Fire Pump Motor Starting

14,863 views

Published on

Motor Starting Techniques, Parameters and Applications.

Published in: Technology, Business
5 Comments
12 Likes
Statistics
Notes
  • Dear Mr.James,
    Greetings of the day!!!
    Can you please send me this presentation for my Engineering Team personal skill development purpose.

    its very good presentation...

    Please do the needful.

    Regards

    B.Venkat Reddy.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Very very useful presentation for motor.

    thanks & regards
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Dear James,
    Good Day!!!
    I would like to ask some questions that bothers me for more than a month now.Can I use a 100 kva ,three-phase,230vac,60hz to start and run a 30 hp induction motor(fire pump)? The 30 hp motor has the following specs;22kw/30hp,220vac,three phase,60hz,2-pole,toshiba motor.....After reaching the running kva for the 30 hp motor,can i connect another 5 hp jockey pump,three-phase,230vac,60hz...It is my first time using a gen set as a power source for the motors.And I am very much confused about the parameters involved to come up for the gen set capacity for these motors...will a DOL start is ok? how about star-delta start?
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Thank you for the materials.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Guest9bee28 --

    Tx, for the compliment.

    Not everyone survives my long winded slide shows without extensive re-hab. :o)

    Please feel free to contact me if I can be of assistance.

    Jim S. Nasby

    jamessnasby @ IEEE . org [delete spaces]

    P.S.: This is me on LinkedIn.com:
    http://www.linkedin.com/in/jamessnasby
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
No Downloads
Views
Total views
14,863
On SlideShare
0
From Embeds
0
Number of Embeds
311
Actions
Shares
0
Downloads
759
Comments
5
Likes
12
Embeds 0
No embeds

No notes for slide

Fire Pump Motor Starting

  1. 1. Induction Motors: Parameters & Starting By: James S. Nasby -- Columbia Engineering
  2. 2. Seminar Details & Background <ul><li>Background (History of Seminar) </li></ul><ul><li>National Fire Protection Association (NFPA) </li></ul><ul><ul><li>“ Pumps for Fire Protection Systems” </li></ul></ul><ul><li>NEMA Standard MG-1 </li></ul><ul><ul><li>Motors and Generators </li></ul></ul><ul><li>See Also: Section VIII . </li></ul><ul><li>References Cited </li></ul>
  3. 3. Topics to be Covered <ul><li>I. Induction Motors – General </li></ul><ul><li>II. Electrical Power Supply </li></ul><ul><li>III. Induction Motor Parameters </li></ul><ul><li>IV. 3Ø Motor Starting Types (8+1) </li></ul><ul><li>V. 3Ø Motor Running Types (3) </li></ul><ul><li>VI. Common Motor Wiring Types (14) </li></ul><ul><li>VII. Installation Considerations </li></ul>
  4. 4. I. Motors – General Motor Types <ul><li>Induction Motors </li></ul><ul><li>Three Phase </li></ul><ul><li>Non-Salient Pole Motors: </li></ul><ul><li> Usually Squirrel Cage Rotor Motors -but- </li></ul><ul><li> can be Wound Rotor (Slip Ring) </li></ul><ul><li> Induction Motors </li></ul><ul><li>Usually Squirrel Cage </li></ul><ul><li>Design Type: Usually NEMA Design “B” </li></ul><ul><ul><li>Normal Starting Torque </li></ul></ul><ul><ul><li>Normal Starting Current (KVA) </li></ul></ul><ul><li>Synchronous Motors Not Covered </li></ul>
  5. 5. I. Induction Motors General Definitions <ul><li>Motor Poles – Even Numbers (2, 4, 6, etc.) </li></ul><ul><li>Synchronous Speed (No Load Speed - Slip) </li></ul><ul><li>Starting Region – Fixed Impedance </li></ul><ul><li>Running Region – Energy Converter </li></ul><ul><li>Torques: </li></ul><ul><ul><li>Stall = Locked = Zero Speed Torque </li></ul></ul><ul><ul><li>Pull-up Torque </li></ul></ul><ul><ul><li>Breakdown Torque </li></ul></ul><ul><ul><li>Rated Torque </li></ul></ul><ul><li>Starting Amps, KVA & Locked Rotor Code </li></ul>
  6. 6. Motor Starting Region – cont’d Motor Torque Curve Motor Torque and Pump Torque Curves
  7. 7. II. Electrical Power Supplies Power Sources - Mains <ul><li>Types of Power Source </li></ul><ul><ul><li>Three Phase A.C. </li></ul></ul><ul><li>Power Source Characteristics </li></ul><ul><li> (Parameters) </li></ul><ul><ul><li>Voltage (Utilization Voltage) -at- </li></ul></ul><ul><ul><li>Low voltage or Medium Voltage </li></ul></ul><ul><ul><li>Frequency – 50 Hz or 60 Hz </li></ul></ul><ul><ul><li>Starting Voltage Drop -vs- Starter </li></ul></ul><ul><ul><li>Running Voltage Drop -vs- Motor </li></ul></ul>
  8. 8. Power Supply Characteristics – cont’d - Power Quality - <ul><li>Source Capacity - Weak or Stiff Source </li></ul><ul><ul><li>Starting Voltage Drop (15% of Controller Rated) </li></ul></ul><ul><ul><li>Running Voltage Drop (5% of Motor Rated) </li></ul></ul><ul><ul><li>Method of Calculating - NEMA ICS-14 </li></ul></ul><ul><ul><li>Gen-Sets - Frequency & Voltage </li></ul></ul><ul><li>Voltage Balance (Amount of Imbalance) </li></ul><ul><ul><li>Small Voltage &quot;Unbalance&quot; = Large Current Imbalance. (See NEMA MG-1, part 1-14.36) </li></ul></ul><ul><li>Voltage Harmonics (Heats Windings) </li></ul><ul><li>Power Factors - Affected by Motor </li></ul>
  9. 9. III. Induction Motor Parameters <ul><li>General Motor Characteristics </li></ul><ul><li>Induction Motor Types </li></ul><ul><ul><li>Wound Rotor Motor </li></ul></ul><ul><ul><li> (Slip Ring Motor) </li></ul></ul><ul><ul><li>= Rotary Transformer </li></ul></ul><ul><ul><li>Squirrel Cage Motor = Ditto </li></ul></ul><ul><ul><li>But with Slip Rings Shorted </li></ul></ul><ul><li>Frequency – 50 Hz -vs- 60 Hz </li></ul><ul><li>NEMA Design Type “B” (MG-1) </li></ul>
  10. 10. NEMA Design Types Standard Three Phase Induction Motors are NEMA Design “B” ( Rated Full Load Torque) Rated | Speed (RPM)
  11. 11. Induction Motors - cont’d Motor Parameters - Electrical <ul><li>Locked Rotor Code (KVA per Hp) </li></ul><ul><li>Service Factors </li></ul><ul><ul><li>Usually 1.15 Maximum Allowed </li></ul></ul><ul><ul><li>Often Higher for Smaller Motors </li></ul></ul><ul><ul><li>Usually 1.0 Max. when used with VFD's </li></ul></ul><ul><li>Service Factor (S.F.) -vs- Ideal Conditions </li></ul><ul><ul><li>Max. Temperature (40 °C Max.) -and- </li></ul></ul><ul><ul><li>Max. Altitude (3,300 ft /1,000 m Max.) -and- </li></ul></ul><ul><ul><li>Max. Voltage Imbalance (1% Max.) </li></ul></ul>
  12. 12. Motor Parameters – cont’d Abbreviations & Acronyms <ul><li>Motor Currents </li></ul><ul><ul><li>FLA = Motor Full Load Amperes </li></ul></ul><ul><ul><li>FLC = Motor Full Load Current = FLA </li></ul></ul><ul><ul><li>LRC = LRA = Locked Rotor Current (Amps) </li></ul></ul><ul><ul><li>SFA = Service Factor Amps </li></ul></ul><ul><ul><li>Locked Rotor Code * – Codes F & G Common </li></ul></ul><ul><li>* May be Much Higher for Smaller Motors </li></ul><ul><li>and for Energy Efficient Motors </li></ul><ul><li>Power Factor (PF) – Real -vs- Imaginary </li></ul><ul><ul><li>Starting PF = 30% / 40% Typically </li></ul></ul><ul><ul><li>Running PF = 85% down to 8.0% from </li></ul></ul><ul><ul><li>Full Load to No Load, Typically </li></ul></ul>
  13. 13. Motor Parameters – cont’d Motor Current Curve Motor Current -vs- RPM Curves Rated Running Current = 100%
  14. 14. Induction Motor Locked Rotor Codes <ul><li>Maximum Allowed Motor Locked Rotor Codes per NFPA-20: </li></ul><ul><li>Code &quot;F&quot; for 15 Hp & up -or- </li></ul><ul><li>5.0 thru 5.59 KVA/Hp = approx. 540% FLA </li></ul><ul><li>Code &quot;G&quot; for for 15 Hp & up </li></ul><ul><li>5.6 thru 6.3 KVA/Hp = approx. 600% FLA </li></ul><ul><li>Code &quot;H&quot; for 5 thru 10 Hp </li></ul><ul><li>(up to 7.1 KVA/Hp = approx. 685% of FLA) </li></ul><ul><li>Code &quot;J&quot; for 5 Hp only </li></ul><ul><li>(up to 8.0 KVA/Hp = approx. 772% of FLA) </li></ul>
  15. 15. Induction Motor Locked Rotor Codes Note: Controllers (15 Hp and higher rated ) are NOT rated, tested, approved, or listed for starting codes above Code &quot;G&quot;.
  16. 16. Induction Motor Locked Rotor Currents
  17. 17. Motor Parameters – cont’d Motor Stalled (Locked Rotor) Power Factor = Approx 40%
  18. 18. Motor Parameters – cont’d Motor Theory and Formulae <ul><li>Purpose – Electrical to Mechanical </li></ul><ul><li>Energy Conversion </li></ul><ul><ul><li>Motor Starting Region (Rotary Solenoid) </li></ul></ul><ul><ul><li>Running Region (Energy Converter) </li></ul></ul><ul><li>Motor Torque & Motor Current Draw </li></ul><ul><li>-vs- Speed Curves </li></ul><ul><li>A‑T‑L‑Starting </li></ul><ul><li> (Basic Motor Characteristics) </li></ul><ul><ul><li>Power Factor & Phase Angles </li></ul></ul><ul><ul><li>Efficiencies </li></ul></ul>
  19. 19. Motor Starting -vs- Motor Running Regions
  20. 20. Motor Starting -vs- Motor Running Regions Motoring Region Starting Region
  21. 21. Motor Parameters – cont’d Motor Torque Curve Motor Torque and Pump Torque Curves
  22. 22. Motor Parameters – cont’d Motor Torque Curve Motor Torque and Pump Torque Curves
  23. 23. Motor Parameters – cont’d Motor Current Curve Motor Current -vs- RPM Curves Rated Running Current = 100%
  24. 24. Motor Parameters – cont’d Motor Current Curve Motor Current -vs- RPM Curves Rated Running Current = 100% Motoring Region Starting Region
  25. 25. Motor Theory and Formulae Motor Starting Region <ul><li>For a Motor at Stall, Motor Impedance is Constant. So: </li></ul><ul><li> I = E / Z (Ohm’s Law) </li></ul><ul><li>Current is Directly Proportional to Motor Voltage. I.E.: </li></ul><ul><li>Motor Current = Voltage / Impedance </li></ul><ul><li>Power Factor (P.F.) is Typically 30% to 40% at Stall (and for most of the starting region) </li></ul>
  26. 26. Motor Theory and Formulae Motor Starting Region – cont’d <ul><li>In the Starting (Accelerating) Region: </li></ul><ul><li>Torque is Proportional to the Square of the Applied Motor Voltage </li></ul><ul><li> T = K 1 x V 2 -or- Since Current is proportional to Voltage (see above): </li></ul><ul><li> T = K 2 x I 2 </li></ul><ul><li>Thus: Torque is also Proportional to the Square of the Motor Current </li></ul>
  27. 27. Motor Theory and Formulae Motor Starting Region – cont’d <ul><li>Example of Starting Torque Proportional to the Square of Applied Motor Voltage. </li></ul><ul><li>E.G. 57% Volts = 33% Rated Stall Torque. </li></ul>
  28. 28. Motor Theory and Formulae Motor Running Region <ul><li>Motor Running Region (Energy Converter): </li></ul><ul><li>Mechanical Power is Torque x Speed: </li></ul><ul><li> Pm = K 3 x Tq x RPM </li></ul><ul><li>Motor Torque is Whatever the Load Requires </li></ul><ul><li>Electrical Power Input is: </li></ul><ul><li> Pe = Pm + Motor Losses = Pm / Efficiency </li></ul><ul><li>But, Electrical Power Input is also given as: </li></ul><ul><li> Pe = K 4 x V x Ireal (Volts x Real Current) </li></ul><ul><li>So: I real = K 5 x Pe / Volts </li></ul><ul><li>Thus Motor Current is Inversely Proportional to Motor Voltage with a Running Motor </li></ul>
  29. 29. Motor Running -vs- Motor Starting Regions Rated Torque (100%) times Rated Speed (E.g. 1750 RPM) yields Motor Rated Horsepower.
  30. 30. IV. Motor Starting <ul><li>General ‑ Overview – Types of Reduction </li></ul><ul><ul><li>Voltage Reduction: Wye–Delta, Soft Start, and Autotransformer </li></ul></ul><ul><ul><li>Current Reduction: Primary Impedance (Primary Resistor, Primary or Neutral Reactor) </li></ul></ul><ul><ul><li>Motor Impedance (Wound Rotor) </li></ul></ul><ul><li>Two Specialty Types </li></ul><ul><ul><li>Medium Voltage – Four Common Types: A-T-L, Primary Reactor, Neutral Reactor -and- Autotransformer </li></ul></ul><ul><ul><li>Low Voltage - Wound Rotor (Not U.L. Listed) </li></ul></ul>
  31. 31. Motor Starting - cont’d <ul><li>Eight (+1) Common Low Voltage Starting Types: </li></ul><ul><li>Across‑the‑Line (A‑T‑L or Direct‑On‑Line) </li></ul><ul><li>Part Winding (Half Winding) Start </li></ul><ul><li>Primary Resistor Start </li></ul><ul><li>Primary (or Neutral) Reactor Start </li></ul><ul><li>Wye‑Delta (Star‑Delta) ‑ Open Transition </li></ul><ul><li>Wye‑Delta (Star‑Delta) ‑ Closed Transition </li></ul><ul><li>Soft Start / Soft Stop (SCR Phase Modulation) </li></ul><ul><li>Autotransformer </li></ul><ul><li>VFD Ramp-up (and Ramp-down on some) </li></ul>
  32. 32. Motor Starting – cont’d Across-the-Line (Direct On Line)
  33. 33. Full Voltage Start ------------ Across-the-Line
  34. 34. Motor Starting – cont’d Across-the-Line (Direct On Line)
  35. 35. Motor Starting – cont’d Part Winding Start Note: The Motor Must be Wound Specifically for Part Winding Starting .
  36. 36. Part Winding Start
  37. 37. Motor Starting – cont’d Part Winding Start
  38. 38. Motor Starting – cont’d Primary Resistor Start
  39. 39. Primary Reactor Start
  40. 40. Motor Starting – cont’d Primary Resistor Start Note: 65% Resistor Impedance is 1.24 - 0.40 = 0.84 pu
  41. 41. Motor Starting – cont’d Primary Reactor Start
  42. 42. Motor Starting – cont’d Primary (or Neutral) Reactor Start Note: 65% Reactor Impedance is 1.54 – 1.00 = 0.54 pu
  43. 43. Motor Starting Torque Comparison <ul><li>Curves B, C & D are at 65% Motor Starting Voltage </li></ul><ul><li>(Reference Source Credit on Next Slide) </li></ul>“ 0” “ 0”
  44. 44. Motor Torque Comparison – cont’d A=ATL, B=A.T., C=Pri. Res., D=Reactor <ul><li>Gerhart W. Heumann (G.E.), “ Magnetic </li></ul><ul><li>Controls of Industrial Motors”, Wiley & Sons. </li></ul>
  45. 45. Motor Starting – cont’d Primary (or Neutral) Reactor Start
  46. 46. Wye-Delta Open Transition
  47. 47. Motor Starting – cont’d Wye-Delta Open Transition LPM Module = Leading Phase Monitor ®
  48. 48. First Half Cycle Offset Waveforms 2.83 x LRA = 6 x 2.83 x FLA = 17.0 x FLA Maximum Theortical This curve shows starting a motor which still has BACK EMF (voltage) present.
  49. 49. Motor Starting – cont’d Wye-Delta Open Transition
  50. 50. Motor Starting – cont’d Wye-Delta Open Transition
  51. 51. Motor Starting – cont’d Wye-Delta Open Transition
  52. 52. Motor Starting – cont’d Wye-Delta Transition Hazard Closed Leading Lagging
  53. 53. Motor Starting – cont’d Wye-Delta Closed Transition
  54. 54. Wye-Delta Closed Transition
  55. 55. Motor Starting – cont’d Wye-Delta (Open or Closed Xtn.)
  56. 56. Wye-Delta Starting; Truths and Myths Page 1 of 4
  57. 57. Wye-Delta Starting; Truths and Myths Page 2 of 4
  58. 58. Wye-Delta Starting; Truths and Myths Page 3 of 4
  59. 59. Wye-Delta Starting; Truths and Myths Page 4 of 4
  60. 60. Motor Starting - cont’d Soft (Solid State - SCR) Start
  61. 61. Soft Start (Solid State - SCR)
  62. 62. Motor Starting - cont’d Soft (Solid State - SCR) Start Note: These curves are for Soft Starters without Current Limiting set.
  63. 63. Motor Starting - cont’d Autotransformer Start
  64. 64. Autotransformer Start
  65. 65. Motor Starting - cont’d Autotransformer Start
  66. 66. Motor Starting Characteristics Parameter Chart
  67. 67. Motor Starting Characteristics Parameter Notes to Chart
  68. 68. V. Motor Running Types <ul><li>Constant Speed Running </li></ul><ul><li>Full Voltage Running </li></ul><ul><ul><li>- Synchronous Speeds (3,600 RPM & etc.) </li></ul></ul><ul><ul><li>- Slip Frequencies - Running (Rated) Speeds </li></ul></ul><ul><li>Motor Lead Wire Running Currents </li></ul><ul><ul><li>- Three Lead = Full Motor Current </li></ul></ul><ul><ul><li>- Six Lead Parallel Run (Part Winding Start) </li></ul></ul><ul><ul><li>= 50% of FLC per set </li></ul></ul><ul><ul><li>- Six Lead (Wye-Delta Start) </li></ul></ul><ul><ul><li>= 58% (57.7%) of FLC per set </li></ul></ul>
  69. 69. Motor Running - cont’d <ul><li>Variable Speed Running </li></ul><ul><li>Wound Rotor Control </li></ul><ul><ul><li>- Changes Motor Secondary Impedance -and- </li></ul></ul><ul><ul><li>- Motor Torque Curve </li></ul></ul><ul><li>Variable Frequency - Variable Speed Control (VFDs) </li></ul><ul><ul><li>- Changes Motor Torque and Current Curves </li></ul></ul><ul><ul><li>- Changes Motor Synchronous Speed –and- </li></ul></ul><ul><ul><li>- Changes Motor Running (Loaded) Speed </li></ul></ul>
  70. 70. Wound Rotor Speed-Torque Curves (Reference Source Credit on Next Slide)
  71. 71. Wound Rotor Speed-Torque Curves - Flipped and Rotated - Gerhart W. Heumann (G.E.), “ Magnetic Controls of Industrial Motors”, Wiley & Sons.
  72. 72. VFD = Motor Running Only (No Motor Starting Region) Starting Region (Reference Only)
  73. 73. Variable Speed Controllers Power Circuit Schematic . . * Was Optional
  74. 74. Variable Speed Control
  75. 75. VFD – Principles of Operation 3 Phase Line Freq. AC to DC Smoothing(Ripple Reduction) DC / AC (at &quot;X&quot; KHz)
  76. 76. <ul><li>Motor Wiring – Motor Lead Configurations (Fourteen) </li></ul><ul><li>Three Lead – Three Coil </li></ul><ul><li> (Single Voltage) (T1‑T3) </li></ul><ul><li>Six Lead – Three Coil </li></ul><ul><ul><li>Wye Running (T1‑T3 & T4‑T6) </li></ul></ul><ul><ul><li>Delta Running (T1‑T3 & T4‑T6) </li></ul></ul><ul><li>Parallel Run (Six Lead - Six Coil) </li></ul><ul><ul><li>T1‑T3 and T7‑T8 - or - </li></ul></ul><ul><ul><li>Both Sets Labeled T1‑T3 </li></ul></ul>
  77. 77. Motor Lead Configurations 3 Lead – 3 Coil - Wye Running
  78. 78. Motor Lead Configurations 3 Lead – 3 Coil - Delta Running
  79. 79. Motor Lead Configurations 6 Lead - 3 Coil - Wye Running
  80. 80. Motor Lead Configurations 6 Lead – 3 Coil - Delta Running
  81. 81. 6 Lead – 6 Coil - Wye Running Parallel Running
  82. 82. 6 Lead – 6 Coil - Delta Running Parallel Running
  83. 83. Motor Wiring – cont’d <ul><li>Nine Lead (Dual Voltage) (T1‑T9) </li></ul><ul><ul><li>Wye Wound </li></ul></ul><ul><ul><li>Delta Wound </li></ul></ul><ul><ul><li>Suitable for Part Winding Start ? </li></ul></ul><ul><li>Twelve Lead (T1‑T12) </li></ul><ul><ul><li>Dual Voltage </li></ul></ul><ul><ul><li>Single Voltage (Parallel Run) </li></ul></ul>
  84. 84. 9 Lead - 6 Coil - Wye Running Series Running
  85. 85. 9 Lead - 6 Coil - Wye Running Parallel Running
  86. 86. 9 Lead - 6 Coil - Delta Running Series Running
  87. 87. 9 Lead - 6 Coil - Delta Running Parallel Running
  88. 88. 12 Lead - 6 Coil - Wye Running Series Running
  89. 89. 12 Lead - 6 Coil - Wye Running Parallel Running
  90. 90. 12 Lead - 6 Coil - Delta Running Series Running
  91. 91. 12 Lead - 6 Coil - Delta Running Parallel Running
  92. 92. Typical 12 Lead Motor Wiring Diagram <ul><li>Courtesy of Marathon Electric </li></ul>
  93. 93. Starting Methods -vs- Motor Types
  94. 94. Motor Types -vs- Starting Types Table M-06 -- Motor Suitability Motor Types -vs- Starting Types
  95. 95. VII. Induction Motors -- Installation Considerations <ul><li>Physical </li></ul><ul><ul><li>Location ‑ Ideally Within Site of Controller </li></ul></ul><ul><ul><li>Motor Protection: Fire, Security, Other Hazards </li></ul></ul><ul><li>Access – All Sides & Conduit Access </li></ul><ul><li>Electrical N.E.C. (NFPA 70) ‑ §430 (& § 695) </li></ul><ul><ul><li>Conduit & Hubs </li></ul></ul><ul><ul><li>Environmental </li></ul></ul><ul><ul><li>Conductor Sizing – Incoming & Motor Circuit </li></ul></ul><ul><ul><li>Voltage Drops: Start & Run </li></ul></ul><ul><ul><li>Cable Impedances and Run Lengths </li></ul></ul><ul><ul><li>(See NEMA ICS-14) </li></ul></ul>
  96. 96. Motor Installation – cont’d Start-up (Commissioning) <ul><li>Current Measurements </li></ul><ul><li>Voltage Measurements </li></ul><ul><li>Estimating Motor Load </li></ul><ul><ul><li>- FLA -vs- Voltage </li></ul></ul><ul><ul><li>- SFA (115%) - Max. Allowed Under Any Conditions (Temperature, Altitude, Voltage Imbalance) on ANY Phase </li></ul></ul>
  97. 97. Motor Installation – cont’d Environmental <ul><li>Open Drip Proof (ODP) </li></ul><ul><li>Totally Enclosed Fan Cooled (TEFC) </li></ul><ul><li>Outdoor </li></ul><ul><li>Hazardous Locations, Explosion Proof: </li></ul><ul><ul><li>Motor, Controller, Wiring </li></ul></ul><ul><li>Other </li></ul><ul><ul><li>Salt Air </li></ul></ul><ul><ul><li>Wind Blown Sand or Dust </li></ul></ul><ul><ul><li>Temperatures </li></ul></ul><ul><ul><li>Altitude </li></ul></ul>
  98. 98. Questions ? <ul><li>Jim Nasby </li></ul><ul><li>Columbia Engineering </li></ul><ul><li>847-677-3468 </li></ul><ul><li>[email_address] </li></ul>

×