Modelling Economically optimal heat supply to low energy building areas – The Importance of Scales

145 views

Published on

Modelling Economically optimal heat supply to low energy building areas – The Importance of Scales

Published in: Data & Analytics
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
145
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
8
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Modelling Economically optimal heat supply to low energy building areas – The Importance of Scales

  1. 1. MODELLING ECONOMICALLY OPTIMAL HEAT SUPPLY TO LOW ENERGY BUILDING AREAS – THE IMPORTANCE OF SCALES Akram  Sandvall  Fakhri,  Erik  O  Ahlgren,  Tomas  Ekvall* Chalmers  Univ Tech *  IVL ETSAP,  Cork,  May  30-­31,  2016
  2. 2. Bioenergy and transport – modelling of Swedish energy futures • Börjesson  Hagberg  M,  Pettersson  K,  Ahlgren  EO  (2016).  Bioenergy futures in  Sweden  – Modeling integration  scenarios  for  biofuel production.   Energy,  in  press. • Börjesson M,  Athanassiadis D,  Lundmark R,  Ahlgren  EO (2015).   Bioenergy  futures  in  Sweden  – System  effects  of  CO2  reduction  and  fossil   fuel  phase-­out  policies.  GCB  Bioenergy 7:  1118-­1135. • Börjesson M,  Ahlgren  EO,  Lundmark R,  Athanassiadis D  (2014).  Biofuel   futures  in  road  transport  – A  modeling  analysis  for  Sweden.  Transportation   Research  Part  D:  Transport  and  Environment 32:  239–252.
  3. 3. Biomass use per sector (variations in climate ambition (CO2)) Bio for heat and power production Bio for transport biofuel production 0 40 80 120 160 2000 2010 2020 2030 2040 2050 [TWh] CO2_LR50 CO2_LR65 NAT_CA GLOB_CA 0 40 80 120 160 2000 2010 2020 2030 2040 2050 [TWh] CO2_LR50 CO2_LR65 NAT_CA GLOB_CA
  4. 4. Buildings heat supply Why  ?
  5. 5. Buildings heat supply Strategic  interest  !
  6. 6. Three heat supply options -­to NEW buidlings q Individual Each building has its own heat production device q On-­site Heat supply by a small local district heating (DH) system within the LEB area q Large heat network Heat  is  produced  in  the  DH  system  of  nearby  urban  area   and  is  transmitted  to  the  LEB  area  by  a  transmission  pipeline.  
  7. 7. Questions • Which is the most cost-­efficient heat supply option to NEW buildings from a societal point of view? • How do the various cost components of the long-­term system cost compare between the three heating options?
  8. 8. Urban  area Approach Single building National   building stock   LEB   area
  9. 9. Method – Systematic analysis • threshold  for  the  most  cost-­efficient  heat  supply – Based  on  hypothetical  LEB  areas  and  hypothetical  DH   systems – Dynamic energy systems  modelling – Scenario  analysis (450PPM,  BAU)
  10. 10. Systematic analysis (scale effects) Urban  area LEB   area d
  11. 11. Hypothetical cases I • LEB  areas – One-­family buildings area,  plot ratio 0.15  (PR-­1A) – Apartment  building area,  plot ratio 0.73  (PR-­5A) – Large apartment  building area,  plot ratio 1.3  (PR-­9A) • PR  (plot ratio)  =  heated area/land  area  (heating density)
  12. 12. Hypothetical case inspired by Vallda Heberg
  13. 13. Area Single family building Terracebuildings Apartment  building (1) (2) (3) (4)
  14. 14. Assumptions I -­ New  areas  are  built  based  on  LEB  standards (LEB  =  low  energy  buildings) -­ New  LEB  areas  are  built  in,  or  in  the  vicinity  of,  urban  areas
  15. 15. Hypothetical cases II • Urban  DH  systems   – Small  (Kungsbacka)  – bio  HOB – Medium  (Linköping)  – bio  CHP – Large (Göteborg)  – large bio  CHP,  industrial/MSW  waste heat • Distances – 0-­3  km  (1  km  steps)
  16. 16. Modelling • Local TIMES  – two regions  (MIP)   • Long-­term  perspective (until 2050) • Simulating approach: – 1.    Individual  heat  supply  in  the  LEB  area  (i.e.  individual) – 2.    DH  supply  in  the  LEB  area  (i.e.  on-­site) – 3.    Diff  (DH  supply  in  both  the  nearby  town  and  LEB  area -­ DH  supply  in  the  nearby  town)
  17. 17. Assumptions II • Heat  supply represented in  detail – Existing DH  production capacity in  the  DH  systems – New  investment  options  in  the  DH  systems  and  the  LEB   area  (discrete investments) – Individual devices:  bio  pellets  boiler,  geothermal heat  pump,   electric boiler – Low temperature DH  (55/25  C)  in  the  LEB  areas. • Electricity system,  energy markets,  biomass cost/price,  climate policies and  heat  demand are included exogenously. • Time resolution:  Seasonal,  Day-­Night • Inelastic heat  demand
  18. 18. Scenarios • 450PPM:   – Increasing  CO2  cost – Increasing  biomass  prices  (biomass  market) • BAU: – Slowly increasing CO2  cost – Biomass supply cost
  19. 19. Results
  20. 20. 18.1 14.5 16.4 17.7 13.7 15.5 17.6 12.9 10.8 17.2 12.7 10.5 15.2 12.8 9.3 15.0 12.5 9.0 15.1 11.3 8.0 14.3 11.1 7.7 12.2 7.9 6.6 11.8 7.7 6.3 8.8 5.4 5.2 8.9 5.2 4.9 19.2 14.5 16.4 19.0 14.2 15.5 18.1 14.3 10.8 17.2 13.7 10.6 16.3 12.8 10.4 16.2 12.6 10.5 15.2 12.7 9.0 14.3 12.5 9.2 13.4 9.3 7.6 13.3 9.2 7.8 10.5 6.6 6.2 10.5 6.6 6.4 19.4 14.5 16.4 20.2 15.2 15.5 18.1 14.4 10.8 17.3 13.7 11.0 16.5 12.8 10.7 17.2 13.6 10.5 15.2 12.8 9.3 14.4 12.5 9.6 13.7 9.4 7.9 14.3 10.1 8.3 11.1 7.2 6.9 11.6 7.5 6.9 BAU  -­  System  cost  ranking&   Specefic  system  cost  [€/GJ] 450PPM  -­  System  cost  ranking&   Specefic  system  cost  [€/GJ] Town/  City Town/  City Medium  DH Medium  DH Small  DH Small  DH Large  DH Large  DH 1.3 LEB  area  &  plot  ratio LEB  area  &  plot  ratio 0.15 0.73 1.3 0.15 0.73 PR-­9APR-­1A PR-­5A PR-­9A PR-­1A PR-­5A Large  heat  network: Individual Zero On-­site 1  km 2  km 3  km Ranking & threshold
  21. 21. Breakdown of cost components
  22. 22. -­5 0 5 10 15 20 25 Zero 1  km 2  km 3  km Zero 1  km 2  km 3  km Zero 1  km 2  km 3  km Small  DH Medium  DH Large  DH IndividualOn-­site Large  heat  network PR-­1A_450PPM -­5 0 5 10 15 20 25 Zero 1  km 2  km 3  km Zero 1  km 2  km 3  km Zero 1  km 2  km 3  km Small  DH Medium  DH Large  DH IndividualOn-­site Large  heat  network PR-­1A_BAU Heat  supply  cost  (investment  &  operation)  (€/GJ) DH  transmission  cost  (€/GJ) DH  distribution  (€/GJ)
  23. 23. -­5 0 5 10 15 20 25 Zero 1  km 2  km 3  km Zero 1  km 2  km 3  km Zero 1  km 2  km 3  km Small  DH Medium  DH Large  DH IndividualOn-­site Large  heat  network PR-­1A_450PPM -­2 0 2 4 6 8 10 12 14 16 Zero 1  km 2  km 3  km Zero 1  km 2  km 3  km Zero 1  km 2  km 3  km Small  DH Medium  DH Large  DH IndividualOn-­site Large  heat  network PR-­5A_450PPM Heat  supply  cost  (investment  &  operation)  (€/GJ) DH  transmission  cost  (€/GJ) DH  distribution  cost  (€/GJ)
  24. 24. -­5 0 5 10 15 20 25 Zero 1  km 2  km 3  km Zero 1  km 2  km 3  km Zero 1  km 2  km 3  km Small  DH Medium  DH Large  DH IndividualOn-­site Large  heat  network PR-­1A_450PPM 0 2 4 6 8 10 12 14 16 18 Zero 1  km 2  km 3  km Zero 1  km 2  km 3  km Zero 1  km 2  km 3  km Small  DH Medium  DH Large  DH IndividualOn-­site Large  heat  network PR-­9A_450PPM Heat  supply  cost  (investment  &  operation)  (€/GJ) DH  transmission  cost  (€/GJ) DH  distribution  cost  (€/GJ)
  25. 25. Findings • Large  heat  network  option  economically  optimal – DH  distribution  and  transmission  costs  account  for   large  cost  share • Scales  important • Results  rather  robust  with  respect  to  climate  policies
  26. 26. Next step Climate impacts Urban  model
  27. 27. Thanks!
  28. 28. Assumptions Unit 450PPM BAU 2014/2020/2030/2040/2050 2014/2020/2030/2040/2050 Policy tools CO2 charge €/tonne 16.9/25.2/68.4/110/153 16.9/14.4/23.8/33.5/43 Renewable electricity subsidy €/MWh 20/20/0/0/0 20/20/0/0/0 Energy prices/costs a Natural gas €/MWh 28.7/28.3/25.1/22/18.5 28.7/29.2/30.2/32/33 Fuel oil, light €/MWh 64.2/64.7/61.8/58/54.9 64.2/66.2/70/75/80 Fuel oil, heavy €/MWh 41.6/42/39.8/37.2/34.6 41.6/43.1/46/50/53.5 Coal €/MWh 8.8/8.9/7.6/6/4 8.8/9.4/9.7/9.7/9.7 Bio-oilb €/MWh 42/44.5/53.9/62.5/71.5 42/42.6/47.7/53.9/59.5 Wood chipsc €/MWh 20/20/20/40.5/55 20 Bio pellets €/MWh 35/44/50/59/78 35/41/45/50/53 Excess heatd €/MWh 0.56 0.56 MSWe €/MWh -14.5 -14.5 Electricityc Winter cold (1 month) Winter (2 months) Spring and fall (3 months) Summer (6 months) €/MWh 55.2/62.9/98/122.2/74.4 54.3/61.4/93.2/122.2/74.4 51.3/57.9/73.1/80/74.4 51.3/64.2/73.1/80/74.4 55.2/54.6/63.8/72.5/80.9 54.3/53.7/62.1/70/77.6 51.3/50.8/57/60.8/67.5 51.3/50.8/63.2/61.4/67.8
  29. 29. Background • EU Directives (2010 &2012) • National goal by 2050 • In 2015 the Boverket forecasted that 700,000 new homes are needed in ten years. • Boverket has set standards and rules for the heat demand of new buildings. • Construction of buildings with very low energy use is supported by the Swedish Energy Agency àNew areas are built based on LEB standards

×