Upcoming SlideShare
×

# Visualizing Data

1,641 views

Published on

Talk I gave on April 9, 2013 for a post-doc position. Intended to be a lecture from an undergraduate level political science introductory statistics course.

Published in: Education, Technology
0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total views
1,641
On SlideShare
0
From Embeds
0
Number of Embeds
1,201
Actions
Shares
0
7
0
Likes
0
Embeds 0
No embeds

No notes for slide

### Visualizing Data

1. 1. Visualizing Data Jeff Arnold April 9, 2013 Emory University, Atlanta
2. 2. Data Viz is Everywhere Business / Economics Weather Sports Finance
3. 3. Outline Examples1.  Florence Nightingale2.  Challenger Explosion What is it? How does it work? When doesnt it work?
4. 4. Examples
5. 5. Florence Nightingale
6. 6. Challenger Explosion
7. 7. What is DataVisualization?
8. 8. Grammar of Graphics
9. 9. Grammar of Graphics
10. 10. Grammar of Graphics Geometric Shapes points lines bars text Aesthetics: convey information x position y position size of elements shape of elements color of elements
11. 11. Data and Aesthetics
12. 12. How does it work? PATTERNS PATTERNS PATTRESN PATTERNS
13. 13. Anscombe Quartet
14. 14. Looking for Patterns
15. 15. Plots are ComparisonsActual Data Expected Data
16. 16. When (and why) does it not work? 1.  Too many variables 2.  Too many observations 3.  Perceptual biases 4.  Understanding randomness
17. 17. Too Many Variables
18. 18. Too Many Observations (I)
19. 19. Too Many Observations (II)
20. 20. Too Many Observations (III)
21. 21. Visual Perception BiasesQ: What is the value of a ­ b? Does it change?
22. 22. Visual Perception Biases A: a ­ b = 2 everywhere.
23. 23. Visual Perception Biases
24. 24. Visual Perception Biases
25. 25. Understanding RandomnessQ: In which plot were the points selected from a uniform random distribution?
26. 26. Understanding Randomness A: The plot on the right.
27. 27. ConclusionData visualization and statistics are complementary Data visualization intuitive cognitive biases Statistical methods un­intuitive overcome our cognitive biases
28. 28. Questions?
29. 29. ReferencesNightingale receiving the Wounded at Scutari, By Jerry BarrettDiagram of the Causes of Mortality in the Army in the East, by Florence NightingaleSpace Shuttle Challenger explodes shortly after take­off.Plot of GE vs. SP500 from Yahoo! FinanceKimmo Soramaki, Morten L. Bech, Jeffrey Arnold, Robert J. Glass and Walter E. Beyeler (2007). "The Topology of urlInterbank Payment Flows", Physica A.  urlHadley Wickham (2010). "A Layered Grammar of Graphics", Journal of Computational and Graphical Statistics.