Wind energy I. Lesson 1. Introduction

1,978 views

Published on

www.devi-renewable.com
www.ppre.de

Published in: Education, Business, Technology
0 Comments
3 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,978
On SlideShare
0
From Embeds
0
Number of Embeds
157
Actions
Shares
0
Downloads
109
Comments
0
Likes
3
Embeds 0
No embeds

No notes for slide

Wind energy I. Lesson 1. Introduction

  1. 1. Wind Energy I Wind Energy IMichael Hölling, WS 2010/2011 slide 1
  2. 2. Wind Energy I Basic information Michael Hölling (Mike) Email: michael.hoelling@uni-oldenburg.de Room: W2-1-126 Phone: 798-3951 Office hours: Fridays 10:00 - 12:00 Prof. Joachim Peinke Email: peinke@uni-oldenburg.de Room: W2-1-129 Phone: 798-3536 Hendrik Heißelmann (Tutor for Exercises) Email: hendrik.heisselmann@uni-oldenburg.de Room: W2-1-122 Phone: 798-3643Michael Hölling, WS 2010/2011 slide 2
  3. 3. Wind Energy I Basic information Slides will be available on Stud.IP webpage and the corresponding link to this lecture shortly after each class https://elearning.uni-oldenburg.de Literature: E. Hau: Wind Turbines - 2nd edition, Springer, Berlin 2005 (also available in german, title Windkraftanlagen) T. Burton et al.: Wind energy Handbook, John Wiley & Sons Ltd, 2001 J. Twele und R. Gasch: Windkraftanlagen, Teubner B. G. GmbH, 2005 J. P. Molly. Windenergie, Verlag C.F. Müller, Karlsruhe, 1990 On the internet: http://www.windinformation.de/ DEWI: http://www.dewi.de/dewi/index.php DEWI GmbH = Deutsches Windenergie-Institut (German Wind Energy Institute) BWE: http://www.wind-energie.de (Bundesverband Windenergie e.V.)Michael Hölling, WS 2010/2011 slide 3
  4. 4. Wind Energy I Class content 5 Wind turbines in 6 Wind - blades general 2 Wind measurements interaction 7 Π-theorem 8 Wind turbine characterization 3 Wind field 9 Control strategies characterization 10 Generator 4 Wind power 11 Electrics / gridMichael Hölling, WS 2010/2011 slide 4
  5. 5. Wind Energy I Class structure Thursday 28.10.2010: 1st lesson - motivation for renewable energies Monday 01.11.2010: Exercise I Thursday 04.11.2010: 2nd lesson - wind measurements techniques - anemometers Monday 08.11.2010: Exercise II Thursday 11.11.2010: 3rd lesson - characterization of wind fields Monday 15.11.2010: Exercise III Thursday 18:11.2010: 4th lesson - wind power, Betz limit, power curves of WECs Monday 22.11.2010: Exercise IV (skip or covered by someone else) Thursday 25.11.2010: 5th lesson - (covered by Prof. Peinke) history of wind turbines, WEC design Monday 29.11.2010: Exercise V (skip or covered by someone else) Thursday 2.12.2010: 6th lesson - interaction of wind field with blade segments Monday 6.12.2010: Exercise VI Thursday 9.12.2010: 7th lesson - PI-theorem Monday 13.12.2010: Exercise VII Thursday 16.12.2010: 8th lesson - characterization of WECs using dimensionless quantities Monday 20.12.2010: Exercise VIII ChristmasMichael Hölling, WS 2010/2011 slide 5
  6. 6. Wind Energy I Class structure Thursday 06.01.2011: 9th lesson - WEC control - different strategies and operation points Monday 10.01.2011: Exercise IX Thursday 13.01.2011: 10th lesson - WEC electrics / generator Monday 17.01.2011: Exercise X Thursday 20.01.2011: 11th lesson - WEC electrics / generatorMichael Hölling, WS 2010/2011 slide 6
  7. 7. Wind Energy I Energy and Power What is energy ? kg · m2 Energy [Joule]: 2 = [J] s Different forms of appearances of energy, for example: mechanical energy (work) potential energy kinetic energy electrical energy ...Michael Hölling, WS 2010/2011 slide 7
  8. 8. Wind Energy I Energy and Power Conservation of energy ! Energy can NOT be created or destroyed, it can only be converted in another form of appearance. E J Power: P = = [W ] t s therefore Energy: E = P · t [W · s]Michael Hölling, WS 2010/2011 slide 8
  9. 9. Wind Energy I Energy and Power Different units of energy and their conversion factors from / to Joule Kilowatt hour Electron volt Kilopondmeter CaloriesMichael Hölling, WS 2010/2011 slide 9
  10. 10. Wind Energy I Energy and Power Numbers can become very big and very smallMichael Hölling, WS 2010/2011 slide 10
  11. 11. Wind Energy I Power consumptionWorldwide power demand: 15T W = 1.5 · 10 W , considering 136 billion people on earth leads to a power consumption of 2.5kWper personGDP = Gross DomesticProductGerman:BruttoinlandsproduktMichael Hölling, WS 2010/2011 slide 11
  12. 12. Wind Energy I Energy consumptionA power demand of 1.5 · 10 W in one year131a = 8760h = 3153600scorresponds to an energy demand ofE = 1.5 · 10 W · 31536000s = 4.73 · 10 J = 0.473ZJ 13 20Expressed in tons of coal as a unit for energy1 ton coal = 29.3GJ = 29.3 · 10 J 9Expressed in tons of coal as a unit for energy4.73 · 10 /29.3 · 10 = 1.6 · 10 20 9 10 tons coalMichael Hölling, WS 2010/2011 slide 12
  13. 13. Wind Energy I Power production Resources for power production year Wind still < 1% (worldwide)Michael Hölling, WS 2010/2011 slide 13
  14. 14. Wind Energy I Resource oil From “Reserves, Resources and Availability of Energy Resources 2005”, BGR annual report BGR : Bundesanstalt für Geowissenschaften und Rohstoffe Cumulative production : 143 Gt Reserves : 161 Gt Resources : 82 Gt Estimated Ultimate Recovery (EUR) : 386 Gt Remaining potential : 243 GtMichael Hölling, WS 2010/2011 slide 14
  15. 15. Wind Energy I Resource gas From “Reserves, Resources and Availability of Energy Resources 2005”, BGR annual report BGR : Bundesanstalt für Geowissenschaften und Rohstoffe Cumulative production : 81 Tm3 Reserves : 179 Tm3 Resources : 207 Tm3 Estimated Ultimate Recovery (EUR) : 467 Tm3 Remaining potential : 386 Tm3Michael Hölling, WS 2010/2011 slide 15
  16. 16. Wind Energy I Resource lignite (brown coal) From “Reserves, Resources and Availability of Energy Resources 2005”, BGR annual report BGR : Bundesanstalt für Geowissenschaften und Rohstoffe Accumulative output : 45 Gt Reserves : 207 Gt Resources : 1024 Gt Estimated Ultimate Recovery (EUR) : 1276 Gt Remaining potential : 1234 GtMichael Hölling, WS 2010/2011 slide 16
  17. 17. Wind Energy I Resource hard coal From “Reserves, Resources and Availability of Energy Resources 2005”, BGR annual report BGR : Bundesanstalt für Geowissenschaften und Rohstoffe Accumulative output : 204 Gt Reserves : 746 Gt Resources : 4079 Gt Estimated Ultimate Recovery (EUR) : 5029 Gt Remaining potential : 4825 GtMichael Hölling, WS 2010/2011 slide 17
  18. 18. Wind Energy I EfficiencyHow much energy is stored in ALL fossil resources on earth ?Oil: 386Gt = 16 · 10 J, with 1toe = 42 · 10 J 21 9Gas: 467T m = 16 · 10 J, with 1000m = 34.6 · 10 J 3 21 3 9Lignite: 1276Gt = 37 · 10 J, with 1ton coal = 29.3 · 10 J 21 9Hard coal: 5029Gt = 147 · 10 J, with 1ton coal = 29.3 · 10 J 21 9This adds up to 216 · 10 J = 216 · 10 W · s 21 21that is (roughly) stored in all fossil resources.Michael Hölling, WS 2010/2011 slide 18
  19. 19. Wind Energy I Future of resources Quo vadis ? ? ? ? yearMichael Hölling, WS 2010/2011 slide 19
  20. 20. Wind Energy I Energy consumption 10 to 20% is used for electricityMichael Hölling, WS 2010/2011 slide 20
  21. 21. Wind Energy I Environmental issues Jan. 2007: 383ppm 27% above the max value of the last 400.000 yearsMichael Hölling, WS 2010/2011 slide 21
  22. 22. Wind Energy I Environmental issues more than 25% above the max value of the last 400.000 yearsMichael Hölling, WS 2010/2011 slide 22
  23. 23. Wind Energy I Environmental issuesMichael Hölling, WS 2010/2011 slide 23
  24. 24. Wind Energy I Environmental issuesMichael Hölling, WS 2010/2011 slide 24
  25. 25. Wind Energy I Environmental issuesMichael Hölling, WS 2010/2011 slide 25
  26. 26. Wind Energy I Environmental issuesMichael Hölling, WS 2010/2011 slide 26
  27. 27. Wind Energy I Environmental issuesMichael Hölling, WS 2010/2011 slide 27
  28. 28. Wind Energy I Environmental issuesMichael Hölling, WS 2010/2011 slide 28
  29. 29. Wind Energy I Environmental issuesMichael Hölling, WS 2010/2011 slide 29
  30. 30. Wind Energy I Environmental issuesMichael Hölling, WS 2010/2011 slide 30

×