Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

01 tt2530eu02al 01_introduction

140 views

Published on

Published in: Technology, Business, Lifestyle
  • Be the first to comment

  • Be the first to like this

01 tt2530eu02al 01_introduction

  1. 1. Introduction SiemensIntroductionContents1 Definition of Fiber 32 History of Optical Transmission 73 Loss of a Few Optical Media 114 Advantages and Disadvantages of Optical Fibers 135 Principle of Transmission with Light 156 Regenerator Spacing 197 Exercise 218 Solution 25TT2530EU02AL_01 1
  2. 2. Siemens Introduction2 TT2530EU02AL_01
  3. 3. Introduction Siemens1 Definition of FiberTT2530EU02AL_01 3
  4. 4. Siemens Introduction In optical transmission an effect of total internal reflection is desired. This effect occurs if two transparent media are arranged one above the other. The external medium must be "better" than the internal one. The combination of glass and air would also fulfil this condition. However, one achieves more favorable characteristics with two almost equally "good" types of glass. A technically functional optical fiber (OF) consists of the following components: The information-carrying glass (the core) is covered with a slightly "better" glass (the cladding). A protective layer of plastic (the coating) is applied over the cladding. This combination of core - cladding - coating is the fiber. The fiber-glass factory delivers the fibers with a naturally colored coating. If fibers are processed into cables, they are colored for identification in the cable factory according to the specifications of the customer.4 TT2530EU02AL_01
  5. 5. Introduction Siemens Fibre cross section and refraction index. 125 250 Potical fibres use din transmission applications have the following dimensions: Diameter of the core approx.:8mm, 50 mm, 62,5 mm Diameter with cladding:125 mm Diameter with the coating:250 mmFig. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TT2530EU02AL_01 5
  6. 6. Siemens Introduction6 TT2530EU02AL_01
  7. 7. Introduction Siemens2 History of Optical TransmissionTT2530EU02AL_01 7
  8. 8. Siemens Introduction Use of light signals in the early epoch (such as signal fluch) 1626 Snells law 1794 First telegraph line in France 1870 John Tydall demonstrated the light conductivity of a water jet 1880 Graham Bell developed the Opthophon (voice signals were sent via light but were effected by the whether) 1888 Demonstration of electromagnetic waves by Hertz 1897 Analysis of the waveguide 1934 Norman R. French patented an optical telephone system using glass rods or something similar in order to transport voice signals. 1958 Arthur Schawlow and Charles H. Townes developed the laser. 1960 Theodor H. Maiman operated the laser the first time. 1962 First semiconductor laser by GE, IBM, MIT 1966 Charles H. Kao and George A. Hockham proposed the glass fiber as conductor. 1968 Optical wave guides with an attenuation of 1000 dB/km. 1970 Corning Glassworks produces an OWG with less than 20 dB/km at 633 nm. 1972 Attenuation of 4 dB/km at 850 nm and a bandwidth of 20 - 50 MHz/km is achieved. 1973 The first FO cables for telephone purposes are employed on military vessels. 1974 The concept for graded index fiber is introduced 500-1000 MHz/km. 1976 First system trials in the USA by Western Electric in Atlanta. Siemens starts a 2.1 km long test line in Munich. 1977 Field trial in Chicago over 2.5 km by Bell Systems. Simultaneously in Long Beach over 9.5 km by General Telephone. Siemens installs the first FO link for DBP in Berlin. 1981 Dispersion 4 ps/nm x km Beales GB 1983 Siecor delivers the first single mode fiber cable. 1984 In the laboratory, over 200 km spans are achieved at 1.55 µm.8 TT2530EU02AL_01
  9. 9. Introduction Siemens1985 Dispersion-shifted fiber1987 Foundation of the Siecor company in Neustadt with 80,000 km processed glass fiber. LA 140 LWL1992 Siemens, together with Siecor, installs more than 3,000,000 km of cabled fiber in over 25 countries. SLA 4/SLA 161995 The cable factory Neustadt processes 500,000 km fiber into cables for the first time.1996 Foundation of PT Trafindo Perkasa in Indonesia. The production starts temporarily with 70,000 km of fiber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TT2530EU02AL_01 9
  10. 10. Siemens Introduction10 TT2530EU02AL_01
  11. 11. Introduction Siemens3 Loss of a Few Optical Media Medium Optical Attenuation Penetration depth at 50% light gloss Pure Water 100,000 33 mm Window glass 50,000 66 mm Optical glass 3,000 1,000 mm Thick fog 500 6,6 m City air in Dusseldorf 10 330 m Glass fibre 1970 20 165 m Good fibre 1978 3 1,000 m Good fibre 1986 0,2 18,000 mFig. 2TT2530EU02AL_01 11
  12. 12. Siemens Introduction12 TT2530EU02AL_01
  13. 13. Introduction Siemens4 Advantages and Disadvantages of Optical FibersAdvantages:l High transmission capacityl Low susceptibility to electromagnetic interference important for use in industrial plants control lines in power plants in principle, no spacing requirements when run in parallel.l Potential separation between transmitter and receiver (no ground loop)l Long distances between repeaters over 300 km is possible for sea cables large production lengths therefore greater distances between couplings therefore fewer couplings therefore fewer installation errors.l No line interference, no signal dispersionl Highly resistant to eavesdroppingl Short-circuit-free (no spark formation) important in areas where there is a risk of explosions.l Light weight, highly flexible lighter equipment easier handling less volume for shipping smaller cable reels lighter trailers smaller winches.l Smaller dimensions smaller cable diameter more effective utilization of cable ducts.l No corrosion of fibers.l Unlimited material availability (SiO2 is available in nearly limitless supply) 1 gram of silicon corresponds to 10 kg of copper.#Disadvantages:l Installation technologyl high level of precision requiredl sophisticated devices necessaryTT2530EU02AL_01 13
  14. 14. Siemens Introduction14 TT2530EU02AL_01
  15. 15. Introduction Siemens5 Principle of Transmission with LightTT2530EU02AL_01 15
  16. 16. Siemens Introduction Message transmission with light can be easily explained: In the transmitter, the electrical signal is converted into a light signal in an electro- optical converter (e.g. a light emitting diode (LED) or a laser diode (LD)). To be more precise: The light intensity of the transmitting diode is modulated by the binary pulse- modulated diode current i1, and light with the power P (0) is coupled with the optical fiber. After traversing the optical fiber, the light is converted back into an electrical signal in an opto-electric converter (e.g. photodiode) at the end of the transmission route. The optical transmission route therefore begins and ends with an electrical interface whose data is normed independently of the transmission medium. There- fore, digital systems with fiber optics use, in principle, the same interfaces (CCITT recommendations G. 703) they use for radio relay and multiplex units.16 TT2530EU02AL_01
  17. 17. Introduction Siemens CCITT Interface Light-emitting optical i1 or laser code transmitter P (0) Optical fibre P (L) Photodiode + i2 optical - receiverL Length of optical transmission routei1, i2 Laser diode or photodiode currentP(0), P(L) Optical transmit or receive powerFig. 3TT2530EU02AL_01 17
  18. 18. Siemens Introduction18 TT2530EU02AL_01
  19. 19. Introduction Siemens6 Regenerator SpacingThe diagram shows regenerator spacing independently of transmission capacity andthe various transmission media.An analog system (for example with 10,800 channels over a 2.6/9.5 coaxial cable)requires a repeater every 1.55 km.A glass fiber can transmit more than three times as many channels across approx.100 km without a regenerator. Maximum regenerator spacing 100 1500 nm m SM fibre 50 MM fibre 20 V300 V960 10 LA 34 KX V2700 5 V3600 LA 140 KX coaxial pair 2.6/9.5 mm 2 LA 565 KX V10800 1 100 200 500 1000 2000 5000 10000 20000 50000 565 Mbit/s 8 Mbit/s 34 Mbit/s 140 Mbit/s 622 2.5 Gbit/s bit rateFig. 4TT2530EU02AL_01 19
  20. 20. Siemens Introduction20 TT2530EU02AL_01
  21. 21. Introduction Siemens7 ExerciseTT2530EU02AL_01 21
  22. 22. Siemens Introduction22 TT2530EU02AL_01
  23. 23. Introduction SiemensExercise1. Name at least 5 decisive advantages of fiber-optic technology over standard copper cable technology. a) b) c) d) e)2. In what year did the Corning Glassworks company succeed in manufacturing an optical fiber with an attenuation of less than 20 dB/km (the beginning of fiber- optic technology)?3. Describe the basic design of a fiber-optic transmission route!4. Name the three elements of an optical fiber. a) b) c)TT2530EU02AL_01 23
  24. 24. Siemens Introduction24 TT2530EU02AL_01
  25. 25. Introduction Siemens8 SolutionTT2530EU02AL_01 25
  26. 26. Siemens Introduction26 TT2530EU02AL_01
  27. 27. Introduction SiemensSolution1. a) high transmission capacity b) low weight c) large production lengths d) not susceptible to electromagnetic influence f) resistant to eavesdropping2. 19703. telephone - electro-optical converter - fiber - electro-optical converter - telephone4. a) core b) cladding c) coatingTT2530EU02AL_01 27
  28. 28. Siemens Introduction28 TT2530EU02AL_01

×