Successfully reported this slideshow.
Your SlideShare is downloading. ×

Scenario analysis of data centres in the Irish energy system

Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad

Check these out next

1 of 18 Ad

More Related Content

Slideshows for you (20)

Similar to Scenario analysis of data centres in the Irish energy system (20)

Advertisement

More from IEA-ETSAP (20)

Recently uploaded (20)

Advertisement

Scenario analysis of data centres in the Irish energy system

  1. 1. Data centres in Ireland SCENARIO ANALYSIS FOR ETSAP WORKSHOP Leonardo Collina, MSc student Università di Bologna / University College Cork
  2. 2. Data centres overview Physical facilities that companies use to host their critical applications and data. Demand increased rapidly in recent years and will further increase stimulated by new data-intensive technologies such as artificial intelligence, machine learning. Why is it relevant for the energy system? Electricity consumption for: • IT equipment (servers, storage, transmission) • Cooling system • Others Hyperscale DCs can have a demand capacity >100 MW But… waste heat recovery is possible! Why is it relevant for Ireland? Factors that make it perfect for hosting DCs: • Weather conditions • Good fibre connections with US • Attractive corporation tax Factors that make DCs hard to handle: • Big growth expected in the next decade • Concentration in Dublin area • Isolated energy system (lack of grid connections with other countries) • Decarbonization targets ETSAP workshop, 30.11.’21
  3. 3. Ireland decarbonization pathways A33E61: • 33% reductions from agriculture, • 61% reductions from energy & industry by 2030 ETSAP workshop, 30.11.’21 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 kton CO2 “Climate Action & Low Carbon Development (Amendment) Act 2021” targets to reduce greenhouse-gases [GHGs] by: • 51% by 2030, • net-zero by 2050. https://tim-carbon-budgets-2021.netlify.app/scenarios https://zenodo.org/record/5517363#.YZ-uVtDP02w More mitigation scenarios developed by the MaREI Energy Policy and Modelling Group available:
  4. 4. DCs in TIM ETSAP workshop, 30.11.’21 Season Weekly DayNite Wi NW A (0-7) Sp WD B (7-9) Su C (9-17) Au D (17-19) E (19-0) 40 time-slices
  5. 5. DCs in TIM Cooling system electricity and waste heat are expressed as share of the total consumption of the process. Shares are taken from a thermodynamic model on hourly level, then aggregated on time-slices level in TIM. ETSAP workshop, 30.11.’21
  6. 6. Demand projections 1_Flat: Flat demand Capacity: 1100 MW (already connected) Eirgrid, All-Island-Generation-Capacity-Statement-2020- 2029 Load factor: 40% Eirgrid, All-Island-Generation-Capacity-Statement-2020- 2029 0 10 20 30 40 50 60 70 80 90 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 PJ ETSAP workshop, 30.11.’21
  7. 7. Demand projections 2_LF: load factor increase Capacity: 1100 MVA (already connected) Load factor: grows linearly from 40% up to 70% in 2030 Eirgrid expects the load factor to rise as customers build out to their full potential. 0 10 20 30 40 50 60 70 80 90 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 PJ ETSAP workshop, 30.11.’21
  8. 8. Demand projections 3_cap: All current applications approved Capacity: o 1800 MVA in 2022 (connection agreements already in place) o +2000 MVA up to 2030 (additional requests already received) CRU21060-CRU-consultation-on-Data-Centre-measures Load factor: 40% 0 10 20 30 40 50 60 70 80 90 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 PJ ETSAP workshop, 30.11.’21
  9. 9. Demand projections 4_LFcap: All current applications approved and load factor increase Capacity: o 1800 MVA in 2022 (connection agreements already in place) o +2000 MVA up to 2030 (additional requests already received) CRU21060-CRU-consultation-on-Data-Centre-measures Load factor: grows linearly from 40% up to 70% in 2030 0 10 20 30 40 50 60 70 80 90 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 PJ ETSAP workshop, 30.11.’21
  10. 10. DCs elc vs total elc demand 0 50 100 150 200 250 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 PJ DCs electricity vs total electricity E61-1_Flat - E61-2_LF - E61-3_Cap - E61-4_LFCap - 0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0% 35.0% 40.0% 45.0% 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 DCs electricity as share of total electricity E61-1_Flat E61-2_LF E61-3_Cap E61-4_LFCap Scenarios recap Capacity [MVA] Load factor [%] Demand [PJ] 2021 2022 2030 2021 2030 2021 2030 E61-1_Flat 1100 1100 1100 40 40 14.19 14.19 E61-2_LF 1100 1100 1100 40 70 14.19 24.83 E61-3_Cap 1100 1800 3800 40 40 14.19 47.93 E61-4_LFCap 1100 1800 3800 40 70 14.19 83.89
  11. 11. New capacity installed • Investments in gas power plants in 2024 due to coal phase out in 2025 • Each year a considerable level of new wind off-shore capacity • Some investment in CCS technologies in 2030 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 E61-1_Flat E61-2_LF E61-3_Cap E61-4_LFCap E61-1_Flat E61-2_LF E61-3_Cap E61-4_LFCap E61-1_Flat E61-2_LF E61-3_Cap E61-4_LFCap E61-1_Flat E61-2_LF E61-3_Cap E61-4_LFCap E61-1_Flat E61-2_LF E61-3_Cap E61-4_LFCap E61-1_Flat E61-2_LF E61-3_Cap E61-4_LFCap E61-1_Flat E61-2_LF E61-3_Cap E61-4_LFCap E61-1_Flat E61-2_LF E61-3_Cap E61-4_LFCap E61-1_Flat E61-2_LF E61-3_Cap E61-4_LFCap E61-1_Flat E61-2_LF E61-3_Cap E61-4_LFCap 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 GW PWR-WIN-ON PWR-WIN-OF PWR-SOL PWR-HYD PWR-GAS-CCS PWR-GAS PWR-BIO-CCS
  12. 12. New capacity installed (Up to 2030) ETSAP workshop, 30.11.’21 • In the next 8 years the system will need from 16 to 17.8 GW of new capacity to meet decarbonization targets • This 1.8 GW difference is covered mostly from wind off-shore • But… in the case of very high demand the further difference is covered by new gas power plants 1.85 1.97 2.06 2.37 3.02 3.02 3.02 3.05 6.33 7.49 7.56 7.56 4.01 4.01 4.01 4.01 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 E61-1_Flat E61-2_LF E61-3_Cap E61-4_LFCap GW Total new capacity up to 2030 PWR-WIN-ON PWR-WIN-OF PWR-SOL PWR-HYD PWR-GAS-CCS PWR-GAS PWR-BIO-CCS -0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 E61-1_Flat E61-2_LF E61-3_Cap E61-4_LFCap GW Demand projections comparison PWR-WIN-ON PWR-WIN-OF PWR-SOL PWR-HYD PWR-GAS-CCS PWR-GAS PWR-BIO-CCS
  13. 13. Waste heat recovery ETSAP workshop, 30.11.’21 0 10 20 30 40 50 60 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 PJ Heat recovery potential E61-1_Flat E61-2_LF E61-3_Cap E61-4_LFCap 0% 5% 10% 15% 20% 25% 30% 0 10 20 30 40 50 60 2022 2023 2024 2025 2026 2027 2028 2029 2030 PJ Heat to DH Network E61-4_LFCap E61-3_Cap E61-2_LF E61-1_Flat % % % % From 2027, in 3° and 4° demand senarios, new investments in DH networks are no longer cost optimal While the potential grows the share of heat actually used decrease
  14. 14. What if no heat recovery? 0 5 10 15 20 25 E61-1_Flat E61-2_LF E61-3_Cap E61-4_LFCap PJ Heat usage by sector (2022-2030) FT-RSDHET FT-SRVHET 1.79 10.72 16.25 18.09 -30.00 -20.00 -10.00 0.00 10.00 20.00 30.00 40.00 E61-1_Flat-NoHeatRec E61-2_LF-NoHeatRec E61-3_Cap-NoHeatRec E61-4_LFCap-NoHeatRec PJ Service fuel demand for SC, SH, WH (2022-2030): Difference between heat recovery/no heat recovery SRVAHT SRVAHT2 SRVBGS SRVBIO SRVELC SRVGAS SRVHET SRVOIL SRVSOL SRV sector • The heat recovered from DCs is used for space and water heating in service and residential sectors. • Heat is replaced mostly by gas and to a small extent by oil. In the 4th case there’s also a big contribution of biomass. • The amount of gas avoided by recovering the waste heat is lower than the amount of additional gas required in the power sector due to DCs growth (18.09 PJ vs 53.90 PJ in the 4th case)
  15. 15. Emissions by sector ETSAP workshop, 30.11.’21 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 E61-1_Flat E61-2_LF E61-3_Cap E61-4_LFCap E61-1_Flat E61-2_LF E61-3_Cap E61-4_LFCap 2019 2029 2030 CO2 ton ENV-CO2_AGR ENV-CO2_IND ENV-CO2_PWR ENV-CO2_RSD ENV-CO2_SRV ENV-CO2_TRA • What happens in 2029 to the industrial sector? • What happens in 2030 to the residential sector? Emissions from the power sector increase as the demand from DCs grows more pressure on the other sectors to speed up the transition New investments in greener technologies?
  16. 16. CO2 Price ETSAP workshop, 30.11.’21 0 0.5 1 1.5 2 2.5 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 kEur/ton CO2 price E61-1_Flat E61-2_LF E61-3_Cap E61-4_LFCap CO2_price = 2 kEur/ton No cheaper options to mitigate emissions than Direct Air Capture «backstop» technology used to make the scenario feasible 0 500 1000 1500 2000 2500 3000 3500 4000 2028 2029 2028 2029 2028 2029 2030 2027 2028 2029 2030 E61-1_Flat E61-2_LF E61-3_Cap E61-4_LFCap CO2 tons Backstop emissions AGRCO2N INDCO2N INDCO2P RSDCO2
  17. 17. Discussions ETSAP workshop, 30.11.’21 Assumptions / input data: • Cooling system • Waste heat • Load factor increase Analysis: • Impact to other sectors • Comparison with less challenging scenarios Lack of reliable data: Literature review and sensititvity analysis New ideas are welcome
  18. 18. THANK YOU FOR LISTENING leonardo.collina4@studio.unibo.it

×