Smart textiles talk by Lieva Van langenhove

1,620 views

Published on

Talk from Lieva Van Langenhove at TIII one-day conference about smart textiles.

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,620
On SlideShare
0
From Embeds
0
Number of Embeds
69
Actions
Shares
0
Downloads
97
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Smart textiles talk by Lieva Van langenhove

  1. 1. Interactive textiles todayProf. Lieva Van LangenhoveDepartment of Textiles
  2. 2. Smart and electronic textiles?Smart textile measures/reactsReaction is intrinsicReaction is controlled by electronicsActive data processing
  3. 3. Functions of smart textiles• Sensor• Actuator• Data processing• Communication• Energy
  4. 4. Why textiles?• All around• Versatile• Light weight• Large contact area with body• Comfortable• Easy to use
  5. 5. Effects from nano to macro
  6. 6. Objective
  7. 7. The textile can absorb, reflect, shield,measure or generate …Temperature Electric propertiesHeat flux MovementElectromagnetic fields ForcesHumidity Mechanical strengthChemicals OdourGases AcousticRadiation Biological
  8. 8. Electromagnetic fields: conductive textilesStainlesssteel Knitted Woven non wovenKevlarcoated polypyrrol copper goldwith
  9. 9. Conductive textiles as sensor Textrodes Respibelt
  10. 10. EMG monitoring Myography for stress measurement Contactless Professional use EMG sensors embroidered laminated (www.context-project.org)
  11. 11. Electrotherapy• Homogeneous current • Tactile stimulusdensity • Skin stimulation • Tissue reinforcement • Electrode design • Sensory effects • Current supply • Muscle stimulation• Contact with skin • Warming up • Exercising• Conditions of current •Drug delivery • Skin permeability • Iontophoresis
  12. 12. Current density must be homogeneous Stripe Concentric Uniform profile square profilePeak current density: 33 mA/mm2 21 mA/mm² 15.6 mA/mm2
  13. 13. Electrotherapy prototypes
  14. 14. Heating Polar Sefar
  15. 15. Cooling• Grado Zero F1 pilots• Prospie project: • Salts that cool when wetted • Ventilation in clothing • Phase change materialswww.prospie.eu
  16. 16. Self adapting insulation/ventilationBiomimetics: based onpine coneCoating reacting onhumidityG. JenonimidisUniversity of reading UK
  17. 17. Phase change materials•Developed by NASA in 90’s•Cope with large temperature variations•More than 500 substances•Uses melting heat: about 200 times higher thancaloric value•Paraffin waxes in micro capsules
  18. 18. Thermoregulation challenges• Sensors• Determining thermal comfort• Adequate control strategies• Actuators: • Cooling • Insulation • Ventilation
  19. 19. Mechanical actuatorsMechanisms StatusThermal/hygral expansion Limited flexibilityShape memory materials One way, expensive, controlGel based systems Based on diffusion: slowElectro active polymers Slow, low voltageElectrostrictive systems Fast, high voltage
  20. 20. Shape memory alloys: Nitinol Goes to a predifined shape above transition temperature Grado Zero Self ironing shirt
  21. 21. Smart interface: active dyes Skin pH-variation after burn wound skin pH days L. Van der Schueren, K. De Clerck
  22. 22. Textile display France Telecom
  23. 23. Built in LED Lumalive
  24. 24. OLED Textile structure Organic materials Image quality Yield Oxidation TITV
  25. 25. Biochemical actuatorsMicro capsules Active gels Cyclodextrins
  26. 26. CommunicationWithin componentsBetween components in a suit ‣ Conductive fibres ‣ Optical fibresWith the wearer: • keyboard, • displayWide environment: • inductive, • antenna
  27. 27. EnergyOptimise consumption and distributionBalance between storage and “generation”Storage: • Flexible chemical batteries • Capacity based fibre batteriesGeneration from: • Heat • Motion • Light
  28. 28. Energy from heat: Seebeck Uses: Areas of cooling •P semiconductor •N semiconductor Areas of heating •Conductive materials Infineon demonstrator
  29. 29. Energy from motion: piezo electrics Deformation leads to E field Needs large surface, no thickness PVDF Challenges: •Materials •Concepts Electrode Piezo electric layer •Production (poling) Electrode
  30. 30. Photovoltaics Organic photovoltaics Nanostructures Transparent layer/ Dyestuffs Electrode Challenges: N semiconductor •Materials+- +- P semiconductor •Production +- Electrode •Stability •Concept
  31. 31. STELLA: Stretchable Electronicswww.stella-project.eu
  32. 32. Creating the paths: Sefar
  33. 33. Inner garment
  34. 34. Outer garment External GPS Temperature Antenna Alarm Accelerometers Data Flexible Recording Textile Processing Antenna Battery Transmission
  35. 35. Victim patch Parameter •Heart beat rate •Respiratory rate •Body Temperature Cfr. inner garment
  36. 36. Monitoring Centre
  37. 37. GPSPosition ProeTEX PDA Google Earth 45.202740 45.202624 45.202755 1 09.133803 09.133932 09.133844 45.203345 45.203210 45.203322 2 09.134353 09.134457 09.137197 45.201181 45.201847 45.201555 3 09.139856 09.139828 09.139477 45.200705 45.198690 45.198816 4 09.143692 09.143832 09.143833
  38. 38. A smart textile can …Monitor man, the environment and itselfDetect unusual conditionsDetect when things risk to get out of handPrevent things from happeningProtect against accidentsMonitor the impact of eventsProvide early assistanceSupport and follow up rehabilitation
  39. 39. Coordination action for enhancing thebreakthrough of intelligent textile systems(e-textiles and wearable Microsystems) www. .orgCOLAE: Commercialisation Clusters of OLAE www. .eu

×