Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

2014 IEEE JAVA PARALLEL DISTRIBUTED PROJECT Trajectory improves data delivery in urban vehicular networks

329 views

Published on

To Get any Project for CSE, IT ECE, EEE Contact Me @ 09666155510, 09849539085 or mail us - ieeefinalsemprojects@gmail.com-Visit Our Website: www.finalyearprojects.org

Published in: Engineering
  • Be the first to comment

  • Be the first to like this

2014 IEEE JAVA PARALLEL DISTRIBUTED PROJECT Trajectory improves data delivery in urban vehicular networks

  1. 1. GLOBALSOFT TECHNOLOGIES Trajectory Improves Data Delivery in Urban Vehicular Networks Abstract Efficient data delivery is of great importance, but highly challenging for vehicular networks because of frequent network disruption, fast topological change and mobility uncertainty. The vehicular trajectory knowledge plays a key role in data delivery. Existing algorithms have largely made predictions on the trajectory with coarse-grained patterns such as spatial distribution or/and the inter-meeting time distribution, which has led to poor data delivery performance. In this paper, we mine the extensive data sets of vehicular traces from two large cities in China, i.e., Shanghai and Shenzhen, through conditional entropy analysis, we find that there exists strong spatiotemporal regularity with vehicle mobility. By extracting mobility patterns from historical vehicular traces, we develop accurate trajectory predictions by using multiple order Markov chains. Based on an analytical model, we theoretically derive packet delivery probability with predicted trajectories. We then propose routing algorithms taking full advantage of predicted probabilistic vehicular trajectories. Finally, we carry out extensive simulations based on three large data sets of real GPS vehicular traces, i.e., Shanghai taxi data set, Shanghai bus data set and Shenzhen taxi data set. The conclusive results demonstrate that our proposed routing algorithms can achieve significantly higher delivery ratio at lower cost when compared with existing algorithms. Existing system IEEE PROJECTS & SOFTWARE DEVELOPMENTS IEEE FINAL YEAR PROJECTS|IEEE ENGINEERING PROJECTS|IEEE STUDENTS PROJECTS|IEEE BULK PROJECTS|BE/BTECH/ME/MTECH/MS/MCA PROJECTS|CSE/IT/ECE/EEE PROJECTS CELL: +91 98495 39085, +91 99662 35788, +91 98495 57908, +91 97014 40401 Visit: www.finalyearprojects.org Mail to:ieeefinalsemprojects@gmai l.com
  2. 2. Efficient data delivery is of great importance, but highly challenging for vehicular networks because of frequent network disruption, fast topological change and mobility uncertainty. The vehicular trajectory knowledge plays a key role in data delivery. Existing algorithms have largely made predictions on the trajectory with coarse-grained patterns such as spatial distribution or/and the inter-meeting time distribution, which has led to poor data delivery performance. Proposed system , we mine the extensive data sets of vehicular traces from two large cities in China, i.e., Shanghai and Shenzhen, through conditional entropy analysis, we find that there exists strong spatiotemporal regularity with vehicle mobility. By extracting mobility patterns from historical vehicular traces, we develop accurate trajectory predictions by using multiple order Markov chains. Based on an analytical model, we theoretically derive packet delivery probability with predicted trajectories. We then propose routing algorithms taking full advantage of predicted probabilistic vehicular trajectories. Finally, we carry out extensive simulations based on three large data sets of real GPS vehicular traces, i.e., Shanghai taxi data set, Shanghai bus data set and Shenzhen taxi data set. The conclusive results demonstrate that our proposed routing algorithms can achieve significantly higher delivery ratio at lower cost when compared with existing algorithms. SYSTEM CONFIGURATION:- HARDWARE CONFIGURATION:-  Processor - Pentium –IV  Speed - 1.1 Ghz  RAM - 256 MB(min)  Hard Disk - 20 GB
  3. 3. SOFTWARE CONFIGURATION:-  Operating System : Windows XP  Programming Language : JAVA  Java Version : JDK 1.6 & above.

×