Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
On Exploiting Transient Social Contact Patterns for Data
Forwarding in Delay-Tolerant Networks
ABSTRACT:
We are challengin...
Traditional MANET routing protocols such as AODV, DSR, DSDV and LAR make the assumption that the
network graph is fully co...
 Transient Contact Distribution
 Transient Connectivity (TC)
 Transient Community Structure
HARDWARE & SOFTWARE REQUIRE...
REFERENCES:
[1] M. Abramovitz and I. Stegun, Handbook of Mathematical Functions. Dover, 1972.
[2] A. Balasubramanian, B. L...
[12] V. Erramilli, A. Chaintreau, M. Crovella, and C. Diot, “Delegation Forwarding,” Proc. ACM MobiHoc,
2008.
[13] K. Fall...
Upcoming SlideShare
Loading in …5
×

JAVA 2013 IEEE MOBILECOMPUTING PROJECT On exploiting transient social contact patterns for data forwarding in delay tolerant networks

239 views

Published on

To Get any Project for CSE, IT ECE, EEE Contact Me @ 09849539085, 09966235788 or mail us - ieeefinalsemprojects@gmail.com-Visit Our Website: www.finalyearprojects.org

Published in: Technology
  • Be the first to comment

  • Be the first to like this

JAVA 2013 IEEE MOBILECOMPUTING PROJECT On exploiting transient social contact patterns for data forwarding in delay tolerant networks

  1. 1. On Exploiting Transient Social Contact Patterns for Data Forwarding in Delay-Tolerant Networks ABSTRACT: We are challenging to achieve effective data forwarding in Delay-Tolerant Networks (DTNs). Most of the current data forwarding schemes choose the nodes with the best cumulative capability of contacting others as relays to carry and forward data, but these nodes may not be the best relay choices within a short time period due to the heterogeneity of transient node contact characteristics. In this paper, we propose a novel approach to improve the performance of data forwarding with a short time constraint in DTNs by exploiting the transient social contact patterns. These patterns represent the transient characteristics of contact distribution, network connectivity and social community structure in DTNs. We provide analytical formulations on these patterns based on experimental studies of realistic DTN traces. We then propose appropriate forwarding metrics based on these patterns to improve the effectiveness of data forwarding strategies, our proposed forwarding metrics achieve much better performance compared to existing schemes with similar forwarding cost. EXISTING SYSTEM: Existing Networks using (MANET) is a dynamic wireless network with or without fixed infrastructure. Nodes may move freely and organize themselves arbitrarily. Sparse Mobile Ad hoc Networks are a class of Ad hoc networks where node density is low, and contacts between the nodes in the network do not occur very frequently. MANET network graph is rarely, if ever, connected and message delivery must be delay-tolerant. GLOBALSOFT TECHNOLOGIES IEEE PROJECTS & SOFTWARE DEVELOPMENTS IEEE FINAL YEAR PROJECTS|IEEE ENGINEERING PROJECTS|IEEE STUDENTS PROJECTS|IEEE BULK PROJECTS|BE/BTECH/ME/MTECH/MS/MCA PROJECTS|CSE/IT/ECE/EEE PROJECTS CELL: +91 98495 39085, +91 99662 35788, +91 98495 57908, +91 97014 40401 Visit: www.finalyearprojects.org Mail to:ieeefinalsemprojects@gmail.com
  2. 2. Traditional MANET routing protocols such as AODV, DSR, DSDV and LAR make the assumption that the network graph is fully connected and fail to route messages if there is not a complete route from source to destination at the time of sending. For this reason traditional MANET routing protocols cannot be used in sparse MANETs. To overcome this issue, node mobility is exploited to physically carry messages between disconnected parts of the network. These schemes are sometimes referred to as mobility assisted routing that employs the store-carry- and-forward model. Mobility-assisted routing consists of each node independently making forwarding decisions that take place when two nodes meet. A message gets forwarded to encountered nodes until it reaches its destination. PROPOSED SYSTEM: We propose a novel approach to improve the performance of data forwarding with a short time constraint in DTNs by exploiting the transient social contact patterns. These patterns represent the transient characteristics of contact distribution, network connectivity and social community structure in DTNs, and we provide analytical formulations on these patterns based on experimental studies of realistic DTN traces. We propose data forwarding metrics by exploiting the stochastic node contact process based on experimental and theoretical analysis metrics based on the prediction of node mobility and its probability of contacting the destination. However, the performance of these schemes is limited due to the randomness of human mobility and thus the low prediction accuracy. Data forwarding is divided into two stages: First, node centrality is evaluated at the global scope which includes all the nodes in the network, to ensure that data is carried and forwarded by relays with higher capability of contacting other nodes. Second, when a relay contacts a node within the same community of the destination, data is forwarded to that community. Afterward, node centrality is evaluated within the local community scope, and data is forwarded directly to the destination. We improve the performance of data forwarding by exploiting the transient social contact patterns from the following perspectives.
  3. 3.  Transient Contact Distribution  Transient Connectivity (TC)  Transient Community Structure HARDWARE & SOFTWARE REQUIREMENTS: HARDWARE REQUIREMENT:  Processor - Pentium –IV  Speed - 1.1 GHz  RAM - 256 MB (min)  Hard Disk - 20 GB  Floppy Drive - 1.44 MB  Key Board - Standard Windows Keyboard  Mouse - Two or Three Button Mouse  Monitor - SVGA SOFTWARE REQUIREMENTS:  Operating System : Windows XP  Front End : Java JDK 1.7  Scripts : Java Script. CONCLUSION: In this paper, we propose effective forwarding metrics to improve the performance of data forwarding in DTNs, by exploiting the transient social contact patterns. We formulate these patterns based on experimental observations from realistic DTN traces, and exploit these patterns for more accurate prediction on the node contact capability. Through extensive trace-driven experiments, we show that our approach significantly improves the data delivery ratio, while keeping similar forwarding cost with existing schemes.
  4. 4. REFERENCES: [1] M. Abramovitz and I. Stegun, Handbook of Mathematical Functions. Dover, 1972. [2] A. Balasubramanian, B. Levine, and A. Venkataramani, “DTN Routing as a Resource Allocation Problem,” Proc. SIGCOMM, 2007. [3] J. Burgess, B. Gallagher, D. Jensen, and B. Levine, “MaxProp:Routing for Vehicle-Based Disruption- Tolerant Networks,” Proc.IEEE INFOCOM, 2006. [4] H. Cai and D.Y. Eun, “Crossing over the Bounded Domain: From Exponential to Power-Law Inter-Meeting Time in MANET,” Proc. ACM MobiCom, pp. 159-170, 2007. [5] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott, “Impact of Human Mobility on Opportunistic Forwarding Algorithms,” IEEE Trans. Mobile Computing, vol. 6, no. 6, pp. 606-620, June 2007. [6] A. Chaintreau, A. Mtibaa, L. Massoulie, and C. Diot, “The Diameter of Opportunistic Mobile Networks,” Proc. ACM CoNEXT, 2007. [7] S.Y. Chan, P. Hui, and K. Xu, “Community Detection of Time-Varying Mobile Social Networks,” Complex Sciences, vol. 4, pp. 1154-1159, 2009. [8] P. Costa, C. Mascolo, M. Musolesi, and G. Picco, “Socially Aware Routing for Publish-Subscribe in Delay- Tolerant Mobile Ad Hoc Networks,” IEEE J. Selected Areas in Comm., vol. 26, no. 5, pp. 748- 760, June 2008. [9] E. Daly and M. Haahr, “Social Network Analysis for Routing in Disconnected Delay-Tolerant MANETs,” Proc. ACM MobiHoc, 2007. [10] H. Dubois-Ferriere, M. Grossglauser, and M. Vetterli, “Age Matters: Efficient Route Discovery in Mobile Ad Hoc Networks Using Encounter Ages,” Proc. ACM MobiHoc, pp. 257-266, 2003. [11] N. Eagle and A. Pentland, “Reality Mining: Sensing Complex Social Systems,” Personal and Ubiquitous Computing, vol. 10, no. 4, pp. 255-268, 2006.
  5. 5. [12] V. Erramilli, A. Chaintreau, M. Crovella, and C. Diot, “Delegation Forwarding,” Proc. ACM MobiHoc, 2008. [13] K. Fall, “A Delay-Tolerant Network Architecture for Challenged Internets,” Proc. SIGCOMM, pp. 27-34, 2003. [14] L. Freeman, “A Set of Measures of Centrality Based on Betweenness,” Sociometry, vol. 40, no. 1, pp. 35- 41, 1977. [15] W. Gao and G. Cao, “On Exploiting Transient Contact Patterns for Data Forwarding in Delay Tolerant Networks,” Proc. IEEE Int’l 18th Network Protocols Conf. (ICNP), 2010.

×