Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Crowdsourcing in Article Evaluation


Published on

Poster presented at the Webscience Conference 2011 in Koblenz.

Published in: Education
  • Be the first to comment

  • Be the first to like this

Crowdsourcing in Article Evaluation

  1. 1. Crowdsourcing in Article Evaluation Isabella Peters1, Stefanie Haustein1,2 & Jens Terliesner1 MULTIDIMENSIONAL  JOURNAL | | JOURNAL MANAGEMENT EVALUATION GENERAL IDEA OF CROWDSOURCING ARTICLE & JOURNAL EVALUATION Past: traditional  journal evaluation uses cumulated Present: access‐,  download‐,  subscription statistics of  Future: a  multidimensional  approach which combines citation numbers of articles. electronic articles should reflect usage of  articles and  available usage numbers. Problem: citations do  not appropriately reflect articles‘ journals. Focus: data of  STM‐social bookmarking systems (e.g.,  influence on  readers  because only such  readers  were Problem: measuring is problematic although standards CiteULike)  for measuring journal perception and  reader count, who also write articles and publish in journals. are given. Global usage statistics are not available. perception of articles as crowdsourced alternative. 88.4% of all retrieved bookmarks were tagged DATA COLLECTION & TEST SETS matc hing via DO I REV MOD PHYS 10000 8,208 tags were assigned 38,241 times Test set I O I /D via SN 45 solid state physics journals g in / IS ch n 1000 ar tio frequency all publications from 2004 to 2008 se evia ab br 100 J PHYS A / bibliographic data for 168,109  J PHYS A tit le SOFT MATTER documents from Web of Science 10 PHYS REV E PHYS REV E Data collection CiteULike 1 1 10 100 1000 10000 matching of articles and bookmarks REV MOD PHYS tag tags tagcloud: all tags assigned at least 50 times to articles in CiteULike, BibSonomy and Connotea journals 350 13,608 bookmarks were matched to  satoshi (322 posts) Test set II 300 10,280 articles Number of bookmarks per user 13,760 correct bookmarks retrieved  bookmarks J PHYS A 250 2,441 unique users bronckobuster (238 posts) for articles of test set I Number of bookmarks retrieved rice (234 posts) 1,179 users posted one article bibliographic data 200 BibSonomy 940 75% of content is created by 21%  150 of users CiteULike 10778 100 8,511 articles were only  50 bookmarked once Connotea 2042 0 Users from BibSonomy, CiteULike and Connotea RQ: DO TAGS REFLECT OTHER VIEWS ON ARTICLES THAN AUTHOR OR INTERMEDIARY KEYWORDS? Comparison of: Preprocessing and cleaning of keyword sets: Results from preprocessing and cleaning: aim: to receive a linguistically homogenous keyword author: ‐55.3% spelling variants subject headings collection intermediary: ‐2.8% spelling variants publication all keywords: removed special characters (except automatic: ‐5.3% spelling variants Inspec author matching via DOI 724 articles of test set I&II  hyphens and underscores), lower case, BE to AE, tags: ‐8.4% variants * keywords contained all keyword types stemming with Porter 2 title author keywords: removed stop words and dataset author: +34.1% overlap** tags terms comparison of keyword sets specific terms (e.g., imported) intermediary: +21% overlap abstract on article level via cosine tags for comparison with title & abstract terms: split at  automatic: +20.6% overlap BibSonomy terms CiteULike similarity coefficient separating character (e.g., hyphen or undescore) Web of Science Connotea tags for comparison with automatic & controlled ** at least one term in common KeyWords PlusTM keywords: deletion of separating character and blanks RESULTS OF TERM SET COMPARISON mean overlap tag ratio tags in terms mean overlap term ratio terms in tags mean cosine similarity between tags and keywords tags reveal user perception of articles tags for articles of the journal J Stat Mech crowdsourcing article & journal evaluation Analysis over time can reveal shifts in thematic focus areas tags assigned to articles intermediary keywords for articles published in J Phys of the journal J Stat Mech Condens Matter in 2004Mitglied der Helmholtz-Gemeinschaft tags assigned to articles published in  J Phys Condens Matter in 2008 overlap: at least one term in common Good, B., Tennis, J., & Wilkinson, M. 2009. Social tagging in the life sciences: Characterizing a new metadata resource for bioinformatics. BMC Bioinformatics, 10(313). DOI= 10.1186/1471‐2105‐10‐313.  Haustein, S. 2011. Wissenschaftliche Zeitschriften im Web 2.0. Die Analyse von Bookmarks zur Evaluation wissenschaftlicher Journale. In Proceedings of the 12th International Symposium for Information Science (Hildesheim, Germany, March 09‐11, 2011). 148‐159. Haustein, S., & Siebenlist, T. 2011. Applying social bookmarking data to evaluate journal usage. Journal of Informetrics, 5(3). 446‐457.  DOI= 10.1016/j.joi.2011.04.002 References Jeong, W. 2009. Is tagging effective? Overlapping ratios with other metadata fields. In Proceedings of the International Conference on Dublin Core and Metadata Applications (Seoul, Korea, October 12‐16, 2009). 31‐39.  Lin, X., Beaudoin, J., Bul, Y., & Desai, K. 2006. Exploring characteristics of social classification. In Proceedings of the 17th Annual ASIS&T SIG/CR Classification Research Workshop (Austin, USA, November 03‐08, 2006).  1 Department of Information Science, Heinrich‐Heine‐University Düsseldorf,  Lu, C., Park J., &Hu, X. 2010. User tags versus expert‐assigned subject terms: A comparison of LibraryThing tags and Library of Congress Subject Headings. Journal of Information Science, 36(6), 763‐779.  Lux, M., Granitzer, M., & Kern, R. 2007. Aspects of broad folksonomies. In Proceedings of the 18th International Conference on Database and Expert Systems Applications (Regensburg, Germany, September 03‐07, 2007). 283‐287.  Universitätsstraße 1, 40225 Düsseldorf (Germany) Noll, M. G., & Meinel, C. 2007. Authors vs. readers. A comparative study of document metadata and content in the WWW. In Proceedings of the 2007 ACM Symposium on Document Engineering (Winnipeg, Canada, August 28‐31,  2 Central Library, Forschungszentrum Jülich, 2007). 177‐186.  Peters, I. 2009. Folksonomies. Indexing and Retrieval in Web 2.0. De Gruyter Saur, München. Terliesner, J., & Peters, I. 2011. Der T‐Index als Stabilitätsindikator für dokument‐spezifische Tag‐Verteilungen. In Proceedings of the 12th International Symposium for Information Science (Hildesheim, Germany, March 09‐11, 52425 Jülich (Germany) 2011). 123‐133. *