Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Bart Meehan: Sustainably Designed Buildings at the Australian National University


Published on

Published in: Education, Business, Technology
  • Be the first to comment

  • Be the first to like this

Bart Meehan: Sustainably Designed Buildings at the Australian National University

  2. 2. “…Structures such as London’s Crystal Palace and Milan’s Galleria Vittorio Emanuele II used methods that decreased the impact of the structure on the environment. Systems such as roof ventilators and underground air- cooling chambers were used to regulate indoor air temperature.2 In the early twentieth century, several skyscrapers such as the Flatiron Building and the New York Times Building in New York utilized deep-set windows and the Carson Pirie Scott department store in Chicago had retractable awnings. Both of these techniques were effective in controlling interior temperature while lessoning the buildings’ impact on the environment….” INTRODUCTION TO GREEN BUILDINGS Reference:
  3. 3. “…From the 1930’s through the 1960’s, the forward thinking cooling methods …gave way to some new building technologies that would change inner-city building construction dramatically. The invention of air conditioning, reflective glass, and structural steel popularized the enclosed glass and steel buildings that litter the American city today. These buildings were able to be heated and cooled with massive HVAC systems that consumed huge amounts of cheap and readily available fossil fuels.4 The massive consumption of energy required to inhabit these buildings made their viability tenable and entirely dependent upon energy availability and cost… “ “…Around the time that the “glass box” style high rise had become the icon of the American city (circa 1970), a forward thinking group of architects, environmentalists, and ecologists5 were inspired by the growing environmental movement and the higher fuel costs that were prevalent during the 1970s.6 The genesis of these two scenarios ultimately resulted in the modern build green movement…” Reference:
  4. 4. WOOLLEY BUILDING, MOUNT STROMLO CAMPUS Completed in 1995 Natural ventilation with some air-conditioning, high levels of insulation, unusual shaped window boxes on the Western façade to reduce heat load and manages stormwater through surface drainage and retention ponds. Where it began for ANU…
  5. 5. IAN ROSS BUILDING – College of Engineering and Computer Science Completed in 2000 Ian Ross Building maximizes passive environmental systems as a means of providing occupant thermal comfort. New walls are either insulated double brick or reverse veneer for a stable internal environment and minimized heat/cool loading. A narrow floor plate allows deep penetration of day light into internal spaces with clerestory windows where additional light is required. Ventilation chimney stacks also double as light wells drawing light deep into the building. A hydronic slab heating system that is suitable for future integration with solar hot water collection has been installed to heat the building during winter. Slab heating is a storage heating system that utilizes the mass of the building to dispense heat to the space. The system has been zoned to take into consideration usage patterns, internal loads and conduction loads on each space. Any solar heat gain is distributed throughout the building using the water with a reduction on energy consumption of 40-45% and a reduction in installed boiler capacity of 40%. Two natural ventilation networks exist within the Ian Ross building – a fully automated system and a manually operated system, as well as a night purge function that has been incorporated and will operate during the high temperature summer periods to purge stored heat from the building overnight.
  6. 6. JOHN CURTIN SCHOOL OF MEDICAL RESEARCH Completed in 2007 Several environmentally sustainable design features were also integrated into the JCSMR. Materials from the previous buildings demolished on site were reused where possible. Large windows allow abundant natural light to shine throughout the school and automatic lighting control is installed in many areas. The building itself is east to west orientated, and an adaptive air conditioning system is employed with a passive solar chimney, operable windows, and night purge fans. The wide concrete stairs leading up to the main entrance act as a plenum space; fresh, outdoor air is drawn in beneath the stairs and the 200 seat auditorium is ventilated naturally, reducing energy consumption. “Traffic light” system tell occupants when to open or close windows.
  7. 7. SCIENCE PRECINCT Started 2010 - Ongoing The laboratory areas incorporate a large number of fume cupboards, which are exhausted via a single manifolded duct, this exhaust system also includes a thermal recovery coil. This is the first laboratory building in Australia to incorporate this feature and required the project to seek a special exemption from the building certifier as it was completed ‘ahead’ of the Australian Standards for Laboratory design. The building incorporates extremely complex facade elements, with a mix of digitally moulded precast panels, high performance glazing, lightweight aluminium panelling installed with complex geometric patterns and recycled timber sunshades. ESD initiatives & targets for the Biosciences Building include: Adaptive air conditioning Blackwater Treatment plant to recycle waste water for re-use, Rainwater harvesting and recycling plant, Lighting control systems including sensors, timers and low energy lamping with electronic ballasts The building design meets GBCA 5 star Green Star A new Central Plant facility constructed to provide hot water for heating and chilled water supply to service the building (as well as 6 other buildings in the precinct).
  8. 8. JAEGER 8 Research School of Earth Science Completed 2011 The innovative cooling system utilises the stored rain water and the basement rock storage to assist with providing cooled air to the upper levels via thermal stacks. Individual temperature control within each office space. Partially exposed concrete ceilings in office areas to assist with radiant cooling and heating. Provision of ceiling fans in each office space. Natural ventilation through operable windows to all offices. Some windows controlled via actuators to allow night purging of the building. Double glazed windows. Rain Water tank for building cooling and landscape irrigation. Recovered material used in construction of façade 5 Star Energy Rating
  9. 9. FENNER SCHOOL OF ENVIRONMENT AND SOCIETY Completed 2012 Sustainable energy generation The building has a 40kw PV array that has the ability of generating over 65000 kWh of sustainable energy each year. The design intent was to enable the generation rate to equal or surpass the energy consumption within the building resulting in carbon neutral operation. Efficient heating & cooling The building has been connected to the new College of Science central plant which supplies the heating and chilled water for the conditioning of the building . The waste water from the building Frank Fenner building is also directed to the Black water treatment system in the central plant. Active chilled beams Active chilled beams provide energy efficient cooling and are also used in conjunction with an energy recovery system to further improve the energy efficiency. Traffic light system The traffic light system used in the building informs the occupants of when the outdoor temperature is suitable for natural ventilation, and when the internal heating and cooling should be used.
  10. 10. Fenner School of Environment and Society Thermal envelope To ensure that the energy being used to heat and cool is fully utilised the thermal envelope of the building has incorporated Hebel block for its insulation value , along with the wall and ceiling insulation. Particular attention to detail was required to ensure the minimisation of gaps to stop leakage. Double glazing and external shading also play an important role in providing natural light and views while reducing solar gain and noise infiltration. Rainwater harvesting system The rainwater harvesting system and the storm water management system integrates best practice with bio filtration and provides habitat via the creation of an ephemeral pond. This site development is monitored via time lapse photography and used as a teaching resource. Wetlands A wet land has been created to promote bio diversity and to provide an out door teaching area. The growth of the wetlands is being monitored and recorded for future research. Brickwork The pattern in the brickwork represents research data in climate change. THE BUILDING WAS ACCREDITED WITH A 6 GREENSTAR FOR DESIGN AND CONSTRUCTION BY THE GREEN BUILDING COUNCIL OF AUSTRALIA.
  11. 11. LENA KARMEL LODGE Completed 2012 The building innovatively addresses the challenges of energy, water and resource efficiency by implementing passive features and behaviour modification strategies, while also implementing ESD initiatives such as: • on-site solar photovoltaic panels, • highly efficient zoned controlled lighting in common areas, • rainwater harvesting for toilet flushing, • roof top gardens, • charging points for electric vehicles and; • extensive bicycle parking.
  12. 12. SUSTAINABILITY AT LENA KARMEL Community education and engagement A number of “fun” initiatives have been implemented to promote engagement including formal monthly competitions between floors of the residence to see which has the lowest environmental footprint. These data come from the real time information that is displayed on the dashboards. The dashboard also displays the number of people who use the central staircases, representing the data as the number of times the residents have “climbed” Mt Everest, instead of taking the elevator.
  13. 13. What happens next? Some questions we are considering Is innovation in sustainable design still dependant on cost and/or return on investment? Does the management and broader community understand sustainable design and operations? How will emerging demands in the tertiary sector (new research, changing teaching methodologies and high volume information processing) influence sustainable design and operations? Is industry really committed to innovation in design and construction?
  14. 14. SESSION: ISCN 2014 WORKING GROUP 1 - BUILDINGS AND THEIR SUSTAINABILITY IMPACTS MODERATORS: BART MEEHAN AND EDDI OMRCEN 1. Innovation in building sustainability design and operations. What is "innovation" in building sustainability? Is it radical changes in design and operations or more gradual evolution that progressively improves on existing designs are as efficient as they can be? What will a university building/campus look like in 10 years, in 20 years, in 50 years? What will be the expectations of the community and how will design have to involve to meet those demands? Presentation: Evolution of sustainable building design at the Australian National University - Bart Meehan (10 minutes) Presentation: TBA - Eddi Omrcen (Gothenburg University (10 Minutes) 2. Engaging the organisation in innovation. The group will discuss institutional barriers to establishing innovative design and operations in campus buildings and explore strategies for creating organisational engagement. Presentation: Engaging the community in innovation - Rene Swart (St Stithians College, Sth Africa) (15 minutes) Presentation: Energy Efficiency (Lighting Upgrade) - Meri Löyttyniemi (15 minutes) BREAK - 20 MINUTES 3. Creating a knowledge base of best practice The group will discuss the further development of the ISCN case studies database and how best practice should be assessed, including peer group evaluation before the publication of the case studies. The section will include the presentation of the online case study survey tool that has been developed, with the group being asked to provide feedback on design. Presentation: Building a data base of innovative design and operations - Colin Reiter (University of Melbourne) (15 minutes)