Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

08 reacciones químicas

494 views

Published on

  • Be the first to comment

  • Be the first to like this

08 reacciones químicas

  1. 1. REACCIONES QUÍMICAS Unidad 8 1
  2. 2. Contenidos (1) 2 1.- Concepto de reacción química. 2.- Escritura esquemática y significado de las ecuaciones químicas. 3.- Teoría de las colisiones. 4.- Ajuste de las reacciones químicas: 4.1. Por tanteo. 4.2. Por ecuaciones.
  3. 3. Contenidos (2) 3 5.- Tipos de reacciones: 5.1. Reacciones de síntesis. 5..2. Reacciones de descomposición. 5.3. Reacciones de sustitución. 5.4. Reacciones de doble sustitución. 5.5. Importancia del oxígeno en reacciones de combustión. las
  4. 4. Contenidos (3) 4 6.- Estequiometría de una reacción química. 6.1. Cálculos con moles. 6.2. Cálculos con masas. 6.3. Cálculos con volúmenes en condiciones normales. 6.4. Cálculos con volúmenes en condiciones no normales. 6.5. Cálculos con reactivo limitante. 6.6. Cálculos con reactivos en disolución.
  5. 5. Contenidos (4) 5 7.Rendimiento de una reacción química. Riqueza. 8.- Algunas reacciones químicas importantes en la sociedad. (trabajo bibliográfico) 9.- La energía en las reacciones químicas. 9.1. Calor de reacción (rotura y formación de enlaces). 9.2. Reacciones exotérmicas y endotérmicas.
  6. 6. Concepto de reacción química. 6 “Es un proceso mediante el cual unas sustancias (reactivos) se transforman en otras (productos de la reacción) por la reorganización de los átomos conformando moléculas nuevas. Para ello es necesario que rompan enlaces en las moléculas originales y se formen enlaces nuevos”.
  7. 7. Ejemplo de reacción química. Reactivos 7 Productos En la reacción: H2 + I2 —→ 2 HI se rompen 1 enlace H—H y 1 enlace I —I y se forman 2 enlaces H—I
  8. 8. 8 carbono oxígeno monóxido de carbono carbono oxígeno dióxido de carbono Cloruro de hidrógeno cinc cloruro de cinc hidrógeno
  9. 9. 9 sulfato de cobre (II) hierro + etanol oxígeno sulfato de hierro (II) cobre + dióxido de carbono agua
  10. 10. 10 Ajuste de una reacción química. El número de átomos de cada elemento tiene que ser igual en los reactivos y en los productos. Se llama ajuste a la averiguación del número de moles de reactivos y productos. ¡CUIDADO! En el ajuste nunca pueden cambiarse los subíndices de las fórmulas de reactivos o productos. Métodos de ajuste: – Tanteo (en reacciones sencillas). – Algebraicamente (en reacciones más complejas) resolviendo un sistema de ecuaciones.
  11. 11. 11 Ejemplo: Ajustar la siguiente reacción: HBr +Fe → FeBr3 + H2 Sean a, b, c y d los coeficientes (número de moles) de los respectivos reactivos y productos. a HBr + b Fe → c FeBr3 + d H2 H) a = 2d Br) a = 3c Fe) b = c Sea d = 1; entonces a = 2, c = 2/3 y b = 2/3 Multiplicando todos los valores por 3 obtenemos los siguientes coeficientes: a = 6, b = 2, c = 2 y d = 3. Por tanto la ecuación ajustada será: 6 HBr +2 Fe → 2 FeBr3 + 3 H2
  12. 12. 12 Ejercicio: Ajusta las siguientes ecuaciones químicas por el método de tanteo: a) C3H8 + 5O2 → 3 2 + 4 2O CO H b) Na2CO3 + 2 HCl → 2 Cl + CO2 + H2O Na c) PBr3 + 3 H2O → 3HBr + H3PO3 3 d) CaO + C → CaC2 + CO 2 e) H2SO4 + BaCl2 → BaSO4 + HCl
  13. 13. 13 Ejercicio: Ajusta las siguientes ecuaciones químicas por el método algebraico: a) a KClO3 → b KCl + c O2 K) a = b; Cl) a = b; O) 3a = 2c Sea a = 1. Entonces b = 1 y c = 3/2 Multiplicando todos los coeficientes por 2: 2 KClO3 → 2 KCl + 3 O2 b) a HCl + b Al → c AlCl3 + d H2 H) a = 2d; Cl) a = 3c; Al) b = c Sea c = 1. Entonces b = 1, a = 3 y d = 3/2 Multiplicando todos los coeficientes por 2: 6 HCl + 2 Al → 2 AlCl3 + 3 H2
  14. 14. Ejercicio: Ajusta las siguiente ecuación 14 químicas por el método algebraico: a HNO3 + b Cu → c Cu(NO3)2 + d NO + e H2O H) a = 2e; N) a = 2c + d; O) 3a = 6c +d + e; Cu) b = c Sea c = 1. Entonces b = 1 y el sistema queda: a = 2e; a = 2 + d; 3a = 6 + d + e; Sustituyendo a: 2e = 2 + d; 6e = 6 + d + e Sistema de dos ecuaciones con dos incógnitas que resolviendo queda: e = 4/3; d= 2/3 con lo que a = 8/3 Multiplicando todos los coeficientes por 3: 8 HNO3 + 3 Cu → 3 Cu(NO3)2 + 2 NO + 4 H2O Comprobamos el nº de átomos de cada tipo antes y después de la reacción: 8 átomos de H (4 ·2), 8 de N (2·3 +2), 24 de O (8·3= 3·2·3 +2 +4) y 3 de Cu
  15. 15. Tipos de reacciones químicas 15 Síntesis: A + B → C 2 H2 + O2 → 2 H2O Síntesis Descomposición –Simple: A → B + C CaCO3 → CaO + CO2 –Mediante reactivo: AB + C → AC + BC 2 ZnS + 3 O2 → 2 ZnO + Sustitución 2 SO2 (desplazamiento): AB + C → AC + B Doble sustitución PbO + C → CO + Pb (doble desplazamiento): AB + CD → AC + BD HCl + NaOH → NaCl +
  16. 16. Estequiometría de una reacción química. 16 Es la proporción en moles en la que se combinan los distintos reactivos y en la que se forman los distintos productos de la reacción. Una vez determinado el número de moles de reactivos y productos (ajuste de la reacción) se puede hacer el cálculo en masa (gramos) o en volumen (litros) en el caso de gases o disoluciones.
  17. 17. Tipos de cálculos estequiométricos. 17 Con moles. Con masas. Con volúmenes (gases) – En condiciones normales. – En condiciones no normales. Con reactivo limitante. Con reactivos en disolución (volúmenes).
  18. 18. Ejemplo: En la reacción18 ajustada anteriormente: 6 HBr +2 Fe → 2 FeBr3 + 3H2 ¿qué cantidad de HBr reaccionará con 10 g de Fe y qué cantidades de FeBr3 e H2 se formarán? 6 HBr + 2 Fe —→ 2 FeBr3 + 3H2 6 moles 2 moles 485,4 g 111,6 g 2 moles 591,0 g 3 moles 6g ———— = ———— = ———— = ——— x 10 g y z Resolviendo las proporciones tendremos: 43,5 g 10 g 52,9 g 0,54 g
  19. 19. Ejercicio:Se tratan 40 g de oxido de aluminio, 19 con suficiente disolución de ácido sulfúrico en agua para que reaccione todo el óxido de aluminio y se forme sulfato de aluminio y agua. Calcula los moles del ácido que se necesitan y la masa de sulfato que se forma. Datos (u): Mat(Al) = 27, Mat(S) = 32, Mat(O) = 16, Mat(H) = 1 M (Al2O3) = 2 · 27 u + 3 · 16 u = 102 u M [ Al2(SO4)3 ]= 2 · 27 u + 3 · (32 u + 4 · 16 u) = 342 u Primero, ajustamos la reacción: Al2 O3 + 3 H2SO4 ————→ Al2(SO4)3 + 3 H2 O 1mol 3moles 1mol 3moles Se transforman los moles en “g” o “l” (o se dejan en “mol”)
  20. 20. Ejercicio:Se tratan 40 g de oxido de aluminio con 20 suficiente disolución de ácido sulfúrico en agua para que reaccione todo el óxido de aluminio y se forme sulfato de aluminio Al2(SO4)3 y agua. Calcula los moles del ácido que se necesitan y la masa de sulfato que se forma. Datos (u): Mat(Al) = 27, Mat(S) = 32, Mat(O) = 16, Mat(H) = 1 Al2 O3 + 3 H2SO4 ————→ Al2(SO4)3 + 3 H2 O 102 g 3 moles 342 g 40 g n (mol) m (g) 102 g 3 moles 40 g · 3 mol —— = ——— ⇒ n (mol) = ————— = 1,18 mol H2SO4 40 g n (mol) 102 g 102 g 342 g 40 g· 342 g —— = ——— ⇒ m (g) =————— = 134,12 g Al2(SO4)3 40 g m (g) 102 g
  21. 21. Ejemplo: Calcula el 21 volumen de dióxido de carbono que se desprenderá al quemar 1 kg de butano (C4H10) a) en condiciones normales b) a 5 atm y 50ºC. La reacción de combustión del butano es: C4H10 + 13/2 O2 → 4 CO2 + 5 H2O a) 1 mol 58 g 1000 g 4 moles 4 mol · 22,4 l/mol x x = 1544,8 litros
  22. 22. Ejercicio: Calcula el volumen de CO2 que se 22 desprenderá al quemar 1 kg de butano (C4H10) a) en condiciones normales b) a 5 atm y 50ºC. C4H10 + 13/2 O2 → 4 CO2 + 5 H2O b) Cuando las condiciones no son las normales es mejor hacer el cálculo en moles y después utilizar la fórmula de los gases: 58 g ————— 4 moles 1000 g ————— y ⇒ y = 69 moles n·R·T 69 mol · 0,082 atm · L · 323 K V = ———— = ————————————— = p mol · K 5 atm = 365,5 litros
  23. 23. Ejercicio: El oxígeno es un gas que se obtiene por 23 descomposición térmica del clorato de potasio en cloruro de potasio y oxígeno ¿Qué volumen de oxígeno medido a 19ºC y 746 mm Hg se obtendrá a partir de 7,82 g de clorato de potasio. Ecuación ajustada: 2 KClO3 →2 KCl + 3 O2 2 mol 3 mol 2 mol·122,6 g/mol = 245,2 g —— 3 mol 7,82 g —— n(O2) Resolviendo se obtiene que n (O2) = 0,0957 moles n · R · T 0,0957 moles · 0,082 atm · L · 292 K V= ———— = ——————————————— = p mol · K (746 / 760) atm = 2,33 litros
  24. 24. 24 Reacciones con reactivo limitante Hay veces que nos dan más de una cantidad de reactivos y/o productos. En estos casos, uno de los reactivos quedará en exceso y no reaccionará todo él. El otro reactivo se consume totalmente y se denomina reactivo limitante, ya que por limitante mucho que haya del otro no va a reaccionar más.
  25. 25. Ejemplo: Hacemos25 reaccionar 10 g de sodio metálico con 9 g de agua. Determina cuál de ellos actúa como reactivo limitante y qué masa de hidróxido de sodio se formará? En la reacción se desprende también hidrógeno 2 Na + 2 H2O → 2 NaOH + H2 46 g — 36 g ——— 80 g 10 g — m(H2O) — m(NaOH) ⇒ m(H2O) = 7,8 g lo que significa que el sodio es el reactivo limitante y que el agua está en exceso (no reaccionan 9 g – 7,8 g = 1,2 g) m (NaOH) = 80 g · 10 g / 46 g = 17,4 g
  26. 26. 26 Ejercicio: Hacemos reaccionar 25 g de nitrato de plata con cierta cantidad de cloruro de sodio y obtenemos 14 g de precipitado de cloruro de plata. Averigua la masa de nitrato de plata que no ha reaccionado. AgNO3 + NaCl → AgCl↓ + NaNO3 169,8 g ————— 143,3 g m ————— 14 g De donde se deduce que: m (AgNO3) que reacciona = 16,6 g m (AgNO3) sin reaccionar = 25 g – 16,6 g = 8,4 g
  27. 27. 27 Ejemplo: Añadimos 150 ml de disolución 2 M de hidróxido de sodio a otra disolución de sulfato de magnesio. Averigua la masa de hidróxido de magnesio que se formará si el sulfato de magnesio está en exceso. 2 NaOH + MgSO4 → Mg(OH)2 + Na2SO4 2 mol —————— 58,3 g 0,15 L · 2 mol/L ————— m De donde se deduce que: m (Mg(OH)2) = 0,3 mol · 58,3 g / 2 mol = 8,7 g
  28. 28. El rendimiento en las reacciones químicas. 28 En casi todas las reacciones químicas suele obtenerse menor cantidad de producto dela esperada a partir de los cálculos estequiométricos. Esto se debe a: – Perdida de material al manipularlo. – Condiciones inadecuadas de la reacción. – Reacciones paralelas que formas otros productos. Se llama rendimiento a: mproducto (obtenida) Rendimiento = ———————— · 100 mproducto (teórica)
  29. 29. Ejemplo: A 10 ml de disolución de cloruro de 29 sodio 1 M añadimos nitrato de plata en cantidad suficiente para que precipite todo el cloruro de plata. Determina la masa de este producto que obtendremos si el rendimiento de la reacción es del 85 %. n(NaCl) = V · Molaridad = 0,01 L · 1 mol/L NaCl + AgNO3 → AgCl↓ + NaNO3 1 mol 143,4 g 0,01 mol m (AgCl) De donde m(AgCl) = 1,43 g 1,434 g · 85 mAgCl (obtenida) = ————— = 1,22 g 100
  30. 30. Riqueza 30 La mayor parte de las sustancias no suelen encontrarse en estado puro. Se llama riqueza al % de sustancia pura que tiene la muestra. m (sustancia pura) riqueza = ———————— · 100 m (muestra) Ejemplo: Si decimos que tenemos 200 g de NaOH al 96 %, en realidad sólo tenemos 96 200 g · ——— = 192 g de NaOH puro 100
  31. 31. Ejemplo: Tratamos una muestra de cinc con ácido31 clorhídrico del 70 % de riqueza. Si se precisan 150 g de ácido para que reaccione todo el cinc, calcula el volumen de hidrógeno desprendido en C.N. 150 g · 70 m (HCl) = ———— = 105 g 100 Zn + 2 HCl → ZnCl2 + H2↑ 73 g 22,4 L 105 g V(H2) De donde V = 105 g · 22,4 L / 73 g = 32,2 litros
  32. 32. Cuestión de Cuestión de Selectividad Selectividad (Marzo 98) (Marzo 98) Un gasóleo de calefacción contiene un 0,11 % 32 en peso de azufre. a) Calcule los litros de dióxido de azufre (medidos a 20ºC y 1 atm) que se producirán al quemar totalmente 100 kg de gasóleo. b) Comente los efectos de las emisiones de dióxido de azufre sobre las personas y el medio ambiente. DATOS: Masas atómicas: S=32; O=16 a) 100 kg · 0,11 m (S) = —————— = 0,11 kg = 110 g 100 S + O2 → SO2↑ 32 g 1 mol ——— = ——— ⇒ n(SO2) = 3,4 moles 110 g n(SO2) n · R · T 3,4 mol · 0’082 atm · L · 293 K V= ———– = ————————————— = 82,6 L p mol · K 1 atm
  33. 33. Energía de las reacciones químicas. 33 En todas las reacciones químicas se produce un intercambio energético con el medio (normalmente en forma de calor) debido a que la energía almacenada en los enlaces de los reactivos es distinta a la almacenada en los enlaces de los productos de la reacción. ∆EREACCIÓN = EPRODUCTOS – EREACTIVOS
  34. 34. Energía de las reacciones químicas (continuación). 34 Si en la reacción se desprende calor ésta se denomina “exotérmica” y si se consume calor se denomina “endotérmica”. Si ∆EREACCIÓN > 0, EPRODUCTOS > EREACTIVOS por tanto, se absorbe calor ⇒ endotérmica Si ∆EREACCIÓN < 0, EPRODUCTOS < EREACTIVOS por tanto, se desprende calor ⇒ exotérmica
  35. 35. Ejemplos de reacciones termoquímicas 35 Reacción endotérmica: 2 HgO (s) +181,6 kJ → 2 Hg (l) + O2 (g) Se puede escribir: 2 HgO (s) → 2 Hg (l) + O2(g); ∆ER = 181,6 kJ Reacción exotérmica: C (s) + O2 (g) → CO2 (g) +393,5 kJ Se puede escribir: C (s) + O2 (g) → CO2 (g); ∆ER = –393,5 kJ
  36. 36. Ejercicio: La descomposición de 2 moles de óxido de 36 mercurio (II) en mercurio y oxígeno precisa 181,6 kJ a 25 ºC y 1 atm de presión: a) calcula la energía necesaria para descomponer 649,8 g de HgO; b) el volumen de O2 que se obtiene en esas condiciones cuando se descompone la cantidad suficiente de HgO mediante 500 kJ. 2 HgO → 2 Hg + O2 ; ∆E = 181,6 kJ 433,18 g 1 mol a) 649,8 g De donde ∆E = 272,41 kJ b) n(O2) 181,6 kJ ∆E 500 kJ n(O2) = 500 kJ · 1 mol/ 181,6 kJ = 2,75 mol V(O ) = n(O ) ·R·T / p = 67,2 litros
  37. 37. Teoría de las colisiones 37 Para que se produzca una reacción química es necesario: 1º) que los átomos o moléculas posean la energía cinética suficiente para que al chocar puedan romperse los enlaces de los reactivos (energía de activación). 2º) que el choque posea la orientación adecuada para que puedan formarse los enlaces nuevos.
  38. 38. 38 Perfil de una reacción Energía Energía de activación productos reactivos reactivos productos Energía de reacción
  39. 39. Catalizadores 39 Son sustancias que, incluso en cantidades muy pequeñas influyen la velocidad de una reacción, pues aunque no intervengan en la reacción global, si intervienen en su mecanismo con lo que consiguen variar la energía de activación (normalmente disminuirla para que la reacción se acelere).
  40. 40. Perfil de una reacción (sin y con catalizador) Energía d sin cataliza c c on reactivos at or 40 Energías de activación or zad ali Q productos
  41. 41. Procesos reversibles e irreversibles 41 Un proceso irreversible es el que tiene lugar en un sólo sentido. Por ejemplo, una combustión; la energía desprendida se utiliza en calentar el ambiente y se hace inaprovechable para regenerar los reactivos. Un proceso es reversible cuando tiene lugar en ambos sentidos, es decir, los productos una vez formados reaccionan entre sí y vuelven a generar los reactivos.
  42. 42. Ejemplo de proceso reversible 42 La reacción de formación del ioduro de hidrógeno es reversible: H2 (g) + I2 (g) 2 HI (g) El símbolo se utiliza en las reacciones reversibles para indicar que la reacción se produce en ambos sentidos.

×