Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Estudo dos Gases

7,506 views

Published on

O presente material é um slide que faz um estudo dos gases

Published in: Education
  • DOWNLOAD THIS BOOKS INTO AVAILABLE FORMAT (Unlimited) ......................................................................................................................... ......................................................................................................................... Download Full PDF EBOOK here { https://tinyurl.com/yyxo9sk7 } ......................................................................................................................... Download Full EPUB Ebook here { https://tinyurl.com/yyxo9sk7 } ......................................................................................................................... ACCESS WEBSITE for All Ebooks ......................................................................................................................... Download Full PDF EBOOK here { https://tinyurl.com/yyxo9sk7 } ......................................................................................................................... Download EPUB Ebook here { https://tinyurl.com/yyxo9sk7 } ......................................................................................................................... Download doc Ebook here { https://tinyurl.com/yyxo9sk7 } ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... .............. Browse by Genre Available eBooks ......................................................................................................................... Art, Biography, Business, Chick Lit, Children's, Christian, Classics, Comics, Contemporary, Cookbooks, Crime, Ebooks, Fantasy, Fiction, Graphic Novels, Historical Fiction, History, Horror, Humor And Comedy, Manga, Memoir, Music, Mystery, Non Fiction, Paranormal, Philosophy, Poetry, Psychology, Religion, Romance, Science, Science Fiction, Self Help, Suspense, Spirituality, Sports, Thriller, Travel, Young Adult,
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here

Estudo dos Gases

  1. 1. Todo gás exerce uma PRESSÃO, ocupando um certo VOLUME à determinada TEMPERATURA Aos valores da pressão, do volume e da temperatura chamamos de ESTADO DE UM GÁS Assim: V = 5 L T = 300 K P = 1 atm Prof. Agamenon Roberto
  2. 2. Os valores da pressão, do volume e da temperatura não são constantes, então, dizemos que PRESSÃO (P), VOLUME (V) e TEMPERATURA (T) são VARIÁVEIS DE ESTADO DE UM GÁS P1 = 1 atm V1 = 6 L T1 = 300 K P2 = 2 atm V2 = 3 L T2 = 300 K P3 = 6 atm V3 = 3 L T3 = 900 K Prof. Agamenon Roberto
  3. 3. Denominamos de pressão de um gás a colisão de suas moléculas com as paredes do recipiente em que ele se encontra Prof. Agamenon Roberto
  4. 4. 100 cm 76 cm vácuo 1 atm = 76 cmHg = 760 mmHg mercúrio mercúrio Experiência de TORRICELLI 1 atm Prof. Agamenon Roberto
  5. 5. ESTADO 1 ESTADO 2 P1 = 1 atm V1 = 6 L T1 = 300 K P2 = 2 atm V2 = 3 L T2 = 300 K TRANSFORMAÇÃO ISOTÉRMICA Mantemos constante a TEMPERATURA e modificamos a pressão e o volume de uma massa fixa de um gás Prof. Agamenon Roberto
  6. 6. P1 = 1 atm V1 = 6 L T1 = 300 K 1 2 3 4 85 76 1 2 3 4 V (litros) 5 7 6 P (atm) P2 = 2 atm V2 = 3 L T2 = 300 K P3 = 6 atm V3 = 1 L T3 = 300 K GRÁFICO DA TRANSFORMAÇÃO ISOTÉRMICA Pressão e Volume são inversamente proporcionais P x V = constante LEI DE BOYLE - MARIOTTE P1 x V1 = P2 x V2 Prof. Agamenon Roberto
  7. 7. TRANSFORMAÇÃO ISOTÉRMICA Prof. Agamenon Roberto
  8. 8. 01) Na respiração normal de um adulto, num minuto são inalados 4,0 litros de ar, medidos a 27o C e 1 atm de pressão. Um mergulhador a 43 m abaixo do nível do mar, onde a temperatura é de 27o C e a pressão de 5 atm, receberá a mesma massa de oxigênio se inalar: a) 4,0 litros de ar. b) 8,0 litros de ar. c) 3,2 litros de ar. d) 0,8 litro de ar. e) 20 litros de ar. V1 = 4,0 L T1 = 27ºC P1 = 1 atm V2 = ? L T2 = 27ºC P2 = 5 atm V2 = 0,8 L P1 x V1 = P2 x V2 1 x 4 = 5 x V2 V2 = 4 5 Prof. Agamenon Roberto
  9. 9. He 02) Dois balões A e B, estão ligados por um tubo de volume desprezível, munido de uma torneira. O balão A, de volume igual a 400 mL, contém gás hélio. No balão B, de volume igual a 600 mL, existe vácuo. Mantendo-se a temperatura constante, a torneira é aberta e a pressão final do sistema atinge o valor de 600 mmHg. A pressão inicial do balão A deve ser igual a: a) 1500 mmHg. b) 1200 mmHg. c) 1000 mmHg. d) 900 mmHg. e) 760 mmHg. A B VA = 400 mL He vácuo VB = 600 mL T = constante PF = 600 mmHg P1 = 1500 mmHg P1 x V1 = P2 x V2 400 x P1 = 600 x 1000 P1 = 600000 400 VF = 1000 mL Prof. Agamenon Roberto
  10. 10. 03) Ao subir do fundo de um lago para a superfície, o volume de uma bolha triplica. Supondo que a temperatura da água no fundo do lago seja igual à temperatura na superfície, e considerando que a pressão exercida por uma coluna de água de 10 m de altura corresponde, praticamente, à pressão de uma atmosfera, podemos concluir que a profundidade do lago é, aproximadamente. a) 2 m. b) 5 m. c) 10 m. d) 20 m. e) 30 m. V1 = V V2 = 3 V P2 = 1 atm a profundidade do lago é, P1 = 3 atm P1 x V1 = P2 x V2 P1 x V = 1 x 3 V P1 = 3 V V 10 m  2 atm 20 m  3 atm Prof. Agamenon Roberto
  11. 11. 04) A figura mostra um cilindro munido de um êmbolo móvel, que impede a saída do ar que há dentro do cilindro. Quando o êmbolo se encontra na sua altura H = 12 cm, a pressão do ar dentro do cilindro é p0 . Supondo que a temperatura é mantida constante, até que a altura, do fundo do cilindro deve ser baixado o êmbolo para que a pressão do ar dentro do cilindro seja 3 p0 ? a) 4/9 cm. b) 4 cm. c) 6 cm. d) 8 cm. e) 9 cm H = 12 cm 0 H’ = ? cm P1 x V1 = P2 x V2 po x V = 3po x V2 V2 = po. V 3 po V2 = V 3 H = 12 cm V H = x cm V/3 x = 12 . V 3 . V x = 4 cm Prof. Agamenon Roberto
  12. 12. ESTADO 2 V1 = 6 L T1 = 300 K P1 = 1 atm V2 = 3 L T2 = 150 K P2 = 1 atm ESTADO 1 TRANSFORMAÇÃO ISOBÁRICA Mantemos constante a PRESSÃO e modificamos a temperatura absoluta e o volume de uma massa fixa de um gás Prof. Agamenon Roberto
  13. 13. P1 = 2 atm V1 = 1 L T1 = 100 K P2 = 2 atm V2 = 2 L T2 = 200 K P3 = 2 atm V3 = 3 L T3 = 300 K 100 200 300 400 800500 700600 1 2 3 4 T (Kelvin) 5 7 6 V (L) Volume e Temperatura Absoluta são diretamente proporcionais LEI DE CHARLES E GAY-LUSSAC V T = constante Prof. Agamenon Roberto
  14. 14. Na matemática, quando duas grandezas são diretamente proporcionais, o quociente entre elas é constante V T = 1 1 V T 2 2 Prof. Agamenon Roberto
  15. 15. 05) No diagrama P x T abaixo, uma certa quantidade de gás ideal evolui do estado inicial A para um estado final B, conforme indicado na figura. Qual a razão, VA / VB , entre os volumes inicial e final do gás? a) 1/ 3. b) 1/ 2. c) 1. d) 2. e) 3. P PA TA T 2 TA0 A B Do ponto A ao ponto B a pressão é constante “PA” Transformação ISOBÁRICA V1 V2 T1 T2 = VA TA VB 2 TA VA TA VB 2 TA = VA 1 VB 2 = Prof. Agamenon Roberto
  16. 16. 06) Durante o inverno do Alasca, quando a temperatura é de – 23°C, um esquimó enche um balão até que seu volume seja de 30 L. Quando chega o verão a temperatura chega a 27°C. Qual o inteiro mais próximo que representa o volume do balão, no verão, supondo que o balão não perdeu gás, que a pressão dentro e fora do balão não muda, e que o gás é ideal? V1 = 30 L T1 = – 23 ºC P1 = P atm V2 = ? L T2 = 27ºC P2 = P atm = 250 K = 300 K V1 V2 T1 T2 = 30 250 300 250 x V2 = 30 x 300 9000 V2 = 250 V2 = 36 L Prof. Agamenon Roberto
  17. 17. 07) Uma estudante está interessada em verificar as propriedades do hidrogênio gasoso a baixas temperaturas. Ela utilizou, inicialmente, um volume de 2,98 L de H2(g) , à temperatura ambiente (25°C) e 1atm de pressão, e resfriou o gás, à pressão constante, a uma temperatura de – 200°C. Que volume desse gás a estudante encontrou no final do experimento? a) 0,73 mL. b) 7,30 mL. c) 73,0 mL. d) 730 mL. e) 7300 mL. V1 = 2,98 L T1 = 25 ºC P1 = 1 atm V2 = ? L T2 = – 200ºC P2 = 1 atm = 298 K = 73 K V1 V2 T1 T2 = 2,98 298 73 298 x V2 = 2,98 x 73 217,54 V2 = 298 V2 = 0,73 L V2 = 730 mL Prof. Agamenon Roberto
  18. 18. ESTADO 1 TRANSFORMAÇÃO ISOCÓRICA Mantemos constante o VOLUME e modificamos a temperatura absoluta e a pressão de uma massa fixa de um gás ESTADO 2 P1 = 4 atm V1 = 6 L T1 = 300 K P2 = 2 atm V2 = 6 L T2 = 150 K Prof. Agamenon Roberto
  19. 19. 100 200 300 400 800500 700600 1 2 3 4 T (Kelvin) 5 7 6 P (atm) V1 = 2 L P1 = 1 atm T1 = 100 K V2 = 2 L P2 = 2 atm T2 = 200 K V3 = 3 L P3 = 2 atm T3 = 300 K Pressão e Temperatura Absoluta são diretamente proporcionais P T = constante LEI DE CHARLES E GAY-LUSSAC Prof. Agamenon Roberto
  20. 20. Na matemática, quando duas grandezas são diretamente proporcionais, o quociente entre elas é constante P T = 1 1 P T 2 2 Prof. Agamenon Roberto
  21. 21. 08) Uma garrafa de 1,5 L, indeformável e seca, foi fechada com uma tampa plástica. A pressão ambiente era de 1,0 atm e a temperatura de 27°C. Em seguida, esta garrafa foi colocada ao sol e, após certo tempo, a temperatura em seu interior subiu para 57°C e a tampa foi arremessada pelo efeito da pressão interna. Qual a pressão no interior da garrafa no instante imediatamente anterior à expulsão da tampa plástica? V1 = 1,5 L T1 = 27 ºC P1 = 1 atm T2 = 57ºC P2 = ? atm = 300 K O volume da garrafa é constante = 330 K P1 P2 T1 T2 = 1 300 330 300 x P2 = 1 x 330 330 P2 = 300 P2 = 1,1 atmProf. Agamenon Roberto
  22. 22. 09) Em um dia de inverno, à temperatura de 0°C, colocou-se uma amostra de ar, à pressão de 1,0 atm, em um recipiente de volume constante. Transportando essa amostra para um ambiente a 60°C, que pressão ela apresentará? a) 0,5 atm. b) 0,8 atm. c) 1,2 atm. d) 1,9 atm. e) 2,6 atm. 333 273 T1 = 0°C P1 = 1 atm T2 = 60°C P2 = ? + 273 = 273 K + 273 = 333 K P1 T1 = P2 T2 1 273 333 273 x P2 = 1 x 333 P2 = 1,2 atm P2 = Prof. Agamenon Roberto
  23. 23. 10) Um recipiente fechado contém hidrogênio à temperatura de 30°C e pressão de 606 mmHg. A pressão exercida quando se eleva a temperatura a 47°C, sem variar o volume será: a) 120 mmHg. b) 240 mmHg. c) 303 mmHg. d) 320 mmHg. e) 640 mmHg. 2 T1 = 30°C P1 = 606 mmHg T2 = 47°C P2 = ? + 273 = 303 K + 273 = 320 K P1 T1 = P2 T2 606 303 320 P2 = 2 x 320 P2 = 640 mmHgProf. Agamenon Roberto
  24. 24. Existem transformações em que todas as grandezas (T, P e V) sofrem mudanças nos seus valores simultaneamente Combinando-se as três equações vistas encontraremos uma expressão que relaciona as variáveis de estado neste tipo de transformação V T = 1 1 V T 2 2 P1 P2 xx Prof. Agamenon Roberto
  25. 25. 01) Um gás ideal, confinado inicialmente à temperatura de 27°C, pressão de 15 atm e volume de 100L sofre diminuição no seu volume de 20L e um acréscimo em sua temperatura de 20°C. A pressão final do gás é: a) 10 atm. b) 20 atm. c) 25 atm. d) 30 atm. e) 35 atm. V1 = 100 L P1 = 15 atm T1 = 27ºC V2 = 100 L – 20 L = 80 L + 273 = 300 K V1 T1 P1 300 320 15 80100 V2 T2 P2 = x x T2 = 27ºC + 20ºC = 47 ºC + 273 = 320 K P2 = ? P2 = 20 atm Prof. Agamenon Roberto
  26. 26. 02) (UFMT) Uma certa massa de gás ocupa um volume de 10 L numa dada temperatura e pressão. O volume dessa mesma massa gasosa, quando a temperatura absoluta diminuir de 2/5 da inicial e a pressão aumentar de 1/5 da inicial, será: a) 6 L. b) 4 L. c) 3 L. d) 5 L. e) 10 L. P1 = P T1 = T V1 = 10 L V2 = V L T2 = T – 2/5 T P2 = P + 1/5 P V1 T1 P1 V2 T2 P2 = x x = 3/5 T = 6/5 P P x 10 6/5 P X V = T 3/5 T V = 30 x P x T 5 6 x P x T 5 V = 30 6 V = 5 L Prof. Agamenon Roberto
  27. 27. Condições Normais de Temperatura e Pressão (CNTP ou CN) Dizemos que um gás se encontra nas CNTP quando: Exerce uma pressão de 1 atm ou 760 mmHg e Está submetido a uma temperatura de 0ºC ou 273 K Nestas condições ... 1 mol de qualquer gás ocupa um volume de 22,4 L (volume molar) Prof. Agamenon Roberto
  28. 28. 01) (UNIMEP-SP) O volume ocupado, nas CNTP, por 3,5 mol de CO será aproximadamente igual a: Dado: volume molar dos gases nas CNTP = 22,4 L. a) 33,6 L. b) 78,4 L. c) 22,4 L. d) 65,6 L. e) 48,0 L. 1 mol de CO ocupa 22,4 L nas CNTP 3,5 mols de CO ocupa V L nas CNTP 1 22,4 = 3,5 V V = 3,5 x 22,4 V = 78,4 L Prof. Agamenon Roberto
  29. 29. 02) (ACAFE – SC) Têm-se 13,0g de etino (C2 H2 ) nas CNTP. O volume, em litros, deste gás é: Dados: massas atômicas: C = 12g/mol; H = 1 g/mol. Volume molar dos gases nas CNTP = 22,4 L. a) 26,0 L. b) 22,4 L. c) 33,6 L. d) 40,2 L. e) 11,2 L. 1 mol M g 22,4 L C2 H2 M = 2 x 12 + 2 x 1 = 26 g 26 g 13 g V V = 11,2 L Prof. Agamenon Roberto
  30. 30. 03) (FEI-SP) Um frasco completamente vazio tem massa 820g e cheio de oxigênio tem massa 844g. A capacidade do frasco, sabendo-se que o oxigênio se encontra nas CNTP, é: Dados: massa molar do O2 = 32 g/mol; volume molar dos gases nas CNTP = 22,4 L. a) 16,8 L. b) 18,3 L. c) 33,6 L. d) 36,6 L. e) 54,1 L. m O2 = 844 – 820 = 24g 32 g 22,4 L 24 g V V = 16,8 L 24 x 22,4 V = 32 32 22,4 = 24 V Prof. Agamenon Roberto
  31. 31. Para uma certa massa de gás vale a relação Se esta quantidade de gás for 1 MOL a constante será representada por R e receberá o nome de CONSTANTE UNIVERSAL DOS GASES P V T = constante Prof. Agamenon Roberto
  32. 32. Podemos calcular o seu valor considerando-se um dos estados do gás nas CNTP, isto é, T0 = 273 K, P0 = 1 atm ou 760 mmHg e V0 = 22,4 L, assim teremos: P V T = 1 x 22,4 273 0,082 para 1 mol P x V = n x R x T P V T = 0,082 x 2 para 2 mol P V T = 0,082 x n para “n” mol P V T = R x n Prof. Agamenon Roberto
  33. 33. Podemos calcular o seu valor considerando-se um dos estados do gás nas CNTP, isto é, T0 = 273 K, P0 = 1 atm ou 760 mmHg e V0 = 22,4 L, assim teremos: P V T = 760 x 22,4 273 62,3 para 1 mol P x V = n x R x T P V T = 62,3 x 2 para 2 mol P V T = 62,3 x n para “n” mol P V T = R x n Prof. Agamenon Roberto
  34. 34. 01) (UFRGS) Um extintor de incêndio contém 4,4 kg de CO2 . O volume máximo de gás liberado na atmosfera, a 27ºC e 1 atm, é, em litros: Dados: C = 12 u.; O = 16 u. a) 0,229. b) 2,46. c) 24,6. d) 229,4. e) 2460. m = 4,4 kg V = ? L T = 27ºC P = 1 atm = 4400 g n = = 100 mol 4400 44 = 300 K P x V = n x R x T 1 x V = 100 x 0,082 x 300 V = 2460 L Prof. Agamenon Roberto
  35. 35. 02) 2,2g de um gás estão contidos num recipiente de volume igual a 1,75 litros, a uma temperatura de 77o C e pressão e 623 mmHg. Este gás deve ser: Dados: H = 1 u; C = 12 u; O = 16 u; N = 14 u; S = 32 u a) NO. b) H2 S. c) SO2 . d) CO2 . e) NH3 . m = 2,2 g V = 1,75 L T = 77ºC P = 623 mmHg = 350 K m P x V = x R x T M 2,2 623 x 1,75 = x 62,3 x 350 M 2,2 x 62,3 x 350 M = 623 x 1,75 M = 44 g/mol CO2 = 12 + 32 = 44 g/mol Prof. Agamenon Roberto
  36. 36. 03) A temperatura a que deve ser aquecido um gás contido num recipiente aberto, inicialmente a 25ºC, de tal modo que nele permaneça 1/5 das moléculas nele inicialmente contidas é: a) 1217ºC. b) 944ºC. c) 454ºC. d) 727ºC. e) 125ºC. T = 25ºC V P n 298 K T’ = ? ºC V’ P’ n’ = 1/5 n P x V n x R x 298 = P’ x V’ 1/5 n x R x T’ T’ = 1490 K T’ = 1217 ºC – 273 Prof. Agamenon Roberto
  37. 37. 1,6 x V nH2 x R x T = PO2 x V nO2 x R x T 32 04. (IFET) Dois balões de igual capacidade, A e B, mantidos na mesma temperatura, apresentam massas iguais de H2 (g) e O2 (g) . A pressão do H2 (g) no balão A é igual a 1,6 atm. Assinale a alternativa abaixo que corresponde a pressão que o O2 (g) exerce no balão B. Dados: M(H2 ) = 2 g/mol e M(O2 ) = 32 g/mol. a) 0,1 atm. b) 0,5 atm. c) 1,0 atm. d) 1,6 atm. e) 2,0 atm. A B VA = VB TA = TB m H2 = m O2 PH2 = 1,6 atm Po2 = ? atm PO2 x nH2 = 1,6 x n O2 nH2 nO2 mO2 MO2 mH2 MH22 3,2 PO2 = 32 PO2 = 0,1 atm Prof. Agamenon Roberto
  38. 38. Volumes IGUAIS de gases quaisquer, nas mesmas condições de TEMPERATURA e PRESSÃO contêm a mesma quantidade de MOLÉCULAS HIPÓTESE DE AVOGADRO V = 2 L P = 1 atm T = 300 K V = 2 L P = 1 atm T = 300 K Gás METANO Gás CARBÔNICO Prof. Agamenon Roberto
  39. 39. contém N2. Sabendo que os dois balões têm igual capacidade e apresentam a mesma pressão e temperatura, calcule a massa de N2 no balão B. Dados: C = 12 g/mol; O = 16 g/mol; N = 14 g/mol. a) 56g. b) 5,6g. c) 0,56g. d) 4,4g. e) 2,8g. m = 8,8g de CO2 A B N2 VA = VB PA = PB TA = TB m = x g de N2 n = nCO2 N2 m mCO2 N2 M MCO2 N2 = 8,8 N2 = 44 m 28 m =N2 8,8 x 28 44 = 5,6g Prof. Agamenon Roberto
  40. 40. 02) (Fatec – SP) Dois frascos de igual volume, mantidos à mesma temperatura e pressão, contêm, respectivamente, os gases X e Y. A massa do gás X é 0,34g, e a do gás Y é 0,48g. Considerando que Y é o ozônio (O3 ), o gás X é: H = 1 g/mol; C = 12 g/mol; N = 14 g/mol; O = 16 g/mol; S = 32 g/mol. a) N2 . b) CO2 . c) H2 S. d) CH4 . e) H2 . VX = VY PX = PY TX = TY mX = 0,34g e mY = 0,48g X Y Y = O3 X = ? n = nX Y m mX Y M MX Y = 0,34 = Mx 0,48 48 M =X 0,34 x 48 0,48 = 34g/mol H2 S : M = 2 + 32 = 34 g/mol Prof. Agamenon Roberto
  41. 41. Estas misturas funcionam como se fosse um único gás Mistura de Gases VP T VAPA TA nA VBPB TB nB Podemos estudar a mistura gasosa ou relacionar a mistura gasosa com os gases nas condições iniciais pelas expressões P . V = nT . R . T P x V PA x VA PB x VB = + T TA TB Prof. Agamenon Roberto
  42. 42. 01) Dois gases perfeitos estão em recipientes diferentes. Um dos gases ocupa volume de 2,0 L sob pressão de 4,0 atm e 127°C. O outro ocupa volume de 6,0 L sob pressão de 8,0 atm a 27°C. Que volume deverá ter um recipiente para que a mistura dos gases a 227°C exerça pressão de 10 atm? g gás A gás B VA = 2,0 L PA = 4,0 atm TA = 127 ºC VB = 6,0 L PB = 8,0 atm TB = 27 ºC V = ? P = 10 atm T = 227 ºC PA . VA TA + PB . VB TB = P . V T TA = 400 K TB = 300 K T = 500 K 4 . 2 400 + 8 . 6 300 = 10 . V 500 4 . 2 4 + 8 . 6 3 = 10 . V 5 2 . V = 2 + 16 V = 18 2 V = 9 L Prof. Agamenon Roberto
  43. 43. colocados 4,06 mols de um gás X e 15,24 mols de um gás Y, exercendo uma pressão de 6,33 atm. Podemos afirmar que a temperatura em que se encontra essa mistura gasosa é: a) 300 K. b) 320 K. c) 150 K. d) 273 K. e) 540 K. V = 80 L P . V = nT . R . T T = 320 K nX = 4,06 mols nY = 15,24 mols P = 6,33 atm nT = 19,3 mols 6,33 . 80 = 19,3 . 0,082 . T 506,4 = 1,5826 . T 506,4 T = 1,5826 T = x K Prof. Agamenon Roberto
  44. 44. Pressão Parcial de um Gás Gás A Gás B P x V = nT x R x T P x V PA x VA PB x VB = + T TA TB Mantendo o VOLUME e a TEMPERATURA P’A x V = nA x R x T P’A x V PA x VA = T TA P’A é a pressão parcial do gás A P’B x V = nB x R x T P’B x V PB x VB = T TB P’B é a pressão parcial do gás B Lei de DALTON: P = PA + PB Prof. Agamenon Roberto
  45. 45. 4 de C2 H6 , contidos num recipiente de 30 L a 300K. A pressão parcial do CH4 , em atm, é igual a:a) 1,64 atm. b) 0,82 atm. c) 0,50 atm. d) 0,41 atm. e) 0,10 atm. P’ . V = nCH4 . R . T P’ . 30 = 0,5 . 0,082 . 300 P’ = 0,5 . 0, 82 . 30 30 P’ = 0,41 atm Prof. Agamenon Roberto
  46. 46. 02) Um estudante de química armazenou em um cilindro de 10 L, 6g de hidrogênio e 28 g de hélio. Sabendo-se que a temperatura é de 27°C no interior do cilindro. Calcule: Dados: H2 = 2 g/mol; He = 4 g/mol I. O número de mol do H2 e do He. nH2 = = 3 mol 6 2 nHe = = 7 mol 28 4 II. A pressão total da mistura P x V = nT x R x T P x 10 = 10 x 0,082 x 300 P = 24,6 atm III. A pressão parcial de cada componente da mistura P’H2 x V = nH2 x R x T P’H2 x 10 = 3 x 0,082 x 300 P’H2 = 7,38 atm P’He x V = nHe x R x T P’He x 10 = 7 x 0,082 x 300 P’He = 17,22 atm Prof. Agamenon Roberto
  47. 47. Volume Parcial de um Gás Gás A Gás B P x V = nT x R x T P x V PA x VA PB x VB = + T TA TB Mantendo a PRESSÃO e a TEMPERATURA P x V’A = nA x R x T P x V’A PA x VA = T TA V’A é o volume parcial do gás A P x V’B = nB x R x T P x V’B PB x VB = T TB V’B é o volume parcial do gás B Lei de AMAGAT: V = VA + Prof. Agamenon Roberto
  48. 48. 01) Uma mistura gasosa contém 4 mols de gás hidrogênio, 2 mols de gás metano exercem uma pressão de 4,1 atm, submetidos a uma temperatura de 27°C. Calcule os volumes parciais destes dois gases. nH2 = 4 mols nCH4 = 2 mols P = 4,1 atm T = 27° C V’ H2 = ? V’ CH4 = ? T = 300 K P X VH2 = nH2 x R x T 4,1 X V’H2 = 4 x 0,082 x 300 V’H2 = 4 x 0,082 x 300 4,1 V’H2 = 24 L 4,1 X V’CH4 = 2 x 0,082 x 300 V’CH4 = 2 x 0,082 x 300 4,1 V’CH4 = 12 L Prof. Agamenon Roberto
  49. 49. 02) Uma mistura gasosa contém 6 mols de gás hidrogênio, 2 mols de gás metano e ocupa um recipiente de 82 L. Calcule os volumes parciais destes dois gases. Podemos relacionar, também, o volume parcial com o volume total da mistura pela expressão abaixo CH4 n = 6 molsH2 x = 0,75 A VV’ V = 82 L H2 CH4 x= = A x 6 8 =x 2 8 V’ = 0,75 x 82H2 = 61,5 L n = 2 mols V’ = 0,25 x 82 = 20,5 LCH4= 0,25 Prof. Agamenon Roberto
  50. 50. Densidade dos Gases O gás H2 é menos denso que o ar atmosférico O gás CO2 é mais denso que o ar atmosférico Gás hidrogênio (H2) Gás carbônico (CO2) Prof. Agamenon Roberto
  51. 51. A densidade absoluta de um gás é o quociente entre a massa e o volume deste gás medidos em certa temperatura e pressão P x V = n x R x T M m P x M d = R x T n P x M = n x R x T V m d Prof. Agamenon Roberto
  52. 52. 01) A densidade absoluta do gás oxigênio (O2) a 27ºC e 3 atm de pressão é: Dado: O = 16 u a) 16 g/L. b) 32 g/L. c) 3,9 g/L. d) 4,5 g/L. e) 1,0 g/L. d = x g/L MO2 = 32 u T = 27°C P = 3 atm R = 0,082 atm . L / mol . K + 273 = 300 K 96 24,6 = d = 3,9 g/L P x M d = R x T 3 x 32 = 0,082 x 300 Prof. Agamenon Roberto
  53. 53. Densidade nas CNTP T = 273 k P = 1 atm ou 760 mmHg R = 0,082 atm . L / mol . K ou R = 62,3 mmHg . L / mol . K 1 x M d = 0,082 x 273 M d = 22,4 Prof. Agamenon Roberto
  54. 54. É obtida quando comparamos as densidades de dois gases, isto é, quando dividimos as densidades dos gases, nas mesmas condições de temperatura e pressão DENSIDADE RELATIVA P x MA dA = R x T P x MB dB = R x T Gás A Gás B dA P x MA R x T = x dB R x T P x MB MA d A, B = MB Prof. Agamenon Roberto
  55. 55. 01) A densidade do gás carbônico em relação ao gás metano é igual a: Dados: H = 1u; C = 12 u; O = 16 u a) 44. b) 16. c) 2,75. d) 0,25 e) 5,46 CO2 ,CH4 d = M CO2 CH4 M 44 16 CO2 M = 12 + 2 x 16 = 44 u.m.a. = 2,75 CH4 M = 12 + 4 x 1 = 16 u.m.a. Prof. Agamenon Roberto
  56. 56. Uma densidade relativa muito importante é quando comparamos o gás com o ar atmosférico, que tem MASSA MOLAR MÉDIA de 28,96 g/mol d M A = 28,96 A , Ar Prof. Agamenon Roberto
  57. 57. 01) A densidade relativa do gás oxigênio (O2) em relação ao ar atmosférico é: Dado: O = 16 u a) 16. b) 2. c) 0,5. d) 1,1. e) 1,43 28,96 M O232 = 1,1d =, ArO2 Prof. Agamenon Roberto
  58. 58. DIFUSÃO E EFUSÃO Quando abrimos um recipiente contendo um perfume, após certo tempo sentimos o odor do perfume Isso ocorre porque algumas moléculas do perfume passam para a fase gasosa e se dispersam no ar chegando até nossas narinas Esta dispersão recebe o nome de DIFUSÃO Prof. Agamenon Roberto
  59. 59. Uma bola de festas com um certo tempo murcha, isto ocorre porque a bola tem poros e o gás que se encontrava dentro da bola sai por estes poros Este fenômeno denomina-se de EFUSÃO DIFUSÃO E EFUSÃO Prof. Agamenon Roberto
  60. 60. A velocidade de difusão e de efusão é dada pela LEI DE GRAHAM que diz: A velocidade de difusão e de efusão de um gás é inversamente proporcional à raiz quadrada de sua densidade Nas mesmas condições de temperatura e pressão a relação entre as densidades é igual à relação entre suas massas molares, então: = vB vA dA dB = vB vA MA MB Prof. Agamenon Roberto
  61. 61. Prof. Agamenon Roberto
  62. 62. 27 km/min, em determinadas condições de pressão e temperatura. Nas mesmas condições, a velocidade de difusão do gás oxigênio em km/h é de: Dados: H = 1 g/mol; O = 16 g/mol. a) 4 km/h. b) 108 km/h. c) 405 km/h. d) 240 km/h. e) 960 km/h. v H2 = 27 km/min= 27 km / (1/60) h 27 x 60 16 = 405 km/h v O2 = x km/h = vO2 vH2 MH2 MO2 v O2 = 2 32 27 x 60 4 v O2 = 1620 = 4 vO2 Prof. Agamenon Roberto
  63. 63. contém os gases y e z. O peso molecular do gás y é 4,0 e o peso molecular do gás z é 36,0. A velocidade de escoamento do gás y será maior em relação à do gás z: a) 3 vezes b) 8 vezes c) 9 vezes d) 10 vezes e) 12 vezes vy = 3 x vz 3 Mz = 36 u My = 4 u = vz vy My Mz = vz vy 36 4 9 Prof. Agamenon Roberto

×