINKER HOPPER)  BEAM DETAILS ‐ B001‐B002‐B003‐B004‐ B005‐B006 B101‐B102‐B103‐B104‐ B105‐B106‐B107B108‐B109‐B110‐B204 KCP‐15‐C‐013_03.dwg   ( 15‐UNBURNT CLINKER HOPPER)  BEAM DETAILS ‐B111‐B201‐B202‐B203‐ B205‐B206 B207‐B208‐B209‐B210‐ B211‐B212‐B213‐B214‐B215‐B216‐B301 
  5. 5. 5          KCP‐15‐C‐014_02.dwg   ( 15‐UNBURNT CLINKER HOPPER)  STAIR PLAN AND DETAILS   2.2 Review methodology Despite of  RHI requested several times from CLIENT to provide the original design calculation but we did not get anything till now which raise a question if this structure was already designed by XXX or not? And how it was approved if there is no supporting design document?  Thus review methodology was applied by making an independent set of check analysis and calculations, according to material and plate thickness provided in the drawings.  The following are the codes and standards used in review   BS EN 1991‐4:2006 Actions on structures Silos and  tanks.   Loads combinations to the ASCE 7‐05  “minimum design  loads of structure”   Wind, snow and thermal loads are according to the  Jordanian loading code.   Design of steel members as per the American code  AISC‐ASD.   Mechanical loads applied exactly as provided by XXX  only wind loads are calculated. 3 Analysis input data 3.1 Finite Element Program There is no program yet to predict the material flow so in this study the silo buckling behavior was investigated with linear buckling analysis of SAP 2000 (Nonlinear v.14). SAP 2000 is a general purpose structural finite element analysis program. All circumferential and longitudinal stiffeners were modeled as frame elements. 
  6. 6. 6          3.2 Temperature effect The outer walls of the silo can expand during day and contract at night as the temperature drops , if there is no discharge taking place and material inside the silo is free flowing , it will settle as the silo expands because it cannot pushed back up when the silo wall contract . A temperature difference of 100 degree is considered due to the average effect of hot clinker when entering the silo. 3.3 Wind load  Circular bins, on the other hand, are very sensitive to wind loading because of the varying pressure/suction distribution of the wind loading around the circumference, and the lack of stiffness of the shell in resisting this loading. The required thickness of plate in the upper strakes of a circular bin is often determined by the wind loading. Wind buckling is characterized by the formation of one or more buckles on the windward face of the shell. Wind also produces an overturning moment on a tall bin, which induces a vertical compressive stress in the leeward face; this reached a maximum at the base of the bin, where the shell needs to be checked against buckling 4 Design As stated before no information about how this silo is designed to which code, did any changed in either height or bottom during erection ? no historical information available.   So this report will not be able to judge the design calculation but will only refer to the as built on site  and XXX drawing 841‐89‐756BA rev 2. 4.1.1 Silo wall Silo material does not act like a fluid; dry materials have frictional or cohesive resistance and tend to form domes with the silo wall that prevents it from falling freely downward. The lateral pressure on the silo shell from the dry materials is of different character than the lateral pressure on the retaining wall from soil at the back of the wall.  
  7. 7. 7           The designer applies a constant 10mm thickness for the wall and the bottom hopper; practically it is too small when considering allowance for rust and aberration for such large size silos. The critical buckling stress in the wall is governing the thickness required to carry the vertical compression load. It was found by analysis that the silo wall is only safe at the top third of the silo but in all other location is unsafe stress and buckling.  4.1.2 Silo bottom hopper The bottom hopper is designed as  10mm with a diameter of 7.5 meter stiffened by angle 75x10, it is found to be away unsafe as well. Refer to appendix 3 for details. 4.1.3 Silo roof The top roof with plate 10mm is found to be sufficient to support the applied live loads but the supporting steel  beams are unsafe (the beam spans for seven meters and supporting a width of one and half meter and assigned as UPN 200). 4.1.4 Silo supporting concrete structure The silo is supported in four bearing points on a 200cmx90cm concrete beams by visual inspection these beams suffering from diagonal cracks and concrete crushing  at one of the bearing points, further more concrete beams at level 8.4 suffering vertical cracks in both sides . It is also visually noticed in some location some concrete honeycombs creating a voids in the concrete beams and left without curing that is also raise a question about the concrete quality. RHI requested the concrete structure drawings and run and in depended checking for  the  whole structure. IT   was found that the supporting beams to be unsafe in shear with evidence of the shear crack, while for level 8.4 all beams are safe according to the design so the cracks may be as a reason of the falling material on the apron feeder when the silo bottom deforms.  Refer to appendix 2 for supporting structure checking. 
  8. 8. 8          5 Fabrication and erection Although appropriate sizes as per the design drawing are used but many fabrication and erection errors are spotted during inspection giving a bad impression about the quality control.  1. The bottom stiffeners are tack welded and not in full contact with the silo body.  2. The stiffeners are not continues with a gap at mid span where a beigest load.  3. The bottom stiffeners are not connected to the vertical ones thus they are not transferring the  load to the supports.   
  9. 9. 9          6 Summary and conclusion Our study concludes that the steel silo is under designed suffering many design issues  These issues are summarized as follows    The supporting  concrete beam is just  safe in bending but  unsafe in shear by 18% this explains the 45 degrees cracks .   Due to the bottom excessive deformation it damaged the apron feeder with a material falls  adding unexpected loaded on the concrete beams at level 8.4 creating cracks in these beams.    The party most responsible for the bottom collapse was the designer because all items are  unsafe the walls, the flat bottom, the stiffening, the ring beam and the roof, not a single item in  this silo is found to be safe.   The erector  and fabricator work was away from standard leading to decrease more the capacity  however this will not alone lead to the collapse    There is no sign for any excessive usage, lack of maintenance or operational misuse. 7 Recommendation We propose the following actions as part of the rectification   We tried many repair alternative but none of them solve all issues so we recommend  replacing the silo as the best option.   It is advisable to support the silo on eight points to distribute the concentrated load by  adding steel beams at 45degree.   The supporting beams will need to be strengthened against shear.   Cracked beams in level 8.4 should be strengthened.   Concrete building should be inspected for any construction deficiencies and repaired before  filling the silo.   Concrete core test may be required to evaluate the constructed concrete quality and if  possible to check the existing steel bars and stirrups at random location.   No access to the silo support to allow for inspection at bearings it is recommended to add ladder from level 8.4 to 15.2 
  10. 10. 10          References   1. American Welding Society (AWS), 550 NW 42d Avenue, Miami, FL 22126.  2. Rubin M. Zallen, P.E., ”Collapse of steel silo”  3. American Iron and Steel Institute (AISI), 1101 17th St., NW, Suite 1300, Washington,  4. Bahaa Machaly., ”Structural systems for wind and earthquake loads”.  5. The Jordanian loading code “Arabic  original copy” Amman 2006.  6. ACI standards 313‐91, “Standard practice fordesing and construction of concrete silos and  stacking for storing granular materials”    
  11. 11. 11           Appendix 1 Site Photos 
  12. 12. 12           Appendix 2 Concrete building review Not included in this educational copy
  13. 13. 13                     Appendix 3 Analysis and design checking for silo Not included in this education copy          

×