Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
ALUNO(A)                                                 Nº                                              Gabarito.        ...
3. O teorema das cordas diz: “Se duas cordas de uma circunferência se interceptam, o   produto das medidas dos segmentos d...
5. Teorema: “Em dois segmentos secantes que se interceptam no exterior da   circunferência, o produto da medida de um dele...
7. Qual é o valor da área do polígono ABDE?   Resposta:   Dados do trapézio :   b = 2 − 0 = 2                        Áre...
9. Qual é o valor da área pintada da figura abaixo?   Resposta:    EH = l      Área do quadrado = l ²       Usando o te...
Upcoming SlideShare
Loading in …5
×

Vf 2etapa gabarito_ 9a_medidas_2011

1,127 views

Published on

  • Be the first to comment

Vf 2etapa gabarito_ 9a_medidas_2011

  1. 1. ALUNO(A) Nº Gabarito. SÉRIE ENSINO TURNO NOTA 9º ano Fundamental II Manhã PROFESSOR(A) DATA Joelson Lima Verificação final da 2ª etapa pedagógicaObservação: é obrigatório apresentar todos os cálculos de maneira organizada usando lápis(grafite). 1. Sabendo que um triângulo inscrito numa circunferência cujo lado coincide com o diâmetro, é chamado triangulo retângulo, qual é o valor do raio da circunferência da figura abaixo? a = n + m = 2 * r a ² = b ² + c ²   USE : b ² = a * m c ² = a * n  h ² = m * n  Resposta:  Dados : h ² = m * n a = m + n = 2r h = 8 8² = 4 x 4 + 16 = 2r   → → m = 4 64 = 4 x 2r = 20 n = x  x = 16 r = 10 Portanto o raio é igual a 10 2. Observando a figura a seguir, qual é o valor de x ² ? Resposta: Pelo teorema de Pitágoras :  Dados : a ² = b² + c²  AB = 5 8² = x ² + 5²   →  AD = 3 + 5 = 8 64 = x ² + 25  AC = 5  x ² = 64 − 25 x ² = 39
  2. 2. 3. O teorema das cordas diz: “Se duas cordas de uma circunferência se interceptam, o produto das medidas dos segmentos determinados sobre uma delas é igual ao produto das medidas dos segmentos determinados sobre a outra.”. Na figura a seguir, o valor das medidas dos segmentos DF e CF, valem respectivamente: Resposta: x * 9 = 6 * ( x + 1) 9x = 6x + 6 DF = 2 9x − 6x = 6 → CF = 2 + 1 = 3 3x = 6 x=24. O valor de x na figura a seguir é igual a: Resposta:  Dados :  AG = AB = 13 x * x = 8 * 18   x ² = 144 CG = 8 a  AC = AG − CG = 13 − 8 = 5 x = 144  x = 12 CB = 13 + 5 = 18 
  3. 3. 5. Teorema: “Em dois segmentos secantes que se interceptam no exterior da circunferência, o produto da medida de um deles pela medida da sua parte externa é igual ao produto da medida do outro pela medida da sua parte externa.”. Sendo assim, o valor da expressão EF + EG + DG + BD é igual a: Resposta:  Dados : 4 * (4 + x) = 2 *18  FG = 4 + x 16 + 4 x = 36   EF + EG + DG + BD =  EG = 4 a 4 x = 36 − 16 a GB = 2 + 8 + 8 = 18 = 5 + 4 + 2 + 16 = 27 4 x = 20    DG = 2 x=56. A medida do diâmetro da circunferência na figura a seguir é igual a: Resposta: (3 5 )2 = 5 * (2 x + 5) 9 * 5 = 10 x + 25  Dados :  45 = 10 x + 25  BF = 2 x a a Diâmetro = 2 x = 2 * 2 = 4  BD = 2 x + 5 10 x = 45 − 25  10 x = 20 x=2
  4. 4. 7. Qual é o valor da área do polígono ABDE? Resposta: Dados do trapézio : b = 2 − 0 = 2 Área do trapézio :  B = 4 − 0 = 4 A= (2 + 4)* 3 = 9  2 h = 3 − 0 = 3 a a Área total = 9 + 4 = 13 Dados do triângulo retângulo : Área do triângulo :  4* 2 h = 4 − 0 = 4 A= =4 b = 5 − 3 = 2 2 8. Qual é o valor da área não pintada da figura a seguir? A = π * r²  Use :  A = b * h a ² = b ² + c ² Resposta: Dados : 4² = l ² + l ² EB = 2 + 2 = 4 a 16 = 2l ² a A área do quadrado é igual a 8. BC = l l² = 8Área da circunferência : Área não pintada :Ac = π * r ² a Ac − Aq = 4π − 8Ac = π * 2² = 4π
  5. 5. 9. Qual é o valor da área pintada da figura abaixo? Resposta:  EH = l  Área do quadrado = l ² Usando o teorema de Pitágoras : Triângulo retângulo :  l ² = 3² + 1²  a  hipotenusa = l l² = 9 +1 cateto 1 = 3 l ² = 10  cateto 2 = 1  Portanto a área do quadrado é igual a 10.10. ABCD é um quadrado. Qual é o valor da área da parte não pintada da figura? A = π *r² Use :  A = b*h Resposta:  Acircunferência π * 3² Área não pintada = Aquadrado −  4 = 3² − 4 =  = 9 − 9π = 36 − 9π = 9 * (4 − π )   4 4 4 Boa Prova!

×