Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Mitigation Pathways to well below 2C in ETSAP-TIAM

90 views

Published on

Mitigation Pathways to well below 2C in ETSAP-TIAM

Published in: Data & Analytics
  • Be the first to comment

  • Be the first to like this

Mitigation Pathways to well below 2C in ETSAP-TIAM

  1. 1. Environmental Research Institute University College Cork Mitigation Pathways to well below 2˚C in ETSAP-TIAM Dr James Glynn, Prof. Brian Ó Gallachóir Joint Global Change Research Institute of Pacific Northwest Laboratory (PNNL) & University of Maryland (UMD), USA 71st ETSAP-MEETING | 11th July 2017
  2. 2. Research Question & Motivation • How low can we go? • How far below 2C can we achieve temperature stabilisation? • Explore the solution space for mitigation pathways for well below 2C in ETSAP-TIAM. • Constrain TIAM with carbon budgets, Climate module and CO2 sequestration sinks volumes. • Explore the influence of CCS on temperature stabilisation. • Effort to inform the IPCC SR1.5 scenario database Call. • Is this best done collaboratively through the ETSAP-TIAM github project? • What is the influence of CCS and other “backstop” technologies, such as DAC?
  3. 3. GLOBAL ETSAP-TIAM model • Linear programming bottom-up energy system model of IEA-ETSAP • Integrated model of the entire energy system • Prospective analysis on medium to long term horizon (2100) • Demand driven by exogenous energy service demands • Partial and dynamic equilibrium • (usually) • Optimal technology selection • Minimizes the total system cost • Environmental constraints • Price-elastic demands • Hybrid General Equilibrium MSA • Integrated Climate Model • Myopic and Stochastic options
  4. 4. ETSAP TIAM Description • … Climate Module Atm. Conc. ΔForcing ΔTemp Used for reporting & setting targets Biomass Potential Renewable Potential Nuclear Fossil Fuel Reserves (oil, coal, gas) Extraction Upstream Fuels Trade Secondary Transformation OPEC/ NON-OPEC regrouping Electricity Fuels Electricity Cogeneration Heat Hydrogen production and distribution End Use Fuels Industrial Service Composition Auto Production Cogeneration Carbon capture CH4 options Carbon sequestration Terrestrial sequestration Landfills Manure Bio burning, rice, enteric ferm Wastewater CH4 options N2O options CH4 options OI**** GA**** CO**** Trade ELC*** WIN SOL GEO TDL BIO*** NUC HYD BIO*** HETHET ELC ELC SYNH2 BIO*** CO2 ELC GAS*** COA*** Industrial Tech. Commercial Tech. Transport Tech. Residential Tech. Agriculture Tech. I*** I** (6) T** (16)R** (11)C** (8)A** (1) INDELC INDELC IS** Demands IND*** COM***AGR*** TRA***RES*** Non-energy sectors (CH4) OIL***
  5. 5. Updates to ETSAP-TIAM • Following from IER Phase 2 Updates (2014) & DTU Github updates (Present) • Updated Drivers • SSP2 from OECD Env-LINKS CGE model • Regional Structural detail of the economy from GTAP calibration. • Work in progress on other SSP narratives and consistent resource estimates • MACRO / MSA • Collaboration with PSI,VTT, E4SMA, UCC • Calibrations for Default TIAM drivers & SSP2 drivers submitted to ETSAP-TIAM GIT project • 2 Papers in Review ETSAP-TIAM / TIAM-UCL • Local Air Pollution • Include damage costs from local air pollutants (NEEDS extrapolation) • PM2.5, PM10, SO2, NOx, NH4, etc. • Collaboration with PSI, VTT, CRES, UCC • Paper in review (MSA + LAP) • Climate Module – Control for non-CO2 GHGs & Exoforcing • Updates to UCL specifications using CMIP5 linear forcing (CO2, N2O, CH4)
  6. 6. Meaning of 1.5˚C: Warming in volcano-free periods relative to a volcano-free period 1900 1950 2000 -0.5 0.0 0.5 1.0 1.5 Warmingrelativeto1861-1880(o C) Monthly global temperatures from HadCRUT4 Attributable human-induced warming Attributable natural warming & cooling Combination 1861-80
  7. 7. Scenarios • Base – Drivers are calibrated to SSP2 drivers from the OECD ENV-LINKS. • Population, GDP, sectoral GVA, Households • All Climate Policy runs are fixed to the Base run to 2020. • Combinations of the following • 2°C, 1.75°C and 1.5°C temperature limits from the Climate module to control for Non-CO2 GHGs and Exoforcing • Carbon Budgets applied from 2020-2100 • 1000GtCO2 – 2°C • 750GtCO2 – 1.75°C • 500GtCO2 – 1.5°C • Constraints on CO2 sequestration sinks limits • NoLimit, 16600GtCO2, 1380GtCO2, 800GtCO2, 367GtCO2, ZEROGtCO2 • Not Shown – to keep things simple • with Local Air pollution Damages • with Macro Stand Alone macroeconmic estimates of economic and consumption losses
  8. 8. Resulting Temperature Increases 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 TemperatureIncrease(°C) 1-5DS_by2100_SSP2_500GtCB_CCSLim1380Gt 1-5DS_by2100_SSP2_500GtCB_CCSLim1660Gt 1-5DS_by2100_SSP2_500GtCB_CCSLim367Gt 1-5DS_by2100_SSP2_500GtCB_CCSLim800Gt 1-5DS_by2100_SSP2_500GtCB_CCSNoLim 1-5DS_by2100_SSP2_500GtCO2_CCSNoLim 1-75DS_SSP2_750GtCB_CCSLim1380Gt 1-75DS_SSP2_750GtCB_CCSLim1660Gt 1-75DS_SSP2_750GtCB_CCSLim367Gt 1-75DS_SSP2_750GtCB_CCSLim800Gt 1-75DS_SSP2_750GtCB_CCSLimZeroGt 1-75DS_SSP2_750GtCB_CCSNoLim 1-75DS_by2100_SSP2_750GtCB_CCSLim1380Gt 1-75DS_by2100_SSP2_750GtCB_CCSLim1660Gt 1-75DS_by2100_SSP2_750GtCB_CCSLim367Gt 1-75DS_by2100_SSP2_750GtCB_CCSLim800Gt 1-75DS_by2100_SSP2_750GtCB_CCSLimZeroGt 1-75DS_by2100_SSP2_750GtCB_CCSNoLim 1-75DS_by2100_SSP2_750GtCO2_CCSNoLim 2DS_SSP2_1000GtCO2_CCSLim1380Gt_noCo2TRD 2DS_SSP2_1000GtCO2_CCSLim1660_noCo2TRD 2DS_SSP2_1000GtCO2_CCSLim367_noCo2TRD 2DS_SSP2_1000GtCO2_CCSLim800_noCo2TRD 2DS_SSP2_1000GtCO2_CCSLimZeroGt_noCo2TRD 2DS_SSP2_1000GtCO2_CCSNoLim_noCo2TRD BASE_SSP2_11p_NoCO2Trd
  9. 9. SSP Marker Model Comparison CO2 Emissions -30 -10 10 30 50 70 2000 2020 2040 2060 2080 2100 1-5DS_by2100_SSP2_500GtCB_CCSLim1380Gt 1-5DS_by2100_SSP2_500GtCB_CCSLim1660Gt 1-5DS_by2100_SSP2_500GtCB_CCSLim367Gt 1-5DS_by2100_SSP2_500GtCB_CCSLim800Gt 1-5DS_by2100_SSP2_500GtCB_CCSNoLim 1-5DS_by2100_SSP2_500GtCO2_CCSNoLim 1-75DS_by2100_SSP2_750GtCB_CCSLim1380Gt 1-75DS_by2100_SSP2_750GtCB_CCSLim1660Gt 1-75DS_by2100_SSP2_750GtCB_CCSLim367Gt 1-75DS_by2100_SSP2_750GtCB_CCSLim800Gt 1-75DS_by2100_SSP2_750GtCB_CCSLimZeroGt 1-75DS_by2100_SSP2_750GtCB_CCSNoLim 1-75DS_by2100_SSP2_750GtCO2_CCSNoLim 1-75DS_SSP2_750GtCB_CCSLim1380Gt 1-75DS_SSP2_750GtCB_CCSLim1660Gt 1-75DS_SSP2_750GtCB_CCSLim367Gt 1-75DS_SSP2_750GtCB_CCSLim800Gt 1-75DS_SSP2_750GtCB_CCSLimZeroGt 1-75DS_SSP2_750GtCB_CCSNoLim 2DS_SSP2_1000GtCO2_CCSLim1380Gt_noCo2TRD 2DS_SSP2_1000GtCO2_CCSLim1660_noCo2TRD 2DS_SSP2_1000GtCO2_CCSLim367_noCo2TRD 2DS_SSP2_1000GtCO2_CCSLim800_noCo2TRD 2DS_SSP2_1000GtCO2_CCSLimZeroGt_noCo2TRD 2DS_SSP2_1000GtCO2_CCSNoLim_noCo2TRD BASE_SSP2_11p_NoCO2Trd
  10. 10. SSP2 Marker Model Comparison Primary Energy 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1-5DS_by2100_SSP2_500GtCB_CCSLim1380Gt 1-5DS_by2100_SSP2_500GtCB_CCSLim1660Gt 1-5DS_by2100_SSP2_500GtCB_CCSLim367Gt 1-5DS_by2100_SSP2_500GtCB_CCSLim800Gt 1-5DS_by2100_SSP2_500GtCB_CCSNoLim 1-5DS_by2100_SSP2_500GtCO2_CCSNoLim 1-75DS_SSP2_750GtCB_CCSLim1380Gt 1-75DS_SSP2_750GtCB_CCSLim1660Gt 1-75DS_SSP2_750GtCB_CCSLim367Gt 1-75DS_SSP2_750GtCB_CCSLim800Gt 1-75DS_SSP2_750GtCB_CCSLimZeroGt 1-75DS_SSP2_750GtCB_CCSNoLim 1-75DS_by2100_SSP2_750GtCB_CCSLim1380Gt 1-75DS_by2100_SSP2_750GtCB_CCSLim1660Gt 1-75DS_by2100_SSP2_750GtCB_CCSLim367Gt 1-75DS_by2100_SSP2_750GtCB_CCSLim800Gt 1-75DS_by2100_SSP2_750GtCB_CCSLimZeroGt 1-75DS_by2100_SSP2_750GtCB_CCSNoLim 1-75DS_by2100_SSP2_750GtCO2_CCSNoLim 2DS_SSP2_1000GtCO2_CCSLim1380Gt_noCo2TRD 2DS_SSP2_1000GtCO2_CCSLim1660_noCo2TRD 2DS_SSP2_1000GtCO2_CCSLim367_noCo2TRD 2DS_SSP2_1000GtCO2_CCSLim800_noCo2TRD 2DS_SSP2_1000GtCO2_CCSLimZeroGt_noCo2TRD 2DS_SSP2_1000GtCO2_CCSNoLim_noCo2TRD BASE_SSP2_11p_NoCO2Trd
  11. 11. Primary Energy (PJ) 0 200,000 400,000 600,000 800,000 1,000,000 1,200,000 1,400,000 1,600,000 1,800,000 2,000,000 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 BASE_SSP2_11p_NoCO2Trd 2DS_SSP2_1000GtCO2_CCSLim1380Gt_noCo2TRD 1-75DS_by2100_SSP2_750GtCB_CCSLim1380Gt 1-5DS_by2100_SSP2_500GtCB_CCSNoLim Coal Oil Gas Nuclear Biomass Hydro Renewable except hydro and biomass
  12. 12. Final Energy (PJ) 0 200,000 400,000 600,000 800,000 1,000,000 1,200,000 1,400,000 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 BASE_SSP2_11p_NoCO2Trd 2DS_SSP2_1000GtCO2_CCSLim1380Gt_noCo2TRD 1-75DS_by2100_SSP2_750GtCB_CCSLim1380Gt 1-5DS_by2100_SSP2_500GtCB_CCSNoLim Coal Oil Products (includes synthetic oil from coal and Gas Biomass (excludes liquid biofuels) Biodiesel Alcohol (ethanol, methanol, from biomass or not) Hydrogen Heat Other Renewable Electricity
  13. 13. Electricity Installed Capacity (GW) 0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 BASE_SSP2_11p_NoCO2Trd 2DS_SSP2_1000GtCO2_CCSLim1380Gt_noCo2TRD 1-75DS_by2100_SSP2_750GtCB_CCSLim1380Gt 1-5DS_by2100_SSP2_500GtCB_CCSNoLim Coal Gas and Oil Nuclear Hydro Biomass Biomass CCS Wind Geo, Tidal and Wave Solar Thermal Solar PV
  14. 14. Electricity Generation (PJ) 0 50,000 100,000 150,000 200,000 250,000 2010 2020 2030 2040 2050 2060 2070 2080 2100 2090 2010 2020 2030 2040 2050 2060 2070 2080 2100 2090 2010 2020 2030 2040 2050 2060 2070 2080 2100 2090 2010 2020 2030 2040 2050 2060 2070 2080 2100 2090 BASE_SSP2_11p_NoCO2Trd 2DS_SSP2_1000GtCO2_CCSLim1380Gt_noCo2TRD 1-75DS_by2100_SSP2_750GtCB_CCSLim1380Gt 1-5DS_by2100_SSP2_500GtCB_CCSNoLim Coal Gas and Oil Nuclear Hydro Biomass Biomass CCS CH4 Options Wind Geo, Tidal and Wave Solar Thermal Solar PV
  15. 15. Regional Emissions (MtCO2) -20,000 0 20,000 40,000 60,000 80,000 100,000 20052010202020302040205020602070208020902100200520102020203020402050206020702080209021002005201020202030204020502060207020802090210020052010202020302040205020602070208020902100 BASE_SSP2_11p_NoCO2Trd 2DS_SSP2_1000GtCO2_CCSLim1380Gt_noCo2TRD 1-75DS_by2100_SSP2_750GtCB_CCSLim1380Gt 1-5DS_by2100_SSP2_500GtCB_CCSNoLim AFR AUS CAN CHI CSA EEU FSU IND JPN MEA MEX ODA SKO USA WEU
  16. 16. Carbon Price ($/tCO2) 0 500 1000 1500 2000 2500 2030 2040 2050 2060 2070 2080 2090 2100 2030 2040 2050 2060 2070 2080 2090 2100 2030 2040 2050 2060 2070 2080 2090 2100 2030 2040 2050 2060 2070 2080 2090 2100 2DS_SSP2_1000GtCO2_CCSLim1380Gt_noCo2TRD 2DS_SSP2_1000GtCO2_CCSLimZeroGt_noCo2TRD 1-75DS_by2100_SSP2_750GtCB_CCSLim1380Gt 1-5DS_by2100_SSP2_500GtCB_CCSNoLim AFR AUS CAN CHI CSA EEU FSU IND JPN MEA MEX ODA SKO USA WEU
  17. 17. Key Messages • Staying below a 1.5°C ceiling seems infeasible. • Overshooting and returning to 1.5°C may be feasible • Negative Emissions technologies are required. • TIAM currently does not have a Direct Air Capture (DAC) Specification • Do we think it should have a DAC specification? • The costs of achieving ambitious decarbonisation scenarios are highly sensitive to the volume of CO2 disposed. • Carbon Capture and Storage, and other negative emissions technologies require accelerated development as well as likely demand side measures. • Some regions may have significantly reduced abatement costs due to their ability to sequester CO2 in conjunction with large renewables potentials as well geological storage for BECCs • Notably, Austrailia, Canada and Former Soviet Union
  18. 18. QUESTIONS?
  19. 19. “Unlocking the potential of our marine and renewable energy resources through the power of research and innovation”
  20. 20. Environmental Research Institute Instiúd Taighde Comshaoil Energy Policy and Modelling Group www.ucc.ie/energypolicy
  21. 21. Q&A Backup Slides
  22. 22. INDC action is not fast enough UNFCCC INDC Synthesis Report
  23. 23. Simple Science-Policy Message: For every 1 trillion tonnes of CO2 emitted, temperature increases about 0.52˚C 1.5°C - 2°C 550-1000 GtCO2 left ~1750 175yrs 34 yrs 16 yrs 13 yrs 10 yrs 9 yrs 8 yrs 300 GtCO2 300 GtCO2 300 GtCO2 300 GtCO2 300 GtCO2 300 GtCO2 300 GtCO2 300 GtCO2 250 GtCO2 300 GtCO2 250 GtCO2 11 yrs? 9 yrs? 2016
  24. 24. Global Sensitivity to Restricted Technology
  25. 25. Global emissions from fossil fuel and industry: 36.3 ± 1.8 GtCO2 in 2015, 63% over 1990 Projection for 2016: 36.4 ± 2.3 GtCO2, 0.2% higher than 2015 Estimates for 2014 and 2015 are preliminary. Growth rate is adjusted for the leap year in 2016. Source: CDIAC; Le Quéré et al 2016; Global Carbon Budget 2016 Uncertainty is ±5% for one standard deviation (IPCC “likely” range) Emissions from fossil fuel use and industry
  26. 26. Total global emissions Total global emissions: 41.9 ± 2.8 GtCO2 in 2015, 49% over 1990 Percentage land-use change: 36% in 1960, 9% averaged 2006-2015 Three different methods have been used to estimate land-use change emissions, indicated here by different shades of grey Source: CDIAC; Houghton et al 2012; Giglio et al 2013; Le Quéré et al 2016; Global Carbon Budget 2016
  27. 27. Global carbon budget The carbon sources from fossil fuels, industry, and land use change emissions are balanced by the atmosphere and carbon sinks on land and in the ocean Source: CDIAC; NOAA-ESRL; Houghton et al 2012; Giglio et al 2013; Joos et al 2013; Khatiwala et al 2013; Le Quéré et al 2016; Global Carbon Budget 2016
  28. 28. Total global emissions by source Land-use change was the dominant source of annual CO2 emissions until around 1950 Others: Emissions from cement production and gas flaring Source: CDIAC; Houghton et al 2012; Giglio et al 2013; Le Quéré et al 2016; Global Carbon Budget 2016
  29. 29. Where did the 80%-95% target come from? Firstly the IPCC AR4 WG3 report was published in 2007. specifically chapter 13 is where the targets came from. [1]Implications of regime stringency: linking goals, participation and timing. http://www.ipcc.ch/publications_and_data/ar4/wg3/en/ch13-ens13-3-3-3.html Then an EU Parliament recommended to use this (scientifically based target) before COP15 (Copenhagen) for developed regions to aim for 80%-95% GHG reduction by 2050. [1] 2050: The future begins today – Recommendations for the EU’s Future integrated policy on climate change http://www.europarl.europa.eu/oeil/popups/ficheprocedure.do?lang=en&reference=2008/2105(INI) (Note AR5 does not have the same table or recommendation as AR4 and is discussed in various online blog pieces from IPCC co- authors that WG3 lead authors feel that there should be a separation from Science and policy, and hence did not update the WG3 Ch13 chart on Annex1 country targets in AR5. Most of the regions in the AR5 WG3 IAM models are different from AR4 - I don't know if this aggregation was on purpose or not to disable this link between the climate science and national/regional policy decisions, i.e. to encourage policy makers to take ownership of the uncertainties in the decision making subtleties.) The recommendation is also highlighted in the EU Presidency conclusion documents before Copenhagen (COP15) in October 2009 [1] Presidency Conclusions (2009) http://register.consilium.europa.eu/doc/srv?l=EN&f=ST%2015265%202009%20INIT Then the EU energy roadmap from 2011 includes the 80% target. [1]Energy Roadmap 2050 (2011) http://ec.europa.eu/energy/sites/ener/files/documents/roadmap2050_ia_20120430_en_0.pdf during this time the EU 20-20-20 targets for 2020 had been used, but were established before the 2007 publication of AR4 and so where not based on the 80%-95% reduction targets for 2050.

×