Resilience Engineering Research Center
Assessment of renewable energy in nation-wide power grid in Japan
by optimal power ...
Resilience Engineering Research Center 2
• Optimal Power Generation Mix Model
• Time Resolution
Outline
Resilience Engineering Research Center
FIT system has accelerated the installation of renewable, particularly solar PV.
Su...
Resilience Engineering Research Center
Nuclear Power Plants in Japan
【Permanent Shutdown】
Tokai:The Japan Atomic Power Com...
Resilience Engineering Research Center
Long-term energy outlook to 2030 of Japan was published in July 2015 by
Ministry of...
Resilience Engineering Research Center
Modeling Overview
6
After the Fukushima, a lot of attention has been concentrated o...
Resilience Engineering Research Center
Power System in Japan
(As of March 31, 2009)
• The ten privately-owned regional ele...
Resilience Engineering Research Center
Overview:
Optimal Power Generation Mix (OPGM) Model in Japan
Geographical Resolutio...
Resilience Engineering Research Center
Network Topology:
Node Distribution in Japanese Map
Resilience Engineering Research Center
Network Topology:
Modelling of Power System in Eastern Japan (50 Hz)
10
MINAMIHAYAK...
Resilience Engineering Research Center
Network Topology:
Modelling of Power System in Western Japan (60 Hz)
11
G
G
G
G
G
G...
Resilience Engineering Research Center
Overview:
Optimal Power Generation Mix (OPGM) Model in Japan
Power Generation Facil...
Resilience Engineering Research Center
Modeling (LP Formulation)
13
Optimizes the set of endogenous variables which minimi...
Resilience Engineering Research Center
Wind Resource Map in Japan
Wind Resource
Wind Speed Wind Resource
Wind Speed
Onshor...
Resilience Engineering Research Center
Solar Radiation Map
15
Resilience Engineering Research Center
Locations of AMeDAS
16
Automated Meteorological Data Acquisition System
The system ...
Resilience Engineering Research Center
Modeling of PV and Wind Outputs
17
Example of PV output Example of wind output
PV a...
Resilience Engineering Research Center
Measured and Estimated Wind Power
18
0
500
1000
1500
2000
2500
0 10 20 30
[KW]
[m/s...
Resilience Engineering Research Center
Parameter Setting (Example)
19
Type Nuclear Coal LNG GCC LNG ST Oil Biomass Hydro G...
Resilience Engineering Research Center 20
(Third Strategic Energy Plan by METI, 2014)
RES Fraction: 21%
(Energy and enviro...
Resilience Engineering Research Center
Assumption: RES Capacity in 2030
21
57%
11%
26%
2%4%
Case: RES 21%
PV Wind Hydro Ge...
Resilience Engineering Research Center
Power Generation Mix in Japan (2030)
22
In the case of RES 30%, 15% of total wind o...
Resilience Engineering Research Center
Results|Installed Capacity
23
0
20
40
60
80
100
120
[5-1] [5-2] [5-1] [5-2] [5-1] [...
Resilience Engineering Research Center
24
-50
0
50
100
150
200
250
300
350
[5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2]...
Resilience Engineering Research Center
25
0.2 0.3
2.6
0.6
1.3
0.0 0.0
2.5
0.0
1.1
0.0
1.0
2.0
3.0
西野 新京葉 大阪湾 阿南 新倉敷
Newly ...
Resilience Engineering Research Center
Results|Capacity Factor of Wind and PV
26
36.5
24.2
20.1
22.1 21.7
28.3
29.7
20.1
2...
Resilience Engineering Research Center
Wind & PV Suppression
27
For large-scale integration of wind & PV in Japan, those o...
Resilience Engineering Research Center
Capacity Factor of Power Plants in Each Region
28
Capacity factor of ramp generator...
Resilience Engineering Research Center
Power Grid Operation at RES 21% in July
29
Hokkaido
Tohoku
Kanto (Tokyo)
Ramp opera...
Resilience Engineering Research Center
Power Grid Operation at RES 30% in July
30
Massive RES
curtailment
RES integration
...
Resilience Engineering Research Center
-4
-2
0
2
4
6
GW
Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Batt...
Resilience Engineering Research Center
-6
-3
0
3
6
9
12
GW
Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) B...
Resilience Engineering Research Center
-10
-5
0
5
10
15
20
25
30
GW
Loss Inter Change Suppressed PV Suppressed Wind Batter...
Resilience Engineering Research Center
-10
-5
0
5
10
15
20
25
30
Loss Inter Change Suppressed PV Suppressed Wind Battery2(...
Resilience Engineering Research Center
Total System Cost & CO2 emissions
35
RES 30% causes the increase in total system co...
Resilience Engineering Research Center
Results|Regional System Costs and CO2 emissions
36
348
1172
4006
1870
352
1731
440
...
Resilience Engineering Research Center
Expansion of Power Transmission Line in
Eastern Japan (50Hz Grid)
37
南早来
西当別
道北1道北2...
Resilience Engineering Research Center
RES Suppression & Capacity Factor
38
Grid expansion provides the decline of RES sup...
Resilience Engineering Research Center
Cost-Benefit of Grid Expansion
39
Total Cost Reduction &
Payback Period of Expanded...
Resilience Engineering Research Center
Temporal Resolution and RES Output
Capacity Factor: Wind Capacity Factor: PV
Lower ...
Resilience Engineering Research Center
Results|Power Dispatch in Hokkaido
(10 min)
(120 min)
Resilience Engineering Research Center
Long-term Storage
(Battery1)
Shor-term Storage
(Battery2)
Sodium-Sulfur Battery Li-...
Resilience Engineering Research Center
Modelling of Renewable, Hydrogen and Battery
Wind and PV outputs are into grid, ele...
Resilience Engineering Research Center
Power Gen. Dispatch (in January, Tohoku)
With VR Suppression
Without VR Suppression...
Resilience Engineering Research Center
Annual SOC (State of Charge) in Energy Storage Facility
45
From January to May when...
Resilience Engineering Research Center
Wrap-up
46
Results suggests following challenges for massive RES integration
Unconv...
Resilience Engineering Research Center 47
Thank you for your kind attention.
Relevant Papers:
• Komiyama,R. and Fujii,Y., ...
Upcoming SlideShare
Loading in …5
×

Assessment of renewable energy in nation-wide power grid in Japan by optimal power generation mix model

855 views

Published on

Assessment of renewable energy in nation-wide power grid in Japan by optimal power generation mix model

Published in: Data & Analytics
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
855
On SlideShare
0
From Embeds
0
Number of Embeds
18
Actions
Shares
0
Downloads
29
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Assessment of renewable energy in nation-wide power grid in Japan by optimal power generation mix model

  1. 1. Resilience Engineering Research Center Assessment of renewable energy in nation-wide power grid in Japan by optimal power generation mix model Ryoichi Komiyama, Yasumasa Fujii The University of Tokyo 68TH SEMI-ANNUAL ETSAP MEETING, CMA, MINES ParisTech, Sophia Antipolis, France October 22, 2015
  2. 2. Resilience Engineering Research Center 2 • Optimal Power Generation Mix Model • Time Resolution Outline
  3. 3. Resilience Engineering Research Center FIT system has accelerated the installation of renewable, particularly solar PV. Surcharge imposed on electricity rate has been increasing. Surcharge [yen/kWh]: (2014) 0.75 yen/kWh, (2015) 1.58 yen/kWh Total Surcharge [yen/year]: (2014) 0.65 tril.yen, (2015) 1.8 tril.yen Installed PV capacity (Source) METI(Ministry of Economy, Trade and Industry) Renewable Energy in Japan (1$=120 yen) 3 0.0 5.0 10.0 15.0 20.0 25.0 1995 2000 2005 2010 2015 [GW] FIT implementation (July 2012) PV: 25GW
  4. 4. Resilience Engineering Research Center Nuclear Power Plants in Japan 【Permanent Shutdown】 Tokai:The Japan Atomic Power Company 1998.3.31 Hamaoka No1,No2:Chubu Electric Power Company 2009.1.30 Fukushima Daiichi No1,No2,No3,No4:Tokyo electric power company 2011.3.31 4321 (Source) FEPC(Federation of Electric Power Companies Japan), IEEJ Nuclear has been very important power source in Japan, and all nuclear plants stranded for regulatory inspection after the Fukushima. At last, on August 11, 2015, Sendai nuclear power reactor in Kyushu Electric Power Company restarted its operation, which is the first case of the restart since 2013. 4 Hamaoka, Chubu Electric Power Company 11 Kashiwazaki-Kariwa, Tokyo Electric Power Company Shika, Hokuriku Electric Power Company Tsuruga, The Japan Atomic Power Company Mihama, Kansai Electric Power Company Ohi, Kansai Electric Power Company Genkai, Kyushu Electric Power Company Sendai, Kyushu Electric Power Company Output 100MW and more1000MW and less500MW and less Under construction In operation 68.15562Total 16.5529Planning 2.7563Under construction 48.84750In operation Total output (GW)Units 68.15562Total 16.5529Planning 2.7563Under construction 48.84750In operation Total output (GW)Units 11 22 11 22 33 33 44 55 22 33 4411 6655 3311 22 11 22 11 22 33 4411 55 66 77 2211 2211 3311 22 22 33 4411 Takamaha, Kansai Electric Power Company 33 4411 22 Shimane, Chugoku Electric Power Company 11 22 33 11 22 33 44 33 Higashidori, Tohoku Electric Power Company Higashidori, Tokyo Electric Power Company Tomari, Hokkaido Electric Power Company Ohma, Japan Power Development Company Onagawa, Tohoku Electric Power Company Fukushima Daiichi, Tokyo Electric Power Company TokaiDaini, The Japan Atomic Power Company Ikata, Shikoku Electric Power Company Fukushima Daini, Tokyo Electric Power Company
  5. 5. Resilience Engineering Research Center Long-term energy outlook to 2030 of Japan was published in July 2015 by Ministry of Economy, Trade and Industry (METI). The most important agenda consists in the maximization of the fraction of renewable energy (22~24%) after the Fukushima nuclear accident. Outlook of Power Generation Mix (Source) METI(Ministry of Economy, Trade and Industry) Target of Optimal Power Generation Mix in 2030 5 0 10 20 30 40 50 60 70 80 90 100 10 year average before Fukushima 2030 [%] Oil 12% Coal 24% LNG27% Nucear 27% Renewable 11% Oil 3% Coal26% LNG27% Nuclear 20~22% Renewable 22~24% Hydro 8.8~9.2% PV 7.0% Wind 1.7% Geothermal 1.0% ~1.1%Biomass 3.7~4.6%
  6. 6. Resilience Engineering Research Center Modeling Overview 6 After the Fukushima, a lot of attention has been concentrated on renewable energy as alternative power source in Japan. This presentation discusses optimal power generation mix (OPGM) for Japan with large-scale integration of renewable energy sources, and evaluate following item to provide policy maker with relevant insights • Optimal power dispatch • Additionally installed generators or batteries • Additionally installed capacity of transmission lines • Temporal resolution (2 hour ? 1 hour ? 30 min ? 10 min ?) Method An energy model is developed to understand possible massive RES integration. ⇒ OPGM Model (Computer-based numerical simulation tool)
  7. 7. Resilience Engineering Research Center Power System in Japan (As of March 31, 2009) • The ten privately-owned regional electric power companies in Japan are responsible for providing local operations from power generation to distribution and supplying electricity to their respective service areas. • In addition, the ten electric power companies cooperate with each other to ensure a stable supply to customers nationwide. • For example, the electric power companies work together to exchange or provide electricity in order to cope with emergency situations resulting from accidents, breakdowns, or summer peak demand. • However, in April 2016 , the whole retail power market will be completely deregulated, and power sale competition will be encouraged. Total: 230GW System peak load : 178,995MW Electricity sales: 888,935GWh FCF: Frequency Converter Facilities :Total cap. 1.1GW
  8. 8. Resilience Engineering Research Center Overview: Optimal Power Generation Mix (OPGM) Model in Japan Geographical Resolution: • whole region of Japan • 135 nodes, 166 transmission lines Power Line Network of OPGM model in Japan Eastern Japan (50Hz)Western Japan (60Hz) 南早来 西当別 道北1道北2道北3 北新得 西双葉 函館/大野 G G 東通 上北 秋田 岩手 宮城 G 女川 G 三 陸 海 岸 新庄 西仙台 仙台 宮城中央 G 相馬共同 新潟 G 南相馬 福島第一 GG 福島第二 広野 南いわき 新いわき 風力接続線1 広 野 火 力 線 富 岡 線 川 内 線 相 馬 双 葉 幹 線 常 磐 幹 線 仙 台 幹 線 青 葉 幹 線 北 上 幹 線 十 和 田 幹 線 む つ 幹 線 相 福 幹 線 朝 日 幹 線 山 形 幹 線 陸 羽 幹 線 松 島 幹 線 牡 鹿 幹 線 奥 羽 幹 線 岩手幹線 北青幹線/北奥幹線 大潟幹線 道 南 幹 線 道 央 西 幹 線 道 央 北 幹 線 道 央 東 幹 線 北 本 連 系 線 風力接続線5 襟裳岬 風 力 接 続 線 4 狩 勝 幹 線 飯 豊 幹 線 五 頭 幹 線 鳴 瀬 幹 線 秋盛幹線G 津軽半島 G G 道 央 南 幹 線 G 西野 G風力接続線2風力接続線3 柏崎刈羽 新新潟幹線鉄塔 新榛名/西群馬 G G G 東群馬 G G G G G G G 新茂木 新栃木/新今市 新新田 新所沢 新古河/新筑波 G 那珂 ひたちなか G G 新野田 新京葉 新豊洲 新佐原 岩槻 品川火力 G G G 新富士 東山梨 横須賀 新秦野 新多摩 横浜火力 新秩父新信濃 今市 下郷 G 塩原 房総 新木更津 袖ヶ浦 富津 房 総 線 新袖ヶ浦線 新袖ヶ浦線 福 島 幹 線 福島幹線新 古 河 線 新 佐 原 線 福 島 東 幹 線 新 茂 木 線 新 秩 父 線 新 栃 木 線新岡部線 新新田線 新 多 摩 線 新 新 潟 幹 線 新 榛 名 線 下郷線156鉄塔 下 郷 線 今 市 線 新 秦 野 線 新 い わ き 線 新 京 葉 線 新 京 葉 線 印旛線 西 群 馬 幹 線 西 群 馬 幹 線 塩 原 線 南 新 潟 幹 線 新 坂 戸 線 東群馬幹線 南いわき幹線 新 赤 城 線 那 珂 線 阿 武 隈 線 新 豊 洲 線 東 京 西 線 品 川 火 力 系 品 川 火 力 系 東 京 南 線 君津線 北 千 葉 線 千葉 北 千 葉 線 富津火力線 接 続 線 下 郷 線 佐久間FC 新信濃FC 柏崎刈羽(原) 奥清津(揚) 奥清津第二(揚) 新高瀬川(揚) 水殿(揚) 安雲(揚) 玉原(水) 葛野川(揚) 神流川(揚) 横浜(火) 川崎(火) 南横浜(火) 磯子(火) 横須賀(火) 今市(揚) 塩原(揚) 下郷(揚) 沼原(揚) 千葉(火) 鹿島(火) 鹿島共同(火) G五井(火) 姉崎(火) 富津(火)袖ヶ浦(火) 君津共同(火) 品川(火) 大井(火) 東扇島(火) 勿来(火) 常陸那珂(火) 東海第二(原) 広野(火) 福島第二(原) 福島第一(原) 新地(火) 新潟(火) 東新潟(火) 仙台(火) 新仙台(火) 酒田共同(火) 女川(原) 秋田(火) 能代(火) 東通(原) 八戸(火) 知内(火) 泊(原) 伊達(火) 苫小牧(火) 音別(火) 苫東厚真(火) 苫小牧共同(火)砂川(火) 奈井江(火) G 双 葉 線 G 原町(火) G 東清水FC MINAMIHAYAKITA NISHITOBETSU NORTH HOKKAIDO1 NORTH HOKKAIDO3 KITASHINTOKU NISHI FUTABA HAKODATE /ONO G G HIGASHIDORI KITAKAMI AKITA IWATE MIYAGI G ONAGAWA G SHINJYO NISHISENDAI SENDAI MIYAGI CHUO G SOMA KYODO NIGATA G MINAMISOMA FUKUSHIMA DAIICHI GG FUKUSHIMA DAINI HIRONO MINAMIIWAKI SHINIWAKI Wind connection 1 Iwate main line Wind connection 5 ERIMOMISAKI G TSUGARU Peninsula G G G NISHINO GWind connection 2Wind connection 3 KASHIWASAKI KARIWA SHIN NIGATA Tower SHINHARUNA /NISHIGUNMA G G G HIGASHI GUNMAN G G G G G G G SHINMOGI SHINTOCHIGI/SHINIMAICHI SHIN SHINDEN SHIN TOKOROZAWA SHINFURUKAWA /SHINTSUKUBA G NAKA HITACHINAKA G G SHINNODA SHINKEIYO SHINTOYOSU SHIN SAHARA IWASTUKI SHINAGAWA Thermal G G GSHINFUJI HIGASHI YAMANASHI YOKOSUKA SHIN HADANO SHINTAMA YOKOHAMA Thermal SHIN CHICHIBU SHINSHINANO IMAICHI SHIMOGO G SHIOBARA BOSO SHIN KISARAZU SODEGAURA FUTTSU Shinsodegaura line Shinsodegaura line Fukushima main line shinokabe line shinshinden line SHIMOGO Line 156 Tower Higashigunma main line Minamiiwaki CHIBA Futtsu thermal lineSakuma FC Shinshinano FC kasiwasakikariwa(N) okukiyotsu(P) okukiyotsudaini(P) shintakasegawa(P) midono(P) akumo(P) tanbara (H) kazunogawa(P) kannagawa(P) yokohama(T) kawasaki(T) minamiyokohama(T) isogo(T) yokosuka(T) imaichi(P) siobara(P) simogo(P) numappara(P) chiba(T) kashima(T) kashimakyodo(T) Ggoi(T) anesaki(T) futtsu(T)sodegaura(T) kimitsukyodo(T) shinagawa(T) Oi(T) higashiogishima(T) nakoso(T) hitachinaka(T) tokaidaini(N) hirono(T) Fukushimadaini(N) fukushimadaiichi(N) shinchi(T) nigata(T) higashinigata(T) sendai(T) shinsendai (T) sakatakyodo(T) onagawa(N) akita(T) noshiro(T) higashidori(N) hachinohe(T) shiriuchi(T) tomari(N) date(T) tomakomai(T) onbetsu(T) tomatoatsuma(T) tomakomaikyodo(T) sunagawa(T) naie(T) G G haramachi(T) G Higashishimizu FC NORTH HOKKAIDO2 SANRIKU Coast Minaminiigatamainline Shinniigatamainline NishigunmamainlineNishigunmamainline ShinharunalineShitamalineShinhadanoline Tokyonishiline Shinchichibuline Tokyominami line Shinagawathermal system Shinagawathermal system Shintoyosuline ShinkeiyolineShinkeiyoline Shinfurukawa line Shintochigi line Shimogo line Shimogo line Imaichi line Shiobara line Abunaka line Naka line Shinmogi line Shinsaharaline Fukushimamainline Shiniwakiline Fukushimahigashimainline Bosoline KitachibalineKitachibaline Yamagata mainline Oumainline Hirono thermalline Tomiokaline Asahimainline Jobanmainline Aoba mainline Sendaimainline Matsushima mainline Shinsakadoline Shinakagiline Inba line Kimitsu line Karikachi mainline Wind connection4 Mutsu mainline NorthCentral Hokkaido mainline WestCentral Hokkaido mainline EastCentral Hokkaido mainline SouthCentral Hokkaido mainline South Hokkaido mainline Kitahoninterconnectionline Riku mainline Kitakami mainline Oshika mainline Naruse mainline Hokusei/hokuo/Ogata main line Hokusei/hokuo/Ogata main line Akimori main line Towada mainline SomaFutabamainline Futaba line Kawauchi line Gozumainline Idemainline Sofuku mainline G G G G G G G G GGG G G G G G G G G G G G G MINAMI KYUSYU OMARUGAWA TAKANO CHUO OITA TOYOMAE NISHI KYUSYU KITA KYUSYU SHIN YAMAGUCHI HIGASHI YAMAGUCHI SHINNISHI HIROSHIMA SHIN HIROSHIMA SHIN OKAYAMA HIGASHI OKAYAMA HIROSHIMA SHINKURASIKI SANUKI KAWAUCHI ANAN OSAKA Bay NOSEYAMASAKINISHIHARI HINO NISHI SHIMANE MISUMI KITAMATSUE SHIN TOTTORI CHIZU HIGASHIOMI MINAMIKYOTO SEKI KUROBE RYONANKEIHOKUINAGAWAHOKUSETSU OKUTATARAGI MAIDURU OOI MIHAMA SHINFUKUI ECHIZENKITASYO KAGA JOHANA TOYAMA MINAMI FUKUMITSU SHINNOTO SHIGA GIFU MIE HIGASHI YAMATO SEIBU GIHOKU KAWAGOE HOKUBU NAGANO AICHI JOETSU SHINANO TOYONE TOBU CHITA HEKINAN ATSUMI SHIZUOKA TOEI HAMAOKA G UBE G TOKUYAMA himejidaiichi(T) himejidaini(T) tanagawadaini(T) aioi(T) akou(T) nanko(T) sakaiminato(T) kainan(T) gobo(T) shinonoda(T) simonoseki(T) G misumi(T) shimane(N) matanogawa(P) kisenyama(P) okuyoshino (P) ikehara(P) ooi(N) fukui(T) tsuruga(T) nanaota(T) shiga(N) other hydro(H) Gtoyama(T) toyamashinko(T) maiduru(T) miyadu(T) takahama(N) okutataragi(P) mihama(N) tsuruga(N) saijo(T) ikata(N) omorigawa(P) hongawa(P) ananaigawa(P) anan(T) tachibanawan(T) sakaide(T) kagehira(P) G G omarugawa(P) sendai(T) sendai(N) reihoku (T) taihei(P) genkai(N) matsuura(T) karatsu(T) ainoura(T) matsushima(T) tenzan(P) shinkokura (T) karita(T) simomatsu(T) yanai(T) iwakuni(T) kaminoseki(N) shinoita(T) osaki(T) nabara(P) mizushima(T) shinnariwagawa(P) yokkaichi(T) kawagoe(T) shinnagoya(T) nishinagoya(T) owasemita(T) chita(T) taketoyo(T) chitadaini(T) hekinan(T) atsumi(T) hamaoka(N) Gbuzen(T) G takehara(T) joetsu(T) kurobe etc(P) Gokawachi(P) G okumino(P) nagano(P) G takanedaiichi(P) mazegawadaiichi(P) G okuyahagidaiichi(P) okuyahagidaini(P) G Echizen lineKitanosho line Chuo main line Shinko/Shintoyama main line KagaFukumitsu line Noetsu main line Noetsu main line Shinshinano FC Sakuma FC Higashishimizu FC Minamifukumitsu interconnection Aigi main line Toyone main line Wakasa main line Wakasa main lineTanba main lineToban lineShintottoriChizu Chugokuhigashi main line Hino main line HinoShintottorichugokuchu main lineChugokunishi main line Shinyamaguchi main line Shinyamaguchi main line Shinnishihiroshima main line Shinhiroshima main line Shinokayama main line NishihariOkayama line Harimanishi line Harimachuo line Nose line Minamiomi line MieHigashiomi line Mie connection line Seibu main line Seibu main line Tobu main line Toei main line Sangi main line Yamashirohigashiline AnanKihoku DC main line SeibuNagoyaline Kitayamatoline Chitathermalline HigashiNagoyatobuline Gifuconnectionline Shizuokamainline Toyoneconncetion line Minamishinano mainline Shizuoka connectionline Hamaokamainline Kitakyusyu mainline Shinhiroshima connectionline Shinnishihiroshima connectionline Shinokayama connectionline Higashiokayama connectionline Higashiyamaguchi connectionline Nishishimane mainline Joetsuthermalline Shinano mainline Omarugawa mainline YamasakiChizuline Harimaline Shinyamaguchi connectionline YamaguchiUbeline Kanmon Interconnectionline Shikokutyuohigashi mainline Awamainline Honshi Interconnectionline Misumi thermalline Shimanenuclearpower mainline Kitamatsue mainline Okutataragi mainline Tanba mainline Dainioi mainline Mihama line EchizenRyonanline Kagamainline TakaradukalineHimejiline Nishikyotoline Miborokita mainline Miborominami mainline HokubuchunolineNagano mainline Sunto mainline Shinmikawa mainline Mikawaline NukatatobulineNukataKoutaline 8
  9. 9. Resilience Engineering Research Center Network Topology: Node Distribution in Japanese Map
  10. 10. Resilience Engineering Research Center Network Topology: Modelling of Power System in Eastern Japan (50 Hz) 10 MINAMIHAYAKITA NISHITOBETSU NORTH HOKKAIDO1 NORTH HOKKAIDO3 KITASHINTOKU NISHI FUTABA HAKODATE /ONO G G HIGASHIDORI KITAKAMI AKITA IWATE MIYAGI G ONAGAWA G SHINJYO NISHISENDAI SENDAI MIYAGI CHUO G SOMA KYODO NIGATA G MINAMISOMA FUKUSHIMA DAIICHI GG FUKUSHIMA DAINI HIRONO MINAMIIWAKI SHINIWAKI Wind connection 1 Iwate main line Wind connection 5 ERIMOMISAKI G TSUGARU Peninsula G G G NISHINO GWind connection 2Wind connection 3 KASHIWASAKI KARIWA SHIN NIGATA Tower SHINHARUNA /NISHIGUNMA G G G HIGASHI GUNMAN G G G G G G G SHINMOGI SHINTOCHIGI/SHINIMAICHI SHIN SHINDEN SHIN TOKOROZAWA SHINFURUKAWA /SHINTSUKUBA G NAKA HITACHINAKA G G SHINNODA SHINKEIYO SHINTOYOSU SHIN SAHARA IWASTUKI SHINAGAWA Thermal G G GSHINFUJI HIGASHI YAMANASHI YOKOSUKA SHIN HADANO SHINTAMA YOKOHAMA Thermal SHIN CHICHIBU SHINSHINANO IMAICHI SHIMOGO G SHIOBARA BOSO SHIN KISARAZU SODEGAURA FUTTSU Shinsodegaura line Shinsodegaura line Fukushima main line shinokabe line shinshinden line SHIMOGO Line 156 Tower Higashigunma main line Minamiiwaki CHIBA Futtsu thermal lineSakuma FC Shinshinano FC kasiwasakikariwa(N) okukiyotsu(P) okukiyotsudaini(P) shintakasegawa(P) midono(P) akumo(P) tanbara (H) kazunogawa(P) kannagawa(P) yokohama(T) kawasaki(T) minamiyokohama(T) isogo(T) yokosuka(T) imaichi(P) siobara(P) simogo(P) numappara(P) chiba(T) kashima(T) kashimakyodo(T) Ggoi(T) anesaki(T) futtsu(T)sodegaura(T) kimitsukyodo(T) shinagawa(T) Oi(T) higashiogishima(T) nakoso(T) hitachinaka(T) tokaidaini(N) hirono(T) Fukushimadaini(N) fukushimadaiichi(N) shinchi(T) nigata(T) higashinigata(T) sendai(T) shinsendai (T) sakatakyodo(T) onagawa(N) akita(T) noshiro(T) higashidori(N) hachinohe(T) shiriuchi(T) tomari(N) date(T) tomakomai(T) onbetsu(T) tomatoatsuma(T) tomakomaikyodo(T) sunagawa(T) naie(T) G G haramachi(T) G Higashishimizu FC NORTH HOKKAIDO2 SANRIKU Coast Minaminiigatamainline Shinniigatamainline NishigunmamainlineNishigunmamainline ShinharunalineShitamalineShinhadanoline Tokyonishiline Shinchichibuline Tokyominami line Shinagawathermal system Shinagawathermal system Shintoyosuline ShinkeiyolineShinkeiyoline Shinfurukawa line Shintochigi line Shimogo line Shimogo line Imaichi line Shiobara line Abunaka line Naka line Shinmogi line Shinsaharaline Fukushimamainline Shiniwakiline Fukushimahigashimainline Bosoline KitachibalineKitachibaline Yamagata mainline Oumainline Hirono thermalline Tomiokaline Asahimainline Jobanmainline Aoba mainline Sendaimainline Matsushima mainline Shinsakadoline Shinakagiline Inba line Kimitsu line Karikachi mainline Wind connection4 Mutsu mainline NorthCentral Hokkaido mainline WestCentral Hokkaido mainline EastCentral Hokkaido mainline SouthCentral Hokkaido mainline South Hokkaido mainline Kitahoninterconnectionline Riku mainline Kitakami mainline Oshika mainline Naruse mainline Hokusei/hokuo/Ogata main line Hokusei/hokuo/Ogata main line Akimori main line Towada mainline SomaFutabamainline Futaba line Kawauchi line Gozumainline Idemainline Sofuku mainline
  11. 11. Resilience Engineering Research Center Network Topology: Modelling of Power System in Western Japan (60 Hz) 11 G G G G G G G G GGG G G G G G G G G G G G G MINAMI KYUSYU OMARUGAWA TAKANO CHUO OITA TOYOMAE NISHI KYUSYU KITA KYUSYU SHIN YAMAGUCHI HIGASHI YAMAGUCHI SHINNISHI HIROSHIMA SHIN HIROSHIMA SHIN OKAYAMA HIGASHI OKAYAMA HIROSHIMA SHINKURASIKI SANUKI KAWAUCHI ANAN OSAKA Bay NOSEYAMASAKINISHIHARI HINO NISHI SHIMANE MISUMI KITAMATSUE SHIN TOTTORI CHIZU HIGASHIOMI MINAMIKYOTO SEKI KUROBE RYONANKEIHOKUINAGAWAHOKUSETSU OKUTATARAGI MAIDURU OOI MIHAMA SHINFUKUI ECHIZENKITASYO KAGA JOHANA TOYAMA MINAMI FUKUMITSU SHINNOTO SHIGA GIFU MIE HIGASHI YAMATO SEIBU GIHOKU KAWAGOE HOKUBU NAGANO AICHI JOETSU SHINANO TOYONE TOBU CHITA HEKINAN ATSUMI SHIZUOKA TOEI HAMAOKA G UBE G TOKUYAMA himejidaiichi(T) himejidaini(T) tanagawadaini(T) aioi(T) akou(T) nanko(T) sakaiminato(T) kainan(T) gobo(T) shinonoda(T) simonoseki(T) G misumi(T) shimane(N) matanogawa(P) kisenyama(P) okuyoshino (P) ikehara(P) ooi(N) fukui(T) tsuruga(T) nanaota(T) shiga(N) other hydro(H) Gtoyama(T) toyamashinko(T) maiduru(T) miyadu(T) takahama(N) okutataragi(P) mihama(N) tsuruga(N) saijo(T) ikata(N) omorigawa(P) hongawa(P) ananaigawa(P) anan(T) tachibanawan(T) sakaide(T) kagehira(P) G G omarugawa(P) sendai(T) sendai(N) reihoku (T) taihei(P) genkai(N) matsuura(T) karatsu(T) ainoura(T) matsushima(T) tenzan(P) shinkokura (T) karita(T) simomatsu(T) yanai(T) iwakuni(T) kaminoseki(N) shinoita(T) osaki(T) nabara(P) mizushima(T) shinnariwagawa(P) yokkaichi(T) kawagoe(T) shinnagoya(T) nishinagoya(T) owasemita(T) chita(T) taketoyo(T) chitadaini(T) hekinan(T) atsumi(T) hamaoka(N) Gbuzen(T) G takehara(T) joetsu(T) kurobe etc(P) Gokawachi(P) G okumino(P) nagano(P) G takanedaiichi(P) mazegawadaiichi(P) G okuyahagidaiichi(P) okuyahagidaini(P) G Echizen lineKitanosho line Chuo main line Shinko/Shintoyama main line KagaFukumitsu line Noetsu main line Noetsu main line Shinshinano FC Sakuma FC Higashishimizu FC Minamifukumitsu interconnection Aigi main line Toyone main line Wakasa main line Wakasa main lineTanba main lineToban lineShintottoriChizu Chugokuhigashi main line Hino main line HinoShintottorichugokuchu main lineChugokunishi main line Shinyamaguchi main line Shinyamaguchi main line Shinnishihiroshima main line Shinhiroshima main line Shinokayama main line NishihariOkayama line Harimanishi line Harimachuo line Nose line Minamiomi line MieHigashiomi line Mie connection line Seibu main line Seibu main line Tobu main line Toei main line Sangi main line Yamashirohigashiline AnanKihoku DC main line SeibuNagoyaline Kitayamatoline Chitathermalline HigashiNagoyatobuline Gifuconnectionline Shizuokamainline Toyoneconncetion line Minamishinano mainline Shizuoka connectionline Hamaokamainline Kitakyusyu mainline Shinhiroshima connectionline Shinnishihiroshima connectionline Shinokayama connectionline Higashiokayama connectionline Higashiyamaguchi connectionline Nishishimane mainline Joetsuthermalline Shinano mainline Omarugawa mainline YamasakiChizuline Harimaline Shinyamaguchi connectionline YamaguchiUbeline Kanmon Interconnectionline Shikokutyuohigashi mainline Awamainline Honshi Interconnectionline Misumi thermalline Shimanenuclearpower mainline Kitamatsue mainline Okutataragi mainline Tanba mainline Dainioi mainline Mihama line EchizenRyonanline Kagamainline TakaradukalineHimejiline Nishikyotoline Miborokita mainline Miborominami mainline HokubuchunolineNagano mainline Sunto mainline Shinmikawa mainline Mikawaline NukatatobulineNukataKoutaline
  12. 12. Resilience Engineering Research Center Overview: Optimal Power Generation Mix (OPGM) Model in Japan Power Generation Facilities: • 500 power generation facilities (Coal, LNG-GCC, LNG-ST, Oil, Nuclear, Hydro, Geothermal, Biomass, Marine, PV, Wind) • 245 storage facilities (Pumped Storage, Sodium-sulfur Battery (Lower C-rate), Li-ion Battery (Higher C-rate)) Time Resolution: • 10-min interval for 1 year = 6 intervals/hour×24 hours/day×365 days = 52,560 time steps / year Methodology: • Linear programming (200 million constraints) • Single-period optimization (cost minimization) • It takes three days to obtain an optimal solution with CPLEX. 12
  13. 13. Resilience Engineering Research Center Modeling (LP Formulation) 13 Optimizes the set of endogenous variables which minimizes the objective function under the given constraints Objective Function = Fixed Cost (power sources, storages, transmission lines) + Fuel Cost (thermal, nuclear) + Power Storage Cost* Constraints supply-demand balances, capacity constraints, power supply reserve constraints, load following capability constraints, CO2 emission constraint, power transmission capacity constraints, charge and discharge balance of power storage, C-rate constraints, ………………. * Power Storage Cost = Capacity Cost + Energy Cost + Cost of consumable parts
  14. 14. Resilience Engineering Research Center Wind Resource Map in Japan Wind Resource Wind Speed Wind Resource Wind Speed Onshore Offshore Total Potential: 282.9 GW Hokkaido : 139.6 GW (49%) Tohoku : 72.6 GW (26%) Kyushu : 20.9 GW (7.4%) Total Potential: 1572.6 GW Hokkaido : 403.0 GW (26%) Tohoku : 224.8 GW (14%) Kyushu : 454.6 GW (29%) (Source) Ministry of Environment 14
  15. 15. Resilience Engineering Research Center Solar Radiation Map 15
  16. 16. Resilience Engineering Research Center Locations of AMeDAS 16 Automated Meteorological Data Acquisition System The system extends to about 1,300 places in Japanese various places, and measures precipitation, wind direction, velocity of the wind, air temperature, durations of sunshine, and depth of snow cover degree, by automatic operation in every 10 minutes. Sunshine Wind
  17. 17. Resilience Engineering Research Center Modeling of PV and Wind Outputs 17 Example of PV output Example of wind output PV and wind outputs are estimated from actual meteorological data in year- 2012, and are given at 10-min intervals for 1 year in each node In the model, PV and wind outputs can be curtailed, if necessary. (The model determines the optimal operation of PV & wind outputs among direct grid integration, storage and curtailment)
  18. 18. Resilience Engineering Research Center Measured and Estimated Wind Power 18 0 500 1000 1500 2000 2500 0 10 20 30 [KW] [m/s] Performance curve Performance curve Vc=5, Vr=12.5, and Vf=25(m/s) in mega-watt class pinwheel (1 ~3MW) in recent years. Example (Lower right figure) Ratings output 2000kW Performance curve of pinwheel of Vc=3, Vr=12.5, and Vf=25(m/s)
  19. 19. Resilience Engineering Research Center Parameter Setting (Example) 19 Type Nuclear Coal LNG GCC LNG ST Oil Biomass Hydro Geothermal PV Wind Unit Construction Cost [$/kW] 2,790 2,720 1,640 1,640 2,690 3,500 7,320 5,100 4,000 1,900 Life Time [year] 40 40 40 40 40 40 60 20 17 17 Annual O&M Cost Rate 0.04 0.048 0.036 0.036 0.039 0.048 0.0178 0.01 0.01 0.02 Maximum Capacity [GW] ∞ ∞ ∞ ∞ 5.5 GW 10 GW Minimum Capacity [GW] 0 0 0 0 0 2.2 GW MaximumIncrease Rate of Output [1/hour] 0 0.31 0.82 0.82 1 0.31 0.05 0.05 MaximumDecrease Rate of Output [1/hour] 0 0.58 0.75 0.75 1 0.58 0.05 0.05 Efficiency 1 0.418 0.484 0.396 0.394 0.2 Own Consumption Rate 0.035 0.061 0.02 0.04 0.045 0.13 Fuel Cost [cent/specific unit] 1.67 8.367 51.985 51.985 70.197 12.25 Heat Content[kcal/specific unit] 860 6139 13043 13043 9126 3585 Carbon Content[kg-C/specific unit] 0 0.61752 0.7462 0.7462 0.78792 0 Seasonal Peak Availability 0.85 0.85 0.9 0.9 0.9 0.85 Annual Average Availability 0.85 0.783 0.833 0.8 0.8 0.783 Share of Daily Start and Stop 0 0 0.5 0.3 0.7 0 Minimum Output Level 0.3 0.3 0.2 0.2 0.3 0.3 Specific Unit kWh kg kg kg l kg 32GW 23 GW 1.2 GW 6.7GW to 1,270 GW Type Pumped Battery(NAS) Unit kW Construction Cost [$/kW] 2,400 1,200 Life Time [year] 60 15 Annual O&M Cost Rate 0.01 0.01 Maximum Capacity [GW] ∞ Minimum Capacity [GW] 0 Unit kWh Construction Cost [$/kWh] 10 40 Life Time [year] 60 15 Unit Non durable Material Cost [$/kWh] 0 160 Life Cycle [times] ∞ 4,500 Cycle Efficiency 0.7 0.9 Self Discharge Loss [1/hour] 0.0001 0.001 Maximum kWh ratio to kW 6 ∞ Usage Rate 0.9 0.9 28 GW
  20. 20. Resilience Engineering Research Center 20 (Third Strategic Energy Plan by METI, 2014) RES Fraction: 21% (Energy and environmental option, 2012) RES Fraction: 30% PV Rooftop 33.5 GW Utility-scale 19.5 GW Rooftop 40.0 GW Utility-scale 23.28 GW Wind 10 GW 34.89 GW Hydro Conventional 11.78 GW Small, medium 12.0 GW Conventional 11.78 GW Small, medium 12.0 GW Geothermal 1.65 GW 3.12 GW Biomass 3.61 GW 5.52 GW Marine No 1.0 GW Total 92.04 GW 131.60 GW * Above capacity is allocated to each node, based on capacity certified by FIT and resource potential estimated by Ministry of Environment Japan. Assumptions of Renewable Power Generation (2030)
  21. 21. Resilience Engineering Research Center Assumption: RES Capacity in 2030 21 57% 11% 26% 2%4% Case: RES 21% PV Wind Hydro Geothermal Biomass Generating Capacity 92.04GW 48% 27% 18% 2% 4%1% Case: RES 30% PV Wind Hydro Geothermal Biomass Marine Generating Capacity 131.6GW
  22. 22. Resilience Engineering Research Center Power Generation Mix in Japan (2030) 22 In the case of RES 30%, 15% of total wind output is observed to be curtailed. 110.7 110.3 11.6 21.6 31.7 32.2 158.5 154.1 219.9 209.9 36.1 26.3 302.5 256.0 22.3 70.1 51.0 63.0 -15.7 -15.0 10.7 10.3 12.6 0.9 -19.3 -21.2 -100 0 100 200 300 400 500 600 700 800 900 1000 [5-1] [5-2] TWh Electricity Balances in the Period Loss Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(out) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro RES21% RES30%
  23. 23. Resilience Engineering Research Center Results|Installed Capacity 23 0 20 40 60 80 100 120 [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] Hokkaido Tohoku Kanto Chubu Hokuriku Kansai Shikoku Chugoku Kyushu GW Generating Capacity Battery2 Battery1 Pumped PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro 21% 30% 21% 30% 21% 30% 21% 30% 21% 30% 21% 30% 21% 30% 21% 30% 21% 30%
  24. 24. Resilience Engineering Research Center 24 -50 0 50 100 150 200 250 300 350 [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] Hokkaido Tohoku Kanto Chubu Hokuriku Kansai Shikoku Chugoku Kyushu TWh Electricity Balances in the Period Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(out) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro 21% 30% 21% 30% 21% 30% 21% 30% 21% 30% 21% 30% 21% 30% 21% 30% 21% 30% Results|Power Generation
  25. 25. Resilience Engineering Research Center 25 0.2 0.3 2.6 0.6 1.3 0.0 0.0 2.5 0.0 1.1 0.0 1.0 2.0 3.0 西野 新京葉 大阪湾 阿南 新倉敷 Newly Constructed LNG GCC [5-1] [5-2]RES21% RES30% Results|Capacity Expansion Nishino Shinkeiyo Osaka bay Anan Shinkurashiki
  26. 26. Resilience Engineering Research Center Results|Capacity Factor of Wind and PV 26 36.5 24.2 20.1 22.1 21.7 28.3 29.7 20.1 29.3 25.4 23.6 20.2 20.1 22.1 22.1 28.5 29.9 23.4 28.7 22.8 0.0 10.0 20.0 30.0 40.0 Hokkaido Tohoku Kanto Chubu Hokuriku Kansai Shikoku Chugoku Kyushu All Japan % Wind Capacity Factor [5-1] [5-2] 9.6 10.0 11.7 12.0 10.3 10.6 11.0 10.4 10.6 11.1 8.5 9.8 11.8 12.1 10.3 10.6 11.0 10.4 10.0 10.9 0.0 5.0 10.0 15.0 Hokkaido Tohoku Kanto Chubu Hokuriku Kansai Shikoku Chugoku Kyushu All Japan % PV Capacity Factor [5-1] [5-2] RES21% RES30% RES21% RES30%
  27. 27. Resilience Engineering Research Center Wind & PV Suppression 27 For large-scale integration of wind & PV in Japan, those output curtailments are required particularly in Hokkaido, Tohoku and Kyushu service area 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 40.3 15.9 0.0 0.0 0.0 0.0 0.0 0.0 2.7 15.3 0.0 15.0 30.0 45.0 Hokkaido Tohoku Kanto Chubu Hokuriku Kansai Shikoku Chugoku Kyushu All Japan % Wind Suppression Rate [5-1] [5-2]RES21% RES30% Wind Suppression Rate40.3% 15.9% 2.7% Hokkaido Tohoku Kyushu 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 11.1 1.3 0.0 0.0 0.0 0.0 0.0 0.0 6.0 1.5 0.0 2.0 4.0 6.0 8.0 10.0 12.0 Hokkaido Tohoku Kanto Chubu Hokuriku Kansai Shikoku Chugoku Kyushu All Japan % PV Suppression Rate [5-1] [5-2] PV Suppression Rate11.1% 1.3% 6.0% Hokkaido Tohoku Kyushu
  28. 28. Resilience Engineering Research Center Capacity Factor of Power Plants in Each Region 28 Capacity factor of ramp generator is observed to be decreased. Large-scale RES integration affects capacity factor of base-load generators such as nuclear and coal in Hokkaido and Tohoku regions. 0 10 20 30 40 50 60 70 80 90 100 [5-1] [5-2] % Capacity Factor (Tohoku) Nuclear Coal LNG GCC Hydro Oil 0 10 20 30 40 50 60 70 80 90 100 [5-1] [5-2] % Capacity Factor (Kanto) Nuclear Coal LNG GCC Hydro Oil LNG ST 0 10 20 30 40 50 60 70 80 90 100 [5-1] [5-2] % Capacity Factor (Hokkaido) Nuclear Coal LNG GCC Hydro Oil RES21% 0 10 20 30 40 50 60 70 80 90 100 [5-1] [5-2] % Capacity Factor (Kyushu) Nuclear Coal LNG GCC Hydro Oil RES30% RES21% RES30% RES21% RES30% RES21% RES30% Hokkaido Tohoku Kanto Kyushu Nuclear Coal Coal LNG GCC LNG ST LNG GCC
  29. 29. Resilience Engineering Research Center Power Grid Operation at RES 21% in July 29 Hokkaido Tohoku Kanto (Tokyo) Ramp operation by coal-fired PV output is controlled by pumped-hydro Transport of surplus RES outputs to Kanto (Tokyo) region -5 0 5 10 15 20 25 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Kyushu PV output is controlled by pumped-hydro
  30. 30. Resilience Engineering Research Center Power Grid Operation at RES 30% in July 30 Massive RES curtailment RES integration influences base- load generator Ramp operation by coal-fired Transport of surplus RES outputs to Kanto (Tokyo) region ↓ Nationwide grid operation is necessary in RES integration Hokkaido Tohoku Kanto (Tokyo) -5 0 5 10 15 20 25 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Transport of surplus RES outputs to Chugoku region Kyushu
  31. 31. Resilience Engineering Research Center -4 -2 0 2 4 6 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load -10 -5 0 5 10 15 20 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load -20 -10 0 10 20 30 40 50 60 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load -10 -5 0 5 10 15 20 25 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load Power Grid Operation at RES 21% in Dec. Hokkaido Tohoku Kanto (Tokyo) Kyushu Wind output is controlled by pumped-hydro Transport of surplus RES outputs to Kanto (Tokyo) region ↓ Nationwide grid operation is necessary in RES integration
  32. 32. Resilience Engineering Research Center -6 -3 0 3 6 9 12 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load -15 -10 -5 0 5 10 15 20 25 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load -20 -10 0 10 20 30 40 50 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load -10 -5 0 5 10 15 20 25 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load Power Grid Operation at RES 30% in Dec. Hokkaido Tohoku Kanto (Tokyo) Kyushu Massive RES curtailment RES integration influences base- load generator Transport of surplus RES outputs to Kanto (Tokyo) region ↓ Nationwide grid operation is necessary in RES integration PV output is controlled by pumped-hydro and power transport to Chugoku
  33. 33. Resilience Engineering Research Center -10 -5 0 5 10 15 20 25 30 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load -4 -2 0 2 4 6 8 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load -5 0 5 10 15 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load -10 -5 0 5 10 15 20 25 30 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load -4 -2 0 2 4 6 8 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load Chubu Hokuriku Kansai Shikoku Chugoku Power Grid Operation at RES 21% in July PV output is controlled by pumped-hydro and power transport to Chugoku
  34. 34. Resilience Engineering Research Center -10 -5 0 5 10 15 20 25 30 Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load GW -4 -2 0 2 4 6 8 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load -10 -5 0 5 10 15 20 25 30 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load -6 -3 0 3 6 9 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load -6 -3 0 3 6 9 12 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load Power Grid Operation at RES 30% in July Chubu Hokuriku Kansai Shikoku Chugoku PV output is controlled by pumped-hydro and power transport to Chugoku
  35. 35. Resilience Engineering Research Center Total System Cost & CO2 emissions 35 RES 30% causes the increase in total system cost derived from large scale RES integration, although a certain amount of CO2 emissions is mitigated. 11671 11294 12244 136 89 80 0 40 80 120 160 11000 12000 13000 [4-1] [5-1] [5-2] CarbonEmission[Mt-C] SystemCost[G-Yen] RES21% RES30%(Base Case) System Cost Carbon Emission
  36. 36. Resilience Engineering Research Center Results|Regional System Costs and CO2 emissions 36 348 1172 4006 1870 352 1731 440 658 1096 395 1127 3483 1715 370 1633 444 775 1352 555 1259 3732 1815 396 1660 457 838 1533 0 1500 3000 4500 Hokkaido Tohoku Kanto Chubu Hokuriku Kansai Shikoku Chugoku Kyushu G-Yen System Cost [4-1] [5-1] [5-2] 5.7 17.6 34.9 20.8 6.1 16.5 8.3 10.4 15.4 1.3 11.4 21.4 15.6 4.7 11.5 3.2 9.1 10.8 0.2 9.2 19.5 14.4 4.4 10.8 2.6 8.6 10.3 0.0 10.0 20.0 30.0 40.0 Hokkaido Tohoku Kanto Chubu Hokuriku Kansai Shikoku Chugoku Kyushu Mt-C Carbon Emission [4-1] [5-1] [5-2] Base Case RES21% RES30% Base Case RES21% RES30%
  37. 37. Resilience Engineering Research Center Expansion of Power Transmission Line in Eastern Japan (50Hz Grid) 37 南早来 西当別 道北1道北2道北3 北新得 西双葉 函館/大野 G G 東通 上北 秋田 岩手 宮城 G 女川 G 三 陸 海 岸 新庄 西仙台 仙台 宮城中央 G 相馬共同 新潟 G 南相馬 南いわき 風力接続線1 川 相 馬 双 葉 幹 線 常 磐 幹 線 仙 台 幹 線 青 葉 幹 線 北 上 幹 線 十 和 田 幹 線 む つ 幹 線 相 福 幹 線 朝 日 幹 線 山 形 幹 線 陸 羽 幹 線 松 島 幹 線 牡 鹿 幹 線 奥 羽 幹 線 岩手幹線 北青幹線/北奥幹線 大潟幹線 道 南 幹 線 道 央 西 幹 線 道 央 北 幹 線 道 央 東 幹 線 北 本 連 系 線 風力接続線5 襟裳岬 風 力 接 続 線 4 狩 勝 幹 線 飯 豊 幹 線 五 頭 幹 線 鳴 瀬 幹 線 秋盛幹線G 津軽半島 G G 道 央 南 幹 線 G 西野 G風力接続線2風力接続線3 新茂木 G 那珂 ひたちなか G 新佐原 塩原 福 島 幹 線 福島幹線 新 佐 原 線 福 島 東 幹 線 新 茂 木 線 新 い わ き 線 那 珂 線 阿 武 隈 線 塩原(揚) 大井(火) 勿来(火) 常陸那珂(火) 東海第二(原) 新地(火) 新潟(火) 東新潟(火) 仙台(火) 新仙台(火) 酒田共同(火) 女川(原) 秋田(火) 能代(火) 東通(原) 八戸(火) 知内(火) 泊(原) 伊達(火) 苫小牧(火) 音別(火) 苫東厚真(火) 苫小牧共同(火)砂川(火) 奈井江(火) 双 G 原町(火) G 北本連系線 従来 :60万kW 強化後:90万kWまたは240万kW 東北基幹系統:日本海ルートを新設 従来 :上北⇔秋田200万kW 強化後:上北⇔秋田800万kW 秋田⇔南相馬230万kW 相馬双葉幹線:第二連系線を新設 従来 :東北→東京500万kW 東京→東北150万kW 強化後:東北→東京1,000万kW 東京→東北300万kW Pattern A Pattern B Pattern C Pattern D Hokkaido-Tohoku +0.3 GW +0.3 GW +1.8 GW +1.8 GW Tohoku-Kanto - Expansion (2 routes) - Expansion (2 routes) Tohoku - New construction - New construction (Source) compiled from “Research committee about master-plan for reinforcement of tie line”, METI Hokkaido-Tohoku Line Now: 0.6 GW After Expansion: 0.9 GW or 2.4 GW Tohoku Line (New Construction of Nihonkai Route) Now: 2.0 GW (Kamikita⇔Akita) After Expansion: 8.0 GW (Kamikita⇔Akita) 2.3 GW (Akita⇔Minami-Soma) Tohoku-Kanto Line (Soma-Futaba Line) Now: 5.0 GW (Tohoku → Tokyo) 1.5 GW (Tokyo → Tohoku) After Expansion: 10.0 GW (Tohoku → Tokyo) 3.0 GW (Tokyo → Tohoku)
  38. 38. Resilience Engineering Research Center RES Suppression & Capacity Factor 38 Grid expansion provides the decline of RES suppression and the increase in capacity factor of ramp generator 40.3 35.1 34.5 30.5 29.2 15.9 16.6 4.7 17.4 5.3 2.7 2.7 2.7 2.7 2.7 15.3 14.1 10.5 13.1 9.3 0.0 15.0 30.0 45.0 [5-2] Pattern A Pattern B Pattern C Pattern D % Wind Suppression Rate Hokkaido Tohoku Total Kyushu 11.1 10.9 12.1 9.3 10.4 1.3 1.4 0.1 1.6 0.2 6.0 6.0 6.0 6.0 6.0 1.5 1.4 1.4 1.4 1.4 0.0 5.0 10.0 15.0 [5-2] Pattern A Pattern B Pattern C Pattern D % PV Suppression Rate Hokkaido Tohoku Total Kyushu No Exp. No Exp. Hokkaido Tohoku Wind Suppression Rate PV Suppression Rate 0 10 20 30 40 50 60 70 80 90 [5-2] Pattern A Pattern B Pattern C Pattern D % Capacity Factor (Hokkaido) Geothermal Biomass Nuclear Hydro Marine Coal 0 10 20 30 40 50 60 70 80 90 [5-2] Pattern A Pattern B Pattern C Pattern D % Capacity Factor (Tohoku) Geothermal Biomass Nuclear Hydro Marine Coal LNG GCC 0 10 20 30 40 50 60 70 80 90 [5-2] Pattern A Pattern B Pattern C Pattern D % Capacity Factor (Kanto) Geothermal Biomass Nuclear Hydro Marine Coal LNG ST LNG GCC No Exp. No Exp. No Exp. Cap. Factor (Hokkaido) (Tohoku) (Kanto)
  39. 39. Resilience Engineering Research Center Cost-Benefit of Grid Expansion 39 Total Cost Reduction & Payback Period of Expanded Grid Pattern B shows the largest cost benefit for massive RES integration. Partial grid expansion such as Pattern A and C provides the less cost benefit. 8.2 53.8 15.4 64.5 0 5 10 15 20 25 30 35 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 Pattern A Pattern B Pattern C Pattern D PayoutPeriod[years] ReducedCost[G-Yen] Payout Period Reduced System Cost +0.3 GW Expansion & New construction Pattern B
  40. 40. Resilience Engineering Research Center Temporal Resolution and RES Output Capacity Factor: Wind Capacity Factor: PV Lower resolution tends to levelize the RES output
  41. 41. Resilience Engineering Research Center Results|Power Dispatch in Hokkaido (10 min) (120 min)
  42. 42. Resilience Engineering Research Center Long-term Storage (Battery1) Shor-term Storage (Battery2) Sodium-Sulfur Battery Li-ion Battery Unit Facility Cost 170$/kWh 600$/kWh Lifetime (in calendar) 15 years 8 years Max. Recharge Cycle 4500 cycles 6000 cycles C-rate 0.14C 2C Battery Installation • In rougher resolution more than 30-min, battery installation sharply decreases • This trend is more significant in short-term storage (Li-ion battery) Results|Batteries in RES 30%
  43. 43. Resilience Engineering Research Center Modelling of Renewable, Hydrogen and Battery Wind and PV outputs are into grid, electrolyzer and suppression control (curtailment). Electrolyzer system converts electricity from wind and PV into hydrogen, which is stored in compressed hydrogen tank for later combustion in fuel cell or hydrogen gas turbine. Modelling analysis is conducted in Hokkaido and Tohoku regions (7 GW, 17 GW). PVWT Grid Electrolyzer Hydrogen Storage Tank • Fuel Cell • Hydrogen Gas Turbine Electricity Hydrogen Suppression Control (Curtailment) Hydrogen Electricity Electricity Electricity Nuclear, Thermal (coal,gas,oil), Hydro, Geothermal, Pumped-hydro Electricity Rechargeable Battery - NaS (Low C-rate) - Li-ion (High C-rate) Electricity (Source) Komiyama,R., Otsuki, T., Fujii,Y., Energy, Volume 81, 1 March 2015, Pages 537–555 (2015) 43
  44. 44. Resilience Engineering Research Center Power Gen. Dispatch (in January, Tohoku) With VR Suppression Without VR Suppression -40 -30 -20 -10 0 10 20 30 40 50 60 PowerGeneration[GW] Suppressed Wind Suppressed PV Hydrogen(Grid) Hydrogen(Wind) Hydrogen(PV) Hydrogen(in) Li-ion(in) NaS(in) Pumped(in) Li-ion(out) NaS(out) Pumped(out) Hydrogen Gas Turbine Fuel Cell Wind PV Oil LNG LNG GCC Coal Nuclear Geothermal Hydro Demand Wind(Suppression) Wind(H2) Wind(Grid) H2(Charge) H2 Gas Turbine NaS(Charge) NaS(Discharge) -40 -30 -20 -10 0 10 20 30 40 50 60 PowerGeneration[GW] Suppressed Wind Suppressed PV Hydrogen(Grid) Hydrogen(Wind) Hydrogen(PV) Hydrogen(in) Li-ion(in) NaS(in) Pumped(in) Li-ion(out) NaS(out) Pumped(out) Hydrogen Gas Turbine Fuel Cell Wind PV Oil LNG LNG GCC Coal Nuclear Geothermal Hydro Demand Wind(H2) Wind(Grid) H2(Charge) H2 Gas Turbine NaS(Charge) NaS(Discharge) (Note) Cost of Electrolyzer and Hydrogen Storage System: -90%, CO2: -90% Jan.1 Jan.31 Jan.1 Jan.31 (Source) Komiyama,R., Otsuki, T., Fujii,Y., Energy, Volume 81, 1 March 2015, Pages 537–555 (2015) 44
  45. 45. Resilience Engineering Research Center Annual SOC (State of Charge) in Energy Storage Facility 45 From January to May when wind output intensity is higher and those sufficient outputs are available, a lot of hydrogen is produced by those surplus outputs and a large amount of hydrogen energy is stored in a hydrogen storage tank in a monthly or seasonal cycle. Since a storage loss of hydrogen in the compressed tank is very low, the developed energy model selects a long- term hydrogen storage of surplus VR output as an optimal solution under strict CO2 regulation. 0 1000 2000 3000 4000 5000 1-Jan 1-Feb 1-Mar 1-Apr 1-May 1-Jun 1-Jul 1-Aug 1-Sep 1-Oct 1-Nov 1-Dec 31-Dec StoredElectricity[GWh] Pumped NaS Li-ion Hydrogen Hydrogen storage is a suitable option for storing VR energy for a long period of time. 0 2 4 6 8 10 12 1-Jan 1-Feb 1-Mar 1-Apr 1-May 1-Jun 1-Jul 1-Aug 1-Sep 1-Oct 1-Nov 1-Dec 31-Dec H2fromWind[TWh] H2 produced from wind (Note) Cost of Electrolyzer and Hydrogen Storage System: -90%, CO2: -90%, Without VR Suppression Control SOC (State of Charge) of H2 storage tank and battery (Source) Komiyama,R., Otsuki, T., Fujii,Y., Energy, Volume 81, 1 March 2015, Pages 537–555 (2015) (Tohoku region)
  46. 46. Resilience Engineering Research Center Wrap-up 46 Results suggests following challenges for massive RES integration Unconventional operation such as daylight power charging in pumped-hydro Decreased capacity factor of ramp generator Base-load generator such as coal-fired needs to serves as ramp generator Large-scale RES output curtailment is necessary. Nationwide grid operation is important. Regional grid expansion is an effective technical option. In rougher resolution more than 30-min, battery installation sharply decreases. The trend is more significant in short-term storage. Hydrogen storage is a suitable option for storing RES energy for a long period of time such as a monthly or seasonal scale.
  47. 47. Resilience Engineering Research Center 47 Thank you for your kind attention. Relevant Papers: • Komiyama,R. and Fujii,Y., Energy, Vol.81, pp.537–555, 2015 • Komiyama,R. and Fujii,Y., Energy Policy, Vol.83, pp.169-184, 2015 • Komiyama,R.,Fujii,Y., Energy Policy, Vol.66, pp.73-89, 2014 ………. Ryoichi Komiyama The University of Tokyo

×