Ecology and Evolution of <br />Chlamydophytumaphyllum(Balanophoraceae)<br />
Outline<br />Placement of Santalales<br />		Modes of parasitism<br />Phylogenetics of Santalales<br />Evolution of parasit...
Where is Santalales?<br />Laurales<br />Piperales<br />Saxifragales<br />Zygophyllales<br />Malpighiales<br />Cucurbitales...
Degree<br />Hemiparasite<br />S<br />Connection<br />Stem<br />host<br />R<br />Root<br />Holoparasites<br />cpDNA?<br />A...
Types of haustorial connections<br />Mode<br />     Non-parasitic<br />     Root parasitic<br />     Stem parasitic<br />N...
mistletoes<br />endophyte (bark strand) spreads laterally within the host cortex distal to the point of original infection...
Haustorial parasitism<br />vs. mycoheterotrophic<br />Strigahermonthica on corn root<br />Thismia  (Burmanniaceae)<br />Dö...
Haustorial connection: “wood roses”<br />
Santalales<br />+/- 9 families<br />151 genera<br />1985 species<br />Degree<br />non-parasitic <br />hemiparasitic <br />...
Balanophoraceae<br />holoparasitic<br />Greek: balanos  - acorn<br />R<br />Comandra clade<br />Thesium clade<br />Santalu...
“Balanophorales”: Balanophoraceae + Cynomoriaceae?<br />?<br />Cynomorium<br />
“Balanophorales”: Balanophoraceae + Cynomoriaceae?<br />Su et. al. 2008<br />B-class floral genes Balanophoraceae basal wi...
Balanophoraceae: Balanophoralaxiflora, Vietnam<br />synandrium, extrafloral nectary<br />Hong Kong<br />volva<br />
Balanophoraceae:Helosiscayennensis, Brazil<br />“silky” styles<br />peltate scales<br />synandrium<br />
Balanophoraceae: Chlamydophytumaphyllum, Congo<br />“little or hardly stinking” Halle 1978<br />
Balanophoraceae: Chlamydophytumaphyllum, Congo<br />stylar channel<br />and <br />ovulein longitudinal section<br />anther...
Balanophoraceae: Chlamydophytumaphyllum, Congo<br />Cochineal scale<br />Mite<br />Dipteran larvae<br />Mite<br />“old des...
Balanophoraceae: Langsdorffiahypogaea<br />Infructescence<br />
Balanophoraceae: Langsdorffia<br />Propithecusdiadema, Madagascar<br />Irwin et. al., 2006. Diademed sifakas (Propithecusd...
MonoeciousBalanophores:<br />?<br />Lophophytumleandrii, Brazil<br />Greek lophos - crest or tuft<br />Balanophorafungosas...
Balanophoraceae: Lophophytummirabile, Brazil; Latin mirabilis - marvelous<br />pollen-robbing bee:<br />Subfamily Meliponi...
Balanophoraceae: Lophophytummirabile, Brazil; Latin mirabilis - marvelous<br />Beetle pollinated (generalist)<br />Borchse...
Balanophoraceae: Dactylanthustaylorii, New Zealand<br />Māori : puareinga - &quot;flower of the underworld“<br />waewaeatu...
Balanophoraceae: Dactylanthustaylorii<br />2. Pollinator decline<br />Ecroyd 1996<br />Lesser Short-tailed Bat <br />Mysta...
Balanophoraceae: Dactylanthustaylorii<br />Australian brush-tailed possumTrichosurusvulpecula<br />3. Invasive species<br ...
Balanophoraceae: Corynaeacrassa, Costa Rica<br />
More Balanophoraceae<br />Rhopalocnemisphalloides, Vietnam<br />Balanophorareflexa, Borneo<br />Balanophorawrightii, Japan...
Balanophoraceae: Sarcophytesanguinea, South Africa<br />
Erythropalaceae<br />N<br />Scorodocarpusborneensis, Indonesia<br />Santalum clade<br />Erythropalumscandens, Borneo <br />
N<br />Erythropalaceae: Heisteria<br />calyx cupular<br />calyx<br />+<br />hypanthium<br />Heisteriascandens, Costa Rica<...
“Olacaceae”<br />R<br />R<br />R<br />Anacalosoideae<br />Comandra clade<br />Thesium clade<br />Santalum clade<br />
“Olacaceae”<br />R<br />Ptychopetalumolacoides<br />Olaxphyllanthii, Australia<br />Minquartiaguianensis, French Guiana<br...
“Olacaceae”<br />R<br />Phanerodiscuscapuronii<br />with unknown gall, Madagascar<br />
Loranthaceae<br />950 species<br />S<br />R<br />Comandra clade<br />Thesium clade<br />Santalum clade<br />
Loranthaceae: Nuytsia floribunda “Western Australian Christmas tree&quot;<br />R<br />Root parasite<br />
S<br />Loranthaceae<br />
Loranthaceae: bird pollination<br />S<br />
S<br />Loranthaceae :Tristerixaphylluson Echinopsischilensis, Chile<br />
S<br />Loranthaceae: Tristerixcorymbosus, Argentina<br />Monito del Monte<br />&quot;little mountain monkey”<br />Dromicio...
S<br />Loranthaceae :Tristerixverticillatus, Chile<br />vivipary<br />
S<br />Loranthaceae :Tristerixverticillatus, Chile<br />Mathania<br />Ormiscodes, Saturniidae<br />
Loranthaceae: Lysiana<br />S<br />Ehleringer et. al., 1986. Mistletoes: a hypothesis concerning morphological and chemical...
Loranthaceae, Amyemapendula, Australia<br />S<br />mistletoe bird<br />Dicaeumhirundinaceum<br />
Loranthaceae, Plicosepalus<br />S<br />Host: Acacia raddiana<br />
Loranthaceae: Amyema<br />S<br />Amyemafasciculata<br />Deliasharpalyce– imperial white<br />Comocrusbehri– the mistletoe ...
Loranthaceae: Lysianamurrayi<br />S<br />Ogyris amaryllis (Lycaenidae)<br />mistletoe butterfly<br />
More Loranthaceae<br />Tolypanthuspustulatus, Thailand<br />Tolypanthuslagenifer, India<br />
Schoepfiaceae<br />R<br />S<br />R<br />Arjonapatagonica, Chile<br />Quinchamaliumchilense, Argentina<br />S<br />Misodend...
Opiliaceae<br />R<br />S<br />Misodendraceae<br />S<br />R<br />Comandra clade<br />Thesium clade<br />Santalum clade<br />
“Santalaceae”<br />Comandra clade<br />Thesium clade<br />Santalum clade<br />
“Santalaceae”: Comandra, Thesium clades<br />R<br />R<br />Comandraumbellata - bastard toadflax , Virginia<br />Buckleyadi...
“Santalaceae”: Santalum clade<br />R<br />S<br />S<br />Exocarpuscupressiformis,Tasmania<br />Nanodeamuscosa, Argentina<br...
“Santalaceae”: Santalum clade: Santalum - sandalwood<br />R<br />$1500/kg<br />Santalum album, Indian Sandalwood<br />Sant...
“Santalaceae”, Amphorogyne clade:<br />S<br />Choretrumpauciflorum<br />Dendrotrophesp.<br />Daenikeracorallina, New Caled...
S<br />Viscaceae<br />Arceuthobiumminutissimum<br />on Pinuswallichiana, Bhutan <br />endoparasite<br />world’s smallest d...
Summary: Parasitic modes of Santalales<br />N<br />R<br />R<br />R<br />Mode<br />     Non-parasitic<br />     Root parasi...
Upcoming SlideShare
Loading in …5
×

Evolution and Ecology of the Parasitic Order Santalales

1,397 views

Published on

fun with parasites in the Evolution and Phylogeny of Angiosperms graduate seminar, Spring 2009 with Dr. Bob Patterson

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,397
On SlideShare
0
From Embeds
0
Number of Embeds
6
Actions
Shares
0
Downloads
0
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide
  • cospeciation, host plants, HGT, conservation, curiosity and rarity
  • Evo of para in angiosperms difficult because multiple times, and deep nodes hard to resolve. But Santalales contains all forms from hemi to holo, from auto to hetero, from root to stem – so a good model group to study evolution of parasitism because the level of resolution makes it possible.oldest to newest? smallest/simplest to largest/ coolest - (include range, habitat, pollinators, dispersers, host plants, chemistry, lore, etc.)
  • Nickrent et. al., 2005. Discovery of the photosynthetic relatives of the" Maltese mushroom" Cynomorium
  • But of course there are many variations – all of these are present in Santalales (lianas, localized, systemic)
  • The present study confirms the previous finding (Nickrent, 2002) that aerial parasitism evolved five times independently in Santalales and, for the first time, assigns dates to these nodes on the phylogenetic tree. Informed by the ultrametric tree reported here, these evolutionary events can be better understood by examining various parasitic modes seen throughout Santalales (Fig. 4A–I). In this portion of the Santalales tree the plesiomorphic state is a root parasitic tree or shrub (Fig. 4A), a condition found in the outgroup Olacaceae, as well as three genera of Loranthaceae (Nuytsia, Atkinsonia, and Gaiadendron), Opiliaceae, and some Santalaceae. In root parasitic lianas (Fig. 4B), the aerial shoots clamber and twine through the host tree but no haustoria are formed from aerial parts of the parasite. Examples include Cansjera (Opiliaceae) and some Santalaceae (Amphorogyneae), such as Dendrotrophevarians. Some mistletoes such as Tripodanthusacutifolius (Loranthaceae) initially form primary haustorial connections to host stems and later, by means of adventitious roots, form haustorial connections to host roots (Fig. 4C). These mistletoes may also exist only as aerial parasites. We suggest using the term “amphiphagous” to describe a condition where individuals of a species feed upon stems, roots or both simultaneously. The stem parasitic lianas or dendroparasites (Fig. 4D) first attach to host branches by means of a radicular primary haustorium. Through further development, secondary haustoria are produced from roots that arise from the twining stems. Our definition of dendroparasite differs from the one given by Macklin and Parnell (2002) where they equate the term with mistletoe (aerially parasitic non-twining shrubs). In some species of Dendromyza (Santalaceae, Amphorogyneae), it appears the shoots are dimorphic in that some are non-twining, foliose, and photosynthetic whereas others are twining, squamate and form haustoria.Among mistletoes, a number of different haustorial systems (Calvin and Wilson, 2006) can be seen (Fig. 4E–I). Some form a primary haustorial connection to the host and this remains the sole connection throughout the life of the parasite (Fig. 4E). The haustorial endophyte remains localized in the region of original infection. Examples of this include Misodendrum, many Loranthaceae (e.g., Englerina, Lysiana, Psittacanthus, Tapinanthus), Dufrenoya (Amphorogyneae), and some Viscaceae. In other mistletoes, a primary haustorium is formed but the endophyte (bark strand) spreads laterally within the host cortex distal to the point of original infection (Fig. 4F). Examples of this type in Loranthaceae include Diplatia, Moquiniella, Tristerix and Tupeia. A variation also occurs where the bark strands are capable of initiating secondary shoots (Fig. 4G) such as in Agelanthus, Oncocalyx, and Helixanthera (all Loranthaceae). Some mistletoes are capable of forming epicortical roots that “explore” the host surface and form secondary haustorial connections (Calvin and Wilson, 2006 C.L. Calvin and A.C. Wilson, Comparative morphology of epicortical roots in Old and New World Loranthaceae with reference to root types, origin, patterns of longitudinal extension, and potential for clonal growth, Flora201 (2006), pp. 51–64. Article | PDF (692 K) | View Record in Scopus | Cited By in Scopus (7)Calvin and Wilson, 2006). Fig. 4H is meant to represent all variants of this type in that some epicortical roots arise from haustoria and some from shoots. Shoots frequently occur at the site where secondary haustorial connections are made. Examples include many Loranthaceae such as Alepis, Desmaria, Notanthera, and Scurrula. The squamate mistletoes (Fig. 4I) are here recognized as different from the type shown in Fig. 4G only to emphasize the presence of scale leaves with lowered photosynthetic activity. This type is seen in Misodendrum, Phacellaria and Arceuthobium.
  • a haustorium (plural haustoria) modified root stays outside the host cell membrane.
  • Mycorrhizae absent AnacalosoideaeParasites in general are highly modified and some have very reduced reproductive structures, which has created a lot of confusion. As recently as last year major taxonomic discoveries have been made. Even with molecular techniques, there is still confusion ongoing due to higher rate heterogeneity and large indels, which appear to be influenced by HGT from host to parasite. Many holoparasites have lost the ability to photosynthesize and have endured major mutations in their chloroplast DNA.Flora of China:2. BALANOPHORA J. R. Forster & G. Forster, Char. Gen. Pl. 50. 1775.Plants monoecious or dioecious. Rhizome branched or unbranched, containing sticky wax (balanophorin), smooth or rugosewith small scaly warts and/or stellate lenticels. Leaves opposite, alternate and distichous or spiral, or whorled, sessile, fleshy or scalelike.Inflorescences spadixlike, cylindric, ellipsoid, ovoid-globose, or globose, enlarged after anthesis. Male flowers: pedicellate orsessile, subtended by U-shaped or variously reduced bracts. Perianth 3.6-lobed; lobes ovate, lanceolate, or orbicular, concave,isomorphic or heteromorphic, valvate, reflexed at anthesis. Stamens in a hemispheric or ± elongated synandrium; anthers bilocular,
  • Monoecious or dioecious
  • Plate 1. ChlamydophytumaphyllumMildbr. : 1, 2, young male spike at the beginning of theopening of the spathe, 30 X 12.5 X 9 cm; 3, male stipe near to anthesis, 23 X 13 cm; 4, detailof the epidermis of the rachis of the male inflorescence, lenticels of 0.2 mm high; 5 pairedmale flowers close to anthesis, face and profile. (Sita 3819).volvaPlate 2. ChlamydophytumaphyllumMildbr. : 1, opened up male spike, inflorescence 15 cmbroad; 2, details of lenticel of inflorescence axis; 3, detail of bract; 4, detail of floriferousbranch; 5, 6, opened up male flowers, profile and face, diam. 15 mm; 7, diagram of maleflower having 2 supernumerary stamens; 8, longitudinal section of 2 flowers, 12 X 12 mm; 9,detail of the insertion of the anther at the base of a lobe. (Sita 3819).Plate 3. ChlamydophytumaphyllumMildbr. : 1, opened up female inflorescence, total width 17cm with all the ramifications; 2, lenticel of the rachis 0.3 mm high; 3, branch ofinflorescence; 4, cut of multiflowered female capitulum, diam. 12 mm; 5, stylar channel andovule in longitudinal section; 6, stigma; 7, detail of a trilobed stigma, diam. 1.3 mm. (Sita3819).
  • Plate 6. - ChlamydophytumaphyllumMildbr. : 1, 2, old desiccated and parasitized male spike,height 20-30 cm (Sita 3679); 3, provision of female flowers on a capitulum, d = dextralparastichies, s = sinistral parastichies (Sita 3819); 4, Cochineal Stictococcus, env. 3.5 X 3mm; 5, AcarienThiroglyphe 0.6 mm; 6, AcarienOribate (a mite), 0.2 mm; 7, dipteran larvaOrthorrhaphe, 7 mm; 8, id., above the brain of 0.9 mm in length.
  • Diademed sifakas (Propithecusdiadema) use olfactionto forage for the inflorescences of subterraneanParasitic plants (Balanophoraceae: Langsdorffia sp.,and Cytinaceae: Cytinus sp.)MITCHELL T. IRWIN1, FANOMEZANTSOA JEAN-LUC RAHARISON2, HARISONRAKOTOARIMANANA3, EDMOND RAZANADRAKOTO3, EDMOND RANAIVOSON3,JUSTIN RAKOTOFANALA3, AND CHARLES RANDRIANARIMANANAPrimates usually locate food resources using visual cues and memory, yetthe potential for olfactory-guided (or olfactory-assisted) food locationremains relatively unexplored. Here we report observations of wildPropithecusdiadema that strongly suggest that olfaction is used to locatethe inflorescences of two subterranean parasitic plant species (Langsdorffiasp. and Cytinus sp.). These valued but seasonal food resources arefound obscured in leaf litter, and sifakas spend considerable time on theground engaged in what appears to be olfactory exploration before theylocate the inflorescences. Because they are visually obscured and occurwithin a substrate that is rarely used by sifakas, accidental discovery of theseresources seems unlikely. Individuals may learn to exploit them by watchingconspecifics. Am. J. Primatol. 69:471–476, 2007. c 2006
  • Plate 7. - Balanophoraabbreviata Bl., of Congo: 1, composed floriferous scape, total diam 5 cm;2, floriferous branch with diclinous female capitulum of 11 mm diam; 3, 4, detail of profile andtop view of naked flowers and some 0.7 mm high spadicules; 5, 6, male flower in face, in budand opened up, diam. 2-3 mm; 7, male flower in longitudinal section. (Farron 4047).ASSOCIATED FAUNA. - the first samples received (February 1974) were organic remains andfine sand loads which were collected by brushing: it was there that one finds a very great numberof living Acarina; among them most abundant were albescent or translucent Thiroglyphes in allstages of development; others still were many wood mites, smaller and brown. There were stillabundant HemipteraAnthocoridae in various stages. An adult male could be obtained bybreeding and was determined by J. CARAYON, Xylocorisafer (Reuter). Finally a few tens ofCochineals Stictococcus sp. (det. C. RICHARD) parasitized the external face of the volva andthe inflorescence stalk of the two specimens.Halle 1978
  • Bee only was seen opening male buds and taking pollen and anther tissue, not seen on opened flowers
  • beetle pollinated (generalist)
  • The host tree responds to the presence of Dactylanthus by forming a burl-like structure that resembles a fluted wooden rose (hence the common name). Māori names for wood rose are pua o tereinga or puareinga, "flower of the underworld" and waewaeatua, "feet of gods". It is the only species in the Dactylanthus genus. One of its most common host trees is pate or seven-finger (Schefflera digitata).
  • Ombrophytumsubterraneum
  • It is not clear whether parasitism arose once in the ancestor of Balanophoraceae + Santalales or if the parasitic lifestyle independently evolved in the two lineages because the earliest diverging branches of Santalales are not parasitic and it is unlikely that parasitism is a reversible trait Fruit fleshy; dehiscent; a drupe (with crustaceous endocarp, completely enclosed in the subpyriform, thin, red-brown, long-stipitate hypanthium-plus-calyx, which finally splits into 3–5 reflexed valves)
  • Ptychopetalum
  • Olacaceae sensulato 7 cladesXimenioideaeXimeniaceae ex-Olacaceae Ximenia
  • Taxillus
  • The Monito del Monte ("little mountain monkey", Dromiciopsgliroides) is a semi-arboreal South Americanmarsupial which is thought to be more closely related to the marsupials of Australasia than to those of the Americas.
  • 2009 Translocation of isoquinoline alkaloids to the hemiparasite, Tristerixverticillatus from its host, BerberismontanaNancy J. Cabezasa, Alejandro M. Urzúab and Hermann M. Niemeyernectar robbing ants
  • Mycorrhizae absent Anacalosoideae5Parasites in general are highly modified and some have very reduced reproductive structures, which has created a lot of confusion. As recently as last year major taxonomic discoveries have been made. Even with molecular techniques, there is still confusion ongoing due to higher rate heterogeneity and large indels, which appear to be influenced by HGT from host to parasite. Many holoparasites have lost the ability to photosynthesize and have endured major mutations in their chloroplast DNA.
  • Mycorrhizae absent Anacalosoideae5Parasites in general are highly modified and some have very reduced reproductive structures, which has created a lot of confusion. As recently as last year major taxonomic discoveries have been made. Even with molecular techniques, there is still confusion ongoing due to higher rate heterogeneity and large indels, which appear to be influenced by HGT from host to parasite. Many holoparasites have lost the ability to photosynthesize and have endured major mutations in their chloroplast DNA.
  • More recently, Taylor Field and Tim Brodribb (2005) clarified the parasitic nature of Parasitaxus. In that paper they state:"Here we show that Parasitaxus is definitively parasitic, but it displays a physiological habit unlike any known angiosperm parasite. Despite possessing chloroplasts, it was found that the burgundy red shoots of Parasitaxus lack significant photosynthetic electron transport. However unlike nonphotosynthetic angiosperm parasites (holoparasites), tissues of Parasitaxus are considerably enriched in13carbon relative to its host. In line with anatomical observations of fungal hyphae embedded in the parasite/host union, stable carbon isotopic measurements indicate that carbon transport from the host to Parasitaxus most likely involves a fungal partner. Therefore, Parasitaxus parallels fungus feeding angiosperms (mycoheterotrophs) that steal carbon from soil mycorrhizal fungi. Yet with its tree-like habit, association with fungi residing within the host union, high stomatal conductance, and low water potential, it is demonstrated that Parasitaxus functions unlike any known angiosperm mycoheterotroph or holoparasite. Parasitaxus appears to present a unique physiological chimera of mistletoe- like water relations and fungal-mediated carbon trafficking from the host."
  • Single gene analyses reveal potential cases of horizontal gene transfer of atp1 from host to parasite. Comparison of phylogenetic relationships, gene-specific branch lengths (drawn proportionally) and corrected pairwise divergences (K) for representatives of all rosid and asterid orders for the three mt genes, atp1, matR, and coxI. Endoparasites and their host lineages are shown in matching colors. BP/PP values are shown above all nodes with values >50/0.8. A. Single most likely tree from atp1-only analysis (-lnL = 5136.56). B. Single most likely tree from matR-only analysis (-lnL = 8443.48). C. Single most likely tree from coxI-only analysis (-lnL = 4426.50). D-F. Average pairwise divergences for the endoparasite taxa relative to all non-parasites in the atp1, matR, and coxIdatasets, respectively. Calculations of pairwise divergences shown in D-F, were made by comparing each single endoparasite to all non-parasites and all non-parasites to each other.
  • The End! http://www.mobot.org/MOBOT/research/APWeb/
  • Evolution and Ecology of the Parasitic Order Santalales

    1. 1. Ecology and Evolution of <br />Chlamydophytumaphyllum(Balanophoraceae)<br />
    2. 2. Outline<br />Placement of Santalales<br /> Modes of parasitism<br />Phylogenetics of Santalales<br />Evolution of parasitic modes<br />Ecology<br />Summary<br />Parasitic angiosperms<br />
    3. 3. Where is Santalales?<br />Laurales<br />Piperales<br />Saxifragales<br />Zygophyllales<br />Malpighiales<br />Cucurbitales<br />Malvales<br />Santalales<br />Ericales<br />Boraginales<br />Laminales<br />Solanales<br />?<br />
    4. 4. Degree<br />Hemiparasite<br />S<br />Connection<br />Stem<br />host<br />R<br />Root<br />Holoparasites<br />cpDNA?<br />Altered from Nickrent 2008<br />
    5. 5. Types of haustorial connections<br />Mode<br /> Non-parasitic<br /> Root parasitic<br /> Stem parasitic<br />N<br />R<br />S<br />Altered from Nickrent 2008<br />
    6. 6. mistletoes<br />endophyte (bark strand) spreads laterally within the host cortex distal to the point of original infection<br />Loranthaceae <br />epicortical roots that “explore” the host surface and form secondary haustorial connections <br />primary<br />localized <br />squamate mistletoes <br />scale leaves with lowered photosynthMisodendrum, Phacellaria and Arceuthobium.<br />Loranthaceae <br />adventitious roots<br />“amphiphagous” to describe a condition where individuals of a species feed upon stems, roots or both simultaneously. Nickrent 2008<br />root parasitic lianas<br />Opiliaceae<br />Santalaceae (Amphorogyneae),<br />aerial parasitism evolved five times independently in Santalales <br />stem parasitic lianas or dendroparasites (non-twining) radicular primary haustorium<br />
    7. 7. Haustorial parasitism<br />vs. mycoheterotrophic<br />Strigahermonthica on corn root<br />Thismia (Burmanniaceae)<br />Dörr 1997.<br />
    8. 8. Haustorial connection: “wood roses”<br />
    9. 9. Santalales<br />+/- 9 families<br />151 genera<br />1985 species<br />Degree<br />non-parasitic <br />hemiparasitic <br />holoparasitic<br />Root hairs absent<br />(unclear if present in Erythropalaceae)<br />Mycorrhizae generally absent(Erythropalaceae and a few species in “Olacaceae”)<br />Comandra clade<br />Thesium clade<br />Santalum clade<br />
    10. 10. Balanophoraceae<br />holoparasitic<br />Greek: balanos - acorn<br />R<br />Comandra clade<br />Thesium clade<br />Santalum clade<br />“Viscaceae”<br />
    11. 11. “Balanophorales”: Balanophoraceae + Cynomoriaceae?<br />?<br />Cynomorium<br />
    12. 12. “Balanophorales”: Balanophoraceae + Cynomoriaceae?<br />Su et. al. 2008<br />B-class floral genes Balanophoraceae basal within Santalales(unpublished)<br />Nickrent et. al. 2005<br />rDNA + cpDNA + mtDNA<br />Balanophoraceae + Santalales <br />BS = 94<br />Cynomorium in Saxifragales <br />BS = 98<br />
    13. 13. Balanophoraceae: Balanophoralaxiflora, Vietnam<br />synandrium, extrafloral nectary<br />Hong Kong<br />volva<br />
    14. 14. Balanophoraceae:Helosiscayennensis, Brazil<br />“silky” styles<br />peltate scales<br />synandrium<br />
    15. 15. Balanophoraceae: Chlamydophytumaphyllum, Congo<br />“little or hardly stinking” Halle 1978<br />
    16. 16. Balanophoraceae: Chlamydophytumaphyllum, Congo<br />stylar channel<br />and <br />ovulein longitudinal section<br />anthers<br />capitulum<br />anther<br />Volva: saclike membranous envelope<br />stigma<br />Halle 1978<br />
    17. 17. Balanophoraceae: Chlamydophytumaphyllum, Congo<br />Cochineal scale<br />Mite<br />Dipteran larvae<br />Mite<br />“old desiccated and parasitized male spike”<br />Halle 1978<br />
    18. 18. Balanophoraceae: Langsdorffiahypogaea<br />Infructescence<br />
    19. 19. Balanophoraceae: Langsdorffia<br />Propithecusdiadema, Madagascar<br />Irwin et. al., 2006. Diademed sifakas (Propithecusdiadema) use olfactionto forage for the inflorescences of subterranean parasitic plants (Balanophoraceae: Langsdorffia sp., and Cytinaceae: Cytinus sp.)<br />
    20. 20. MonoeciousBalanophores:<br />?<br />Lophophytumleandrii, Brazil<br />Greek lophos - crest or tuft<br />Balanophorafungosassp. fungosa, Philippines<br />
    21. 21. Balanophoraceae: Lophophytummirabile, Brazil; Latin mirabilis - marvelous<br />pollen-robbing bee:<br />Subfamily Meliponidae<br />Host: Pithecellobium<br />Borchsenius 1990<br />
    22. 22. Balanophoraceae: Lophophytummirabile, Brazil; Latin mirabilis - marvelous<br />Beetle pollinated (generalist)<br />Borchsenius 1990<br />
    23. 23. Balanophoraceae: Dactylanthustaylorii, New Zealand<br />Māori : puareinga - &quot;flower of the underworld“<br />waewaeatua - &quot;feet of gods”<br />Host: Schefflera digitata<br />“threatened species” as of 2004 <br />Harvesting for sale<br />- New Zealand Department of Conservation, 2009<br />
    24. 24. Balanophoraceae: Dactylanthustaylorii<br />2. Pollinator decline<br />Ecroyd 1996<br />Lesser Short-tailed Bat <br />Mystacinatuberculata<br />(1 of 2 native NZ mammals)<br />Peter Schouten<br />
    25. 25. Balanophoraceae: Dactylanthustaylorii<br />Australian brush-tailed possumTrichosurusvulpecula<br />3. Invasive species<br />plants in cages, New Zealand Department of Conservation<br />Norway ratRattusnorvegicus<br />Ecroyd 1996<br />
    26. 26. Balanophoraceae: Corynaeacrassa, Costa Rica<br />
    27. 27. More Balanophoraceae<br />Rhopalocnemisphalloides, Vietnam<br />Balanophorareflexa, Borneo<br />Balanophorawrightii, Japan<br />
    28. 28. Balanophoraceae: Sarcophytesanguinea, South Africa<br />
    29. 29. Erythropalaceae<br />N<br />Scorodocarpusborneensis, Indonesia<br />Santalum clade<br />Erythropalumscandens, Borneo <br />
    30. 30. N<br />Erythropalaceae: Heisteria<br />calyx cupular<br />calyx<br />+<br />hypanthium<br />Heisteriascandens, Costa Rica<br />Heiserialatifolia, Ecuador<br />Heisteriamacrophylla<br />Heisteriasp.<br />
    31. 31. “Olacaceae”<br />R<br />R<br />R<br />Anacalosoideae<br />Comandra clade<br />Thesium clade<br />Santalum clade<br />
    32. 32. “Olacaceae”<br />R<br />Ptychopetalumolacoides<br />Olaxphyllanthii, Australia<br />Minquartiaguianensis, French Guiana<br />Olaxscandens, Thailand<br />Ximeniaamericana var. americana, Bahamas<br />daSilva et al., 2009. MK801- and scopolamine-induced amnesias are reversed by an Amazonian herbal locally used as a “brain tonic”<br />
    33. 33. “Olacaceae”<br />R<br />Phanerodiscuscapuronii<br />with unknown gall, Madagascar<br />
    34. 34. Loranthaceae<br />950 species<br />S<br />R<br />Comandra clade<br />Thesium clade<br />Santalum clade<br />
    35. 35. Loranthaceae: Nuytsia floribunda “Western Australian Christmas tree&quot;<br />R<br />Root parasite<br />
    36. 36. S<br />Loranthaceae<br />
    37. 37. Loranthaceae: bird pollination<br />S<br />
    38. 38. S<br />Loranthaceae :Tristerixaphylluson Echinopsischilensis, Chile<br />
    39. 39. S<br />Loranthaceae: Tristerixcorymbosus, Argentina<br />Monito del Monte<br />&quot;little mountain monkey”<br />Dromiciopsgliroides<br />
    40. 40. S<br />Loranthaceae :Tristerixverticillatus, Chile<br />vivipary<br />
    41. 41. S<br />Loranthaceae :Tristerixverticillatus, Chile<br />Mathania<br />Ormiscodes, Saturniidae<br />
    42. 42. Loranthaceae: Lysiana<br />S<br />Ehleringer et. al., 1986. Mistletoes: a hypothesis concerning morphological and chemical avoidance of herbivory. <br />Lysianaexocarpi – “harlequin mistletoe” on Pittosporumangustifolium, Melaleuca sp.<br />
    43. 43. Loranthaceae, Amyemapendula, Australia<br />S<br />mistletoe bird<br />Dicaeumhirundinaceum<br />
    44. 44. Loranthaceae, Plicosepalus<br />S<br />Host: Acacia raddiana<br />
    45. 45. Loranthaceae: Amyema<br />S<br />Amyemafasciculata<br />Deliasharpalyce– imperial white<br />Comocrusbehri– the mistletoe moth<br />Amyemaartensis<br />
    46. 46. Loranthaceae: Lysianamurrayi<br />S<br />Ogyris amaryllis (Lycaenidae)<br />mistletoe butterfly<br />
    47. 47. More Loranthaceae<br />Tolypanthuspustulatus, Thailand<br />Tolypanthuslagenifer, India<br />
    48. 48. Schoepfiaceae<br />R<br />S<br />R<br />Arjonapatagonica, Chile<br />Quinchamaliumchilense, Argentina<br />S<br />Misodendraceae<br />Schoepfiaschreberi, Florida<br />
    49. 49. Opiliaceae<br />R<br />S<br />Misodendraceae<br />S<br />R<br />Comandra clade<br />Thesium clade<br />Santalum clade<br />
    50. 50. “Santalaceae”<br />Comandra clade<br />Thesium clade<br />Santalum clade<br />
    51. 51. “Santalaceae”: Comandra, Thesium clades<br />R<br />R<br />Comandraumbellata - bastard toadflax , Virginia<br />Buckleyadistichophyllaon Tsuga, North Carolina<br />Thesium euphorbioides<br />Acanthosyrisspinescens<br />
    52. 52. “Santalaceae”: Santalum clade<br />R<br />S<br />S<br />Exocarpuscupressiformis,Tasmania<br />Nanodeamuscosa, Argentina<br />Exocarposcasuarinoides, New Caledonia<br />
    53. 53. “Santalaceae”: Santalum clade: Santalum - sandalwood<br />R<br />$1500/kg<br />Santalum album, Indian Sandalwood<br />Santalum spicatum, Australian sandalwood. <br />
    54. 54. “Santalaceae”, Amphorogyne clade:<br />S<br />Choretrumpauciflorum<br />Dendrotrophesp.<br />Daenikeracorallina, New Caledonia <br />
    55. 55.
    56. 56. S<br />Viscaceae<br />Arceuthobiumminutissimum<br />on Pinuswallichiana, Bhutan <br />endoparasite<br />world’s smallest dicot<br />Arceuthobiumvaginatum<br />Helixantherawallichiana<br />
    57. 57. Summary: Parasitic modes of Santalales<br />N<br />R<br />R<br />R<br />Mode<br /> Non-parasitic<br /> Root parasitic<br /> Stem parasitic<br />N<br />S<br />R<br />R<br />S<br />R<br />S<br />≥5<br />R<br />R<br />R<br />Comandra clade<br />R<br />Thesium clade<br />R<br />S<br />S<br />Santalum clade<br />S<br />“Viscaceae”<br />
    58. 58. Summary: How did parasitism evolve in this group?<br />N<br />-<br />R<br />R<br />R<br />Mode<br /> Non-parasitic<br /> Root parasitic<br /> Stem parasitic<br />N<br />S<br />R<br />R<br />+<br />S<br />+<br />R<br />S<br />R<br />R<br />R<br />Comandra clade<br />Santalales + Balanophorales?<br />“unlikely that parasitism is a reversible trait”<br />Barkman 2007<br />R<br />Thesium clade<br />R<br />S<br />S<br />Santalum clade<br />S<br />“Viscaceae”<br />
    59. 59. Summary: 11-13 origins of haustorial parasites<br />11: Saxifragales + Santalales?<br />13: Santalales + Balanophorales?<br />Barkman 2007<br />12<br />+ Podocarpaceae?<br />Parasitaxususta<br />New Caledonia<br />(appears mycoheterotrophic)<br />
    60. 60. Future research: Horizontal gene transfer of atp1 from host to endoparasite<br />Malvales: Cytinaceae: Cytinus<br />Ericales: Mitrastemonaceae: Mitrastema<br />Santalales<br />Viscaceae: Arceuthobiumminutissimum + host<br />not sampled<br />Barkman 2007<br />
    61. 61. Additional references: http://www.mobot.org/MOBOT/research/APWeb/<br />http://www.parasiticplants.siu.edu/<br />

    ×