Successfully reported this slideshow.
Upcoming SlideShare
×

# SLAMの概要と画像を用いた3Dモデリングの基礎

6,953 views

Published on

Published in: Technology
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

### SLAMの概要と画像を用いた3Dモデリングの基礎

1. 1. 1@2 A / 807 5 / 1 3
2. 2. 1@2 A / 807 5 /
3. 3. 1@2 A / 807 5 / 2 3 • 0 Y 3 • Y 2 3 • ) • ) P • - 2 3 U • 2 ( 1 P 3 2 • 210 C D1 C A 数カ月後 シーンの変化 復旧・復興の過程 １年目 ２年目 年目 ) 6 I A5 M2 3 8
4. 4. 1@2 A / 807 5 / A 4 Deep Matching ! Outlier Rejection 5 Point Algorithm !′ DeepFlow #\$# #′ DOF-CDN #% - s s R RB I FR L D N GS- L D c C
5. 5. 1@2 A / 807 5 /
6. 6. 1@2 A / 807 5 / 0 M S 6 L6 30 3
7. 7. 1@2 A / 807 5 / AC I = H . A IA / A ? b [h ge af i cP 2 ]l d SU nmRZU T / 7 =A =I , / 2 II H LLL N I := C L I K A M0 /A G H I = H
8. 8. 1@2 A / 807 5 / c l f o gm • • L a M o gm 8 e • A • • i L • d nVSM ps tu VS
9. 9. 1@2 A / 807 5 / LRU JM 40 1 W • 0 I V RU IPS I7 , 7 , 40 1 G7 , 40 1 C - ECC 2 A: CC 0 D D 9 1A C 0 40 1 G A F 40 1 CE 40 1 2 J. Engel and T. Sch¨ops and D. Cremers G04 40 1 0 4: :D 1A A:E 40 1G Here, σ2 f is the signal variance and l is a length scale that de- termines the strength of correlation between points. Both pa- rameters control the smoothness of the functions estimated by a GP. As can be seen in (2), the covariance between function values decreases with the distance between their correspond- ing input values. Since we do not have access to the function values, but only noisy observations thereof, it is necessary to represent the corresponding covariance function for noisy observations: cov (yr, ys) = k(xi, xj) + σ2 nδrs . (3) Here σ2 n is the Gaussian observation noise variance and δrs is one if r = s and zero otherwise. For an entire set of input values X, the covariance over the corresponding observations Y becomes cov (Y) = K + σ2 nI, (4) where K is the n × n covariance matrix of the input values, Figure 1: GP model for signal strength of one access point. Black dots indicate training data along the ground truth path. 3.2 Application to Signal Strength Modeling
10. 10. 1@2 A / 807 5 / pnt KD G Cof • lcIof ta hI GF KL G Ce r RA- 0 ,BS M cA B 1 0 , 1 0 , 1 0 , 0 , AO 0 ,B PcA B a bam A 0 0 ,B
11. 11. 1@2 A / 807 5 / tn L e oi m RuST f e kd arb cg V s ptn l O s p My 12 0 My 0 2 0GD D I12 0 A 1C:A BGD : 0 E : BD 0BAB G D :D:B A 2, :D EJ - 4D AE BAE BA 2B7B E B7 A : I 0 D : : D: 0BAB G D 0J
12. 12. 1@2 A / 807 5 / o Xc 11 yf -D E D ep i rvep TZ hRu a mtV s S k nlgdwX 11 s P 11 0 P EL , 0EDE: 0 D 8 E " N D D CEDE: K E EC M L D , C D EC D , EL 7 K . A DE " 11 0 3 C D CEDE: 0 L D : ED 23
13. 13. 1@2 A / 807 5 / • A f • a 1 • s S • M L M S A s l ! "#:%, '|)#:%, *#:% s V uf 3 il ! "%, '|)#:%, *#:% S a
14. 14. 1@2 A / 807 5 /
15. 15. 1 2 M @ P / 7 08 5 L / ( ( ) + FN D 1N 2 A
16. 16. 1@2 A / 807 5 / , , 1 2 9 9 9 • I M AC ., ( 0 06 2 06 ))
17. 17. 1@2 A / 807 5 / , 2 21 1 1 • F M C . - ) 0 0 1 0 ( 7 1
18. 18. 1@2 A / 807 5 / .- - 8 • F P M CR St. Peter’s Basilica Trevi Fountain Colosseum Dubrovnik Piazza San Marco 0 ) 8 2 2 2 (. , 1
19. 19. 1@2 A / 807 5 / 1 9 3 9 9
20. 20. 1@2 A / 807 5 /
21. 21. 1@2 A / 807 5 / 1 - 2
22. 22. 1@2 A / 807 5 / 2 3 • ! " #\$ %\$ &\$ '\$ !(, "( * 3 3 + = - . / 1 +1 +2 +12 = +2+1 31 2 3 * = *4 = *5 3
23. 23. 1@2 A / 807 5 / ! " # 1 = &' ( ") 0 &+ #) 0 0 1 ,-- ,-. ,-/ 0- ,.- ,.. ,./ 0. ,/- ,/. ,// 0/ 1 2 3 1 !4 = 56 = 7 8|: 6 6 = 1, 2, 3, 1 < 4 = ", #, 1 < 5 = 7 8|t 2 2 3 2
24. 24. 1@2 A / 807 5 / - bf hIZ i Ii [ T or I g f] p M xq VaeP l eaI w • Pu 4C 2 4 4 4 A4 4 2 " , )(" 0 • 4 P 2 4 4 O !" !# mrP n \$" \$# t % [ cI ox &', &), &*, +', +)
25. 25. 1@2 A / 807 5 / 5 3 2 • !" !# \$# !" % % ? % ? !# \$# '" '# () (*
26. 26. 1@2 A / 807 5 / e ) ( • a ! M a 2 "|\$ d • F • %& = ()* )* 6 F )& + %& = 0 -& .& 1 0** 0*& 0*1 0&* 0&& 0&1 01* 01& 011 -* .* 1 = )& +()* = 0
27. 27. 1@2 A / 807 5 / n 2 )( ( ( • ! e • a F • aCl7 mM i VCO • ) 2 )( ( ( • d a p M n" p #\$ % #% % #\$ % &% % #\$ % &\$ % #% % &\$ % &% % &\$ % #% % &% % 1 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ #\$ ) #% ) #\$ ) &% ) #\$ ) &\$ ) #% ) &\$ ) &% ) &\$ ) #% ) &% ) 1 *%% *%\$ ⋮ *++ = "- = 0
28. 28. 1@2 A / 807 5 / e i ( 3 4 5 ) 84 • V • e i ! s • 3 2( 3 4 5) n • R lidt c NS Ab • A p ES O s b • ! M a R "|\$ c • A C S r A x ! = &' ( )&* +* +' +*+' +* +'′ +*+'′ 2 - - - -
29. 29. 1@2 A / 807 5 /
30. 30. 1@2 A / 807 5 / (30 - ) - (
31. 31. 1@2 A / 807 5 / + 3 2 + 1 + D 1 + 3 2 - 1 + 1 + D
32. 32. 1@2 A / 807 5 / - B R U 2 • i F 3 . , i 3 ,, B IE O T S IE O S
33. 33. 1@2 A / 807 5 / 3 • 3! +2" • " - #, % D
34. 34. 1@2 A / 807 5 / v c p ae atS A mSls • ( 4 - (3 ( 3 ( ( r • atE p t !b N mSls ( ( ( ( • t P • ( (E) Sn R Si • t S ( ( mSls • 3 ( ( C 3 ( () - o
35. 35. 1@2 A / 807 5 / - a P • 3 5 • ) ( ) !" # !\$ %" %\$ &" −!" 0 &\$ 0 −!\$ # )" )\$ = 0
36. 36. 1@2 A / 807 5 / - • 6 3 6 3 ! "R\$, "&\$ "'( )\$( ) *\$, '( ! = , - ∑\$ ∑( /\$( 0/\$( /\$( = ) *\$, '( − )\$( '( *\$
37. 37. 1@2 A / 807 5 /
38. 38. 1@2 A / 807 5 / 3 3 38 C A B 2 + C A+ B 8 + GF GF 2 + D A B / D A B + A B 2
39. 39. 1@2 A / 807 5 / riMl v v SU3 /_ [ p mp • hMgeM P R ] u[ s 3 / P t • + + + . HH G H I9 : GC A 9IC A G & 0 3C A H A 3.,,2 6 Photo Tourism: Exploring Photo Collections in 3D Noah Snavely University of Washington Steven M. Seitz University of Washington Richard Szeliski Microsoft Research (a) (b) (c)brp rv S N cop N y npafrd
40. 40. 1@2 A / 807 5 / ( ( ) - 4 Gd G B G • nfGr E • a a aS • S G • G S c • S o G uq t l G M • bi 4 4 0 g e
41. 41. 1@2 A / 807 5 / ( f I M • P ) C) • 2 342 342 342 3 • S S1 / V1 / / • ) ) ) G1U • I1 G1M
42. 42. 1@2 A / 807 5 /
43. 43. 1@2 A / 807 5 / n V V • hp D P P C • oa VG ft PV S • / r O M P • 43 / e / • / 2 / + P
44. 44. 1@2 A / 807 5 /
45. 45. 1@2 A / 807 5 / W - 5 2 2 4 2 2 4 2 . 2 5 + -M TP 1 H S
46. 46. 1@2 A / 807 5 /
47. 47. 1@2 A / 807 5 / 1 _ V V 4 1 1 2 327 4 V S V 2 2 327 4M 2 2 2.7 4 OM S 7 S M OM
48. 48. 1@2 A / 807 5 / n M L IS • • + 4 • O cf p • r oGe8 C • rG bGe8 a • m • G t • l
49. 49. 1@2 A / 807 5 / L o RlDI f n V • V U • A 9 9 Rc G 3 P ge • A 9 CA 94 CA 9 9 CA 9 9 9 • MO Fmh • U O U a i 9 9 3 S S
50. 50. 1@2 A / 807 5 /
51. 51. 1@2 A / 807 5 / ls a D br g LI xTwo R • D U a • a Da • m gc • eh d gc • t iElh psk g nu gc • .5 . .1 .5 .5 : • - . .1. 5 / 5: 5 1 A • @5 .