Successfully reported this slideshow.

Global Change, Species Diversity, and the Future of Marine Ecosystems

941 views

Published on

Published in: Technology
  • Be the first to comment

Global Change, Species Diversity, and the Future of Marine Ecosystems

  1. 1. Global Change, SpeciesDiversity, and the Future of Marine Ecosystems !"##$%&(#)$*&!"#$%"&()%*)+,$+-.$&$/0."&1%"&2303"%4 52%*6)303 6789::;"++)7<2+%)3=0%,$
  2. 2. >0?08)40"=$+/
  3. 3. 0*3@2$.)"%=$+/
  4. 4. We Rarely Think Beyond the Direct Effects of Climate Change+&,$#-$*&./&0,0&1$2&./&3).45$67$&,$"#89$*&A.&0@"*).6"%/)A1!BA0@8".*A9CDEFDGA.&0@"*).6"%/)A1!BA0@8".*A1!BA0%40+).*A9HGI :;<=&!"#$%&&()#*"+#$",-.&"/0"1*#2%-0"%03#A.&0@"*).6"%/)A1!BA0@8".*A9JECKLA.&0@"*).6"%/)A1!BA0@8".*A1!BA0%40+).*A9DMF >;?=&
  5. 5. Climate Change in a Systems Context N+))%6$O3) N"3 -%P0+$%@)%*"& -@0330$%3 (6"%/) Q+/"%03@"& R6230$&$/2 R$8O&"#$% B2%"@0.3 ($@@O%0*2 5*+O.*O+) -.$323*)@ SO%.#$%
  6. 6. Global Change in a Systems Context -%P0+$%@)%*"& (6"%/) Q+/"%03@"& R6230$&$/2 R$8O&"#$% B2%"@0.3 ($@@O%0*2 5*+O.*O+) -.$323*)@ SO%.#$%
  7. 7. Global Change in a Systems Context -%P0+$%@)%*"& (6"%/) D=  R+)4"*$+40P)+30*2"%4 *+$860..$%*+$&0%,$O&0%/ Q+/"%03@"& .$@@O%0#)3 R6230$&$/2 C=  T)&"#P)0@8$+*"%.)$, R$8O&"#$% B2%"@0.3 40P)+30*2U)%P0+$%@)%*"& 4+0P)+3,$+8+$4O.#P0*2 F.BBD)-A(& ,A#D8AD#$& F=  (&0@"*).6"%/)"%4?)&8 ,$+)3*3 @8.*(*A$B& CD)8E.)& K=  SO*O+)B0+).#$%3
  8. 8. Global Change in a Systems Context @)G-#.)B$)A"5& F9")7$& D=  R+)4"*$+40P)+30*2"%4 *+$860..$%*+$&0%,$O&0%/ Q+/"%03@"& .$@@O%0#)3 R6230$&$/2 C=  T)&"#P)0@8$+*"%.)$, R$8O&"#$% B2%"@0.3 40P)+30*2U)%P0+$%@)%*"& 4+0P)+3,$+8+$4O.#P0*2 F.BBD)-A(& ,A#D8AD#$& F=  (&0@"*).6"%/)"%4?)&8 ,$+)3*3 @8.*(*A$B& CD)8E.)& K=  SO*O+)B0+).#$%3
  9. 9. Global Change in a Systems Context @)G-#.)B$)A"5& F9")7$& D=  R+)4"*$+40P)+30*2"%4 *+$860..$%*+$&0%,$O&0%/ Q+/"%03@"& .$@@O%0#)3 R6230$&$/2 C=  T)&"#P)0@8$+*"%.)$, H.ID5"E.)& 40P)+30*2U)%P0+$%@)%*"& J()"B-8*& 4+0P)+3,$+8+$4O.#P0*2 F.BBD)-A(& ,A#D8AD#$& F=  (&0@"*).6"%/)"%4?)&8 ,$+)3*3 @8.*(*A$B& CD)8E.)& K=  SO*O+)B0+).#$%3
  10. 10. Global Change in a Systems Context @)G-#.)B$)A"5& F9")7$& D=  R+)4"*$+40P)+30*2"%4 *+$860..$%*+$&0%,$O&0%/ K#7")-*B"5& .$@@O%0#)3 H9(*-.5.7(& C=  T)&"#P)0@8$+*"%.)$, H.ID5"E.)& 40P)+30*2U)%P0+$%@)%*"& J()"B-8*& 4+0P)+3,$+8+$4O.#P0*2 F.BBD)-A(& ,A#D8AD#$& F=  (&0@"*).6"%/)"%4?)&8 ,$+)3*3 @8.*(*A$B& CD)8E.)& K=  SO*O+)B0+).#$%3
  11. 11. Global Change in a Systems Context -%P0+$%@)%*"& (6"%/) D=  R+)4"*$+40P)+30*2"%4 *+$860..$%*+$&0%,$O&0%/ Q+/"%03@"& .$@@O%0#)3 R6230$&$/2 C=  T)&"#P)0@8$+*"%.)$, R$8O&"#$% B2%"@0.3 40P)+30*2U)%P0+$%@)%*"& 4+0P)+3,$+8+$4O.#P0*2 F.BBD)-A(& ,A#D8AD#$& F=  (&0@"*).6"%/)"%4?)&8 ,$+)3*3 @8.*(*A$B& CD)8E.)& K=  SO*O+)B0+).#$%3
  12. 12. Does Community Structure Alter Ecosystem Function? D=  R+)4"*$+40P)+30*2U F.BBD)-A(& "<O%4"%.) ,A#D8AD#$& C=  V)+<0P$+)40P)+30*2U "<O%4"%.) @8.*(*A$B& CD)8E.)& >"*)+W&*+"#$%
  13. 13. 6789::XXX=X)&&=.$@:O3)+:4"P04O:)Y#%.#$%=6*@&
  14. 14. Does Diversity AlterEcosystem Function? R&"%*)458).0)3T0.6%)33 Z0&@"%)*"&=EDJJI!"*O+)
  15. 15. ]".?0)5$%)3[+031O0&0%$
  16. 16. +#$"*&.)&J.8L*&4-A9&M-79$#&H#$6"A.#& J-G$#*-A(&9"G$&N.#$&C#$$&,I"8$&•  SO%.#$%"&N+$O85&04) TC(QT^G=HI O-89)$**&IPQ;QQQ:R& B)%30*28^G=DCL T0.6%)33_B)%30*28^G=IFK R+)4"*$+58).0)3T0.6%)33
  17. 17. High Density only Found With High Diversity R+)4"*$+ R+)4"*$+ T0.6%)33 B)%30*2 b b a"+) 58".) b R`G=GGGD TC^G=LD >"*)+ S0&*+"#$% R+)4"*$+58).0)3T0.6%)33
  18. 18. ]".?0)5$%)3 c0@8)*3 (+"< 4&5*#-/*16*# 9*%:)(.*7363#%.*33-703# [+031O0&0%$ d+.60% (60*$%21.&"()&%0"1.&163#76.76.*163# 8&7*-*#/63%&3*#
  19. 19. Manipulation of Both Diversity and Density !^I,$+)".6e$%$.O&*O+)3 38).0)3"%4 4)%30*2C58).0)3 !^F,$+)".6($@<0%"#$%3 .$@<0%"#$% "%44)%30*2R$&2.O&*O+) !^L
  20. 20. 5)7&)@)%*R"%)& DM.@YCG.@ R+)4"*$+30%."/)
  21. 21. •  ("/)3B)8&$2)4d%4)+B$.?3,$+D2)"+•  e0330%/($%3O@)+3T)8&".)4fO"+*)+&2
  22. 22. 5"@8&)4,$+8)+.)%*.$P)+$,"&&38).0)3
  23. 23. C-5A#"E.)&F"I"8-A(S&gR"%)&38&".)40%*"%?3$,+"X3)"X"*)+g!"#,-,&.6&$+$862&&3"@8&)4"h)+D6$O+
  24. 24. Conceptual Model H#$6"A.#& T#$"AB$)A& ,$**-5$& F.BBD)-A(& ,A#D8AD#$& ,$**-5$& F.BBD)-A(& CD)8E.)&
  25. 25. Describing our Experiment with Structural Equation Modeling H#$6"A.#& H#$6"A.#& O-89)$**& J$)*-A(& O-89)$**UJ$)*-A(& ,$**-5$& F.BBD)-A(& ,A#D8AD#$& ,$**-5$& F.BBD)-A(& CD)8E.)&
  26. 26. Describing our Experiment with Structural Equation Modeling H#$6"A.#& H#$6"A.#& O-89)$**& J$)*-A(& O-89)$**UJ$)*-A(& ,$**-5$& ,$**-5$& O-89)$**& =&F.G$#& ,$**-5$& F.BBD)-A(& CD)8E.)&
  27. 27. Describing our Experiment with Structural Equation Modeling H#$6"A.#& H#$6"A.#& O-89)$**& J$)*-A(& O-89)$**UJ$)*-A(& ,$**-5$& ,$**-5$& O-89)$**& =&F.G$#& H5")LA.)& H5")LA.)& T-B$&Q& T-B$&>&
  28. 28. Predator Richness Indirectly Affects Water Filtration H#$6"A.#& G=KC H#$6"A.#& i H#$6"A.#&6$)*-A(&4).+)"3)3 O-89)$**& J$)*-A(& 3)330&)j.$P)+gG=FK gG=FG i H#$6"A.#&#-89)$**&+)4O.)3 G=KM 3)330&)38).0)3+0.6%)33 ,$**-5$& ,$**-5$& O-89)$**& =&F.G$#& i ,$**-5$&#-89)$**&0%.+)"3)3 gG=DI gG=FG 3)330&)j.$P)+ gG=DL H5")LA.)& T-B$&>& O:PQ;<R& T$<O3*!C^FI=MHEBS^FGER^G=DJ
  29. 29. Predator Richness Indirectly Affects Water Filtration H#$6"A.#& G=KC H#$6"A.#& i H#$6"A.#&6$)*-A(&4).+)"3)3 O-89)$**& J$)*-A(& 3)330&)j.$P)+gG=FK gG=FG i H#$6"A.#&#-89)$**&+)4O.)3 G=KM 3)330&)38).0)3+0.6%)33 ,$**-5$& ,$**-5$& O-89)$**& =&F.G$#& i ,$**-5$&#-89)$**&0%.+)"3)3 gG=DI gG=FG 3)330&)j.$P)+ gG=DL i B0P)+3)E60/6.$P)+ H5")LA.)& .$@@O%0#)3W&*)+@$+) T-B$&>& O:PQ;<R& T$<O3*!C^FI=MHEBS^FGER^G=DJ
  30. 30. ;&<0.=*">-*#
  31. 31. @*10.3-7&.*#2%:-?&7&.0*#
  32. 32. H#$6"A.#*&H"#EE.)&O$*.D#8$*& F9-A.)*& V#89-)*& W-BI$A*& F#"2*& ,.5-A"#(& KA9$#& F.5.)-"5& .4$#2")L-"& 1"A$#*-I.#"& +D#$5-"& TD)-8"A$*& #(.X.")*& TD)-8"A$*& H5")LA.)& H5")LA.)& T-B$&Q& T-B$&>& O:PQ;<Y:&T$<O3*!C^DG=IIEBS^CKER^G=JJD
  33. 33. H#$6"A.#*&H"#EE.)&O$*.D#8$*& F9-A.)*& V#89-)*& W-BI$A*& F#"2*& ,.5-A"#(& KA9$#& F.5.)-"5& .4$#2")L-"& 1"A$#*-I.#"& +D#$5-"& TD)-8"A$*& #(.X.")*& TD)-8"A$*& H5")LA.)& H5")LA.)& T-B$&Q& T-B$&>& O:PQ;<Y:&T$<O3*!C^DG=IIEBS^CKER^G=JJD
  34. 34. Predator Diversity and Control of Water FiltrationF.BBD)-A(& •  R+)4"*$+40P)+30*26"3"%-)6-#$8A ,A#D8AD#$& )k).*$%X"*)+W&*+"#$% –  l0"0%.+)"30%/8+)4"*$+4)%30*2 –  l0"+)4O.0%/8+)240P)+30*2 •  R+)240P)+30*2U"<O%4"%.)@8.*(*A$B& CD)8E.)& ;$0%*&20%mO)%.)X"*)+W&*+"#$%
  35. 35. Global Change in a Systems Context @)G-#.)B$)A"5& F9")7$& D=  R+)4"*$+40P)+30*2"%4 *+$860..$%*+$&0%,$O&0%/ Q+/"%03@"& .$@@O%0#)3 R6230$&$/2 C=  T)&"#P)0@8$+*"%.)$, R$8O&"#$% B2%"@0.3 40P)+30*2U)%P0+$%@)%*"& 4+0P)+3,$+8+$4O.#P0*2 F.BBD)-A(& ,A#D8AD#$& F=  (&0@"*).6"%/)"%4?)&8 ,$+)3*3 @8.*(*A$B& CD)8E.)& K=  SO*O+)B0+).#$%3
  36. 36. Which Driver has a Stronger Impact on Ecosystem Function? @)G-#.)B$)A"5& F.BBD)-A(& F9")7$& ,A#D8AD#$& @8.*(*A$B& CD)8E.)&
  37. 37. Meta-Analysis of Diversity ManipulationsDatabase: Experiments ! 574 independent experiments ! 192 peer-reviewed papers ! 541 types of organisms (spp, morphs) ! 30 biomes ! 5 continents •  Effect of diversity = log(polyculture/monoculture)
  38. 38. Meta-Analysis of Diversity and Environmental Manipulations &$/nR$&2.O&*O+):e$%$.O&*O+)o -k).*$%R+$4O.#P0*2("+40%"&))*"&=CGDD1]a
  39. 39. What About the Environment?•  1@)*"g"%"&2303$,@)*"g"%"&23)3•  DL@)*"g"%"&23)3/0P0%/IM @)"3O+)3$,*6))k).*$, )%P0+$%@)%*"&.6"%/)$% 8+$4O.#P0*2•  ("&.O&"*)4<$$*3*+"88)4&$/g +"#$39 &$/n*+)"*@)%*8+$4=:.$%*+$&8+$4=o
  40. 40. Nonlinear Effect of Diversity on Productivity N"**& @ZE)8E.)& @ZE)8E.)&/#.B& [Q=&M"2-A"A&W.**&V$$8)+E14"0+E("+40%"&)Ea2+%)3)*"&=p%T)P0)X
  41. 41. Drought Effects Comparable to Mass Extinction N"**& @ZE)8E.)& qLHj38).0)3&$33 @ZE)8E.)&/#.B& [Q=&M"2-A"A&W.**&V$$8)+E14"0+E("+40%"&)Ea2+%)3)*"&=p%T)P0)X
  42. 42. Warming and CO2 Comparable to Extinction from Habitat Loss N"**& @ZE)8E.)& qLHj38).0)3&$33 @ZE)8E.)&/#.B& [Q=&M"2-A"A&W.**& qIGj38).0)3&$33 qKGj38).0)3&$33 DA&$)G-#.)B$)A"5&$$8A*&B"(&0]FWVJ@&6-G$#*-A(&$$8A*&-)&A9$-#&$*EB"A$&V$$8)+E14"0+E("+40%"&)Ea2+%)3)*"&=p%T)P0)X
  43. 43. Experiments Show Diversity Loss Comparable to Climate Change N"**& @ZE)8E.)& @ZE)8E.)&/#.B& [Q=&M"2-A"A&W.**& c$X3"@8&)30r) qHHj38).0)3&$33 qCHj38).0)3&$33
  44. 44. Both the Environment and Community Structure Drive Ecosystem Function •  B0P)+30*2&$33"%4.&0@"*)@)G-#.)B$)A"5& F.BBD)-A(& F9")7$& ,A#D8AD#$& .6"%/)6"P).$@8"+"<&) 0@8".*3$%8+$4O.#P0*2 •  adZ.&0@"*).6"%/) 0@8".*3@"2<)"&*)+)4<2 @8.*(*A$B& .6"%/)30%40P)+30*2 CD)8E.)&
  45. 45. Global Change in a Systems Context @)G-#.)B$)A"5& F9")7$& D=  R+)4"*$+40P)+30*2"%4 *+$860..$%*+$&0%,$O&0%/ Q+/"%03@"& .$@@O%0#)3 R6230$&$/2 C=  T)&"#P)0@8$+*"%.)$, H.ID5"E.)& 40P)+30*2U)%P0+$%@)%*"& J()"B-8*& 4+0P)+3,$+8+$4O.#P0*2 F.BBD)-A(& ,A#D8AD#$& F=  (&0@"*).6"%/)"%4?)&8 ,$+)3*3 @8.*(*A$B& CD)8E.)& K=  SO*O+)B0+).#$%3
  46. 46. Will Environmental Change have Cascading Consequences? @)G-#.)B$)A"5& F9")7$& H.ID5"E.)&& J()"B-8*& F.BBD)-A(& ,A#D8AD#$&
  47. 47. s5ap%4)8)%4)%*
  48. 48. T9$&C..6&1$2&/.#&+55&3$5I&C.#$*A&,I$8-$*&,"BI5$6&2(& A9$&,F&WT@O& Z$8 R+)4"*$+3 1&/")U 5)330&) p%P)+*3
  49. 49. Climate Models Predict Increases in Storm Intensity with Climate Change pR((1TK
  50. 50. California Storm Intensity Increased over the Last 50 Years 1200 1-)A$#&8B&]TO&1"G$&M$-79A& 1000 800 600 400 200 5"%S+"%.03.$Z04)N"O/) 0 1860 1880 1900 1920 1940 1960 1980 2000a+$@0+3?001#*=CGGF]$O+%"&$,(&0@"*)
  51. 51. J-#$8A&")6&0)6-#$8A&@$8A*&./&1"G$*&.)&C..6& 1$2*& S$$4>)<B0P)+30*2 1%45*+O.*O+) [)&8 >"P) B03*O+<"%.)
  52. 52. J.$*&3$5I&O$B.G"5&+5A$#&C..6&1$2*^& •  4 Reefs selected in 2008 with paired 40x40m areas • Giant Kelp removed in experimental plots every January to simulate disturbance
  53. 53. Effect of Kelp Removal on Richness Change After Multiple Removals Byrnes et al. 2011 Global Change Biology
  54. 54. Santa Barbara Coastal LTER Sampling of Rocky Reefs 2000-2009
  55. 55. Sampling of Rocky Reefs 2000-2009 •  40x2m transects •  Winter largest wave disturbance from CDIP •  Spring Kelp from LANDSAT •  Quadrat, swath, and point counts for giant kelp & 250 other conspicuous algae, fish, and invertebrates •  Feeding links derived from peer reviewed literature, CDFG reports, dissertations, and expert knowledge
  56. 56. Food Webs VaryDramatically in Space
  57. 57. Food Webs Vary Dramatically over Time 2001 2007
  58. 58. Quantifying Food Web Structure M$#2-G.#$* i 58).0)3T0.6%)33 g<2,O%.#$%"&/+$O8 i c0%?"/)B)%30*2 i )*.t +57"$
  59. 59. J-#$8A&")6&0)6-#$8A&@$8A*&./&1"G$*&.)&C..6& 1$2*& S$$4>)<B0P)+30*2 1%45*+O.*O+) [)&8 >"P) B03*O+<"%.)
  60. 60. Measuring Wave Disturbance>0%*)+>"P)V)0/6* c1!B51Z58+0%/[)&8("%$82 e)"3O+)@)%*3 e)"3O+)@)%*3 ("P"%"O/6)*"&=CGDDe-R5
  61. 61. J-#$8A&")6&0)6-#$8A&@$8A*&./&1"G$*&.)&C..6& 1$2*& S$$4>)<B0P)+30*2 1%45*+O.*O+) 5O@@)+ [)&8 58+0%/ [)&8 >0%*)+>"P) B03*O+<"%.)
  62. 62. J-#$8A&")6&0)6-#$8A&@$8A*&./&1"G$*&.)&C..6& 1$2*& S$$4>)<B0P)+30*2 1%45*+O.*O+) 5O@@)+ [)&8 58+0%/ [)&8 >0%*)+>"P) >"P)_[)&8 c"3*u)"+ 3 B03*O+<"%.) p%*)+".#$% [)&8
  63. 63. @$8A&./&1"G$*&.)&3$5I&0)6-#$8A_&2DA& J$I$)6$)A&.)&C.#$*A&,A"A$& c0%?"/)B)%30*2 G=KK G=DK 58).0)3T0.6%)33 gG=CF G=CJ 5O@@)+[)&8 B)%30*2 G=KC G=FL 58+0%/[)&8 ("%$82 gG=IJ G=LJ >"P) c"3*u)"+ 3 [)&8_>"P) [)&8B)%30*2 B03*O+<"%.) p%*)+".#$% a2+%)3)*"&=CGDDN&$<"&(6"%/)a0$&=
  64. 64. ,-BD5"E.)*&A.&H#$6-8A&J-$#$)A&F5-B"A$& ,8$)"#-.*& c0%?"/)B)%30*2 G=KK gG=CF G=DK 58).0)3T0.6%)33 G=CJ 5O@@)+[)&8 B)%30*2 G=KC G=FL 58+0%/[)&8 ("%$82 gG=IJ G=LJ c"3*u)"+ 3 >"P) B03*O+<"%.) [)&8B)%30*2 d& ,I#-)7&3$5I&P&1"G$*&`&W"*A&a$"#b*&3$5I&`&1"G$*UW"*A&a$"#b*&3$5I& ,DBB$#&3$5I&P&1"G$*&`&W"*A&a$"#b*&3$5I&`&,I#-)7&3$5I& O-89)$**&P&1"G$*&`&W"*A&a$"#b*&3$5I&`&,I#-)7&3$5I&`&,DBB$#&3$5I& @A8c;;&
  65. 65. "*$5-)$&C.#$*A& K)$&,A.#B& N")(&,A.#B*&
  66. 66. Climate Change May Simplify Kelp Forest Food Webs @)G-#.)B$)A"5& F9")7$& 1.  Big waves initially promote algal diversity & food web complexity H.ID5"E.)&& J()"B-8*& 2.  Ultimately, loss of foundation species leads to simplified food webs F.BBD)-A(& ,A#D8AD#$&
  67. 67. Global Change in a Systems Context @)G-#.)B$)A"5& F9")7$& D=  -%P0+$%@)%*"&.6"%/)6"3 40+).*"%40%40+).*)k).*3$% K#7")-*B"5& ).$323*)@,O%.#$% H9(*-.5.7(& C=  -%P0+$%@)%*"&.6"%/)8O36)3 H.ID5"E.)& .$@@O%0#)38"3*#880%/ J()"B-8*& 8$0%*3 F.BBD)-A(& ,A#D8AD#$& F=  (6"%/)30%.$@@O%0*2 3*+O.*O+)6"P).$@8&)Y0%*)+%"& ,))4<".?3*6"*O&#@"*)&2"k).* @8.*(*A$B& ).$323*)@,O%.#$% CD)8E.)&
  68. 68. Global Change in a Systems Context @)G-#.)B$)A"5& F9")7$& D=  R+)4"*$+40P)+30*2"%4 *+$860..$%*+$&0%,$O&0%/ K#7")-*B"5& .$@@O%0#)3 H9(*-.5.7(& C=  T)&"#P)0@8$+*"%.)$, H.ID5"E.)& 40P)+30*2U)%P0+$%@)%*"& J()"B-8*& 4+0P)+3,$+8+$4O.#P0*2 F.BBD)-A(& ,A#D8AD#$& F=  (&0@"*).6"%/)"%4?)&8 ,$+)3*3 @8.*(*A$B& CD)8E.)& K=  SO*O+)B0+).#$%3
  69. 69. Using the Fossil Record ToUnderstand Current Extinction Threat @)G-#.)B$)A"5& ,I$8-$*& J#-G$#*& T#"-A*& @ZE)8E.)& H#.2"2-5-A(&
  70. 70. How Will Climate Change Alter Coastal Ecosystems? XXX=,O/&)$/%"*O+=4?
  71. 71. How Will Climate Change Alter Coastal Ecosystems? ^&
  72. 72. +&3$5I&O$B.G"5&O$*$"#89&]$A4.#L& Laminaria Agarum,Laminaria, Alaria,Alaria, Agarum, Saccharina,Arthrothamnus, LaminariaCostaria,Cymathere, Agarum, Alaria, Laminaria,Dictyoneurum, Alaria, Eisenia, Ecklonia, Eckloniopsis,Egregia, Macrocystis, Ecklonia Kjemenniella,Lessoniopsis, Eisenia, Laminaria, UndariaNereocystis, Agarum,Pleurophycus, Costaria,Pterygophora, Dictyoneurum,Saccharina, Egregia,Thallasiophyllum Saccharina, Lessoniopsis, Nereocystis, Lessonia, Pelagophycus, Macrocystis, Laminaria Pleurophycus, Eisenia Postelsia, Laminaria, Pterygophora Macrocystis, Ecklonia Lessonia, Macrocystis, Ecklonia Macrocystis
  73. 73. What are the Consequences of Food Web Complexity? Predator diversity Predator diversity reduces herbivory increases herbivory Byrnes et al. 2006, Finke and Denno 2004Byrnes and Stachowicz 2009 Predator diversity Predator diversitydoesn t affect herbivory shortcuts herbivory Finker and Snyder 2008 Bruno and O Connor 2005(or, # of herbivores anyway)
  74. 74. A Probabilistic Approach to Food Webs and Extinctions +& Rna1v-o^Z6)!"#$!%#&8+$<"<0&0*2" 8+)20*)@0%/+$O8a)"*)%<2" 8+)4"*$+,+$@/+$O81"3-8+)4"*$+3 & /$)Y#%.* -^D !O@<)+$,38).0)3 w$,R+)4"*$+3$,R+)20 c)h"h)+)Y#%.#$% P(BA | E ) = 1 " dhyper(0;Di , SA " Di , SA " E ) !$*6"P0%/"%2R+)4"*$+3c)h !O@<)+$,R+)4"*$+3 !$*)"#%/8+)20! 9%ISeef"##$%2(#)$*;-)/.e.I$)).A$2..L&
  75. 75. Climate Change, Food Web Complexity, And Productivity: Salt Marshes
  76. 76. How Will Human Driven Shifts in Marine Food Webs Alter Ocean Productivity and Stability?V"+42DJCK
  77. 77. The Future of Open Science •  (+$X4,O%40%/,$+3.0)%.) •  6789::3.0,O%4=X$+48+)33=.$@ •  KJ3.0)%#3*3 •  xMIEGGG+"03)4 •  1P)+"/)8+$;).*20)&4xDEHHI •  a&$//0%/96789::0@".6$+4"*"=.$@ •  ZX07)+9y;)<2+%)3 •  !(-15Q8)%5.0)%.)>$+?0%/ N+$O8*$.6"%/)8O<&0360%/
  78. 78. AcknowledgementsMentors: Jay Stachowicz, Dan Reed, Bradley CardinaleCollaborators: Kyle Edwards, Russ Schmidt, Sally Holbrook,Kyle CavanaughSBC LTER: Clint Nelson, Christine Donahue, Shannon Harrer,Gabe Rodriguez, Matt Silbert, Jocelyn Christie, Countless SBCLTER DiversFunding: National Center for Ecological Analysis andSynthesis, NSF LTER Program, Bodega Marine Lab, NSFIGERT Program

×