Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
PT nghiệm nguyên Thầy Hồng Trí Quang
1
Phương pháp chia hết
1. Phương pháp xét số dư
2. Biểu thị một ẩn theo ẩn còn lại
3....
PT nghiệm nguyên Thầy Hồng Trí Quang
2
+) 2
a chia 8 dư 0, 1, 4. +) 4
a chia 8 dư 0, 1.
+) 2
a chia 9 dư 0, 1, 4, 7. +) 3
...
PT nghiệm nguyên Thầy Hồng Trí Quang
3
Tự luyện
Bài 7. Giải phương trình nghiệm nguyên 𝑥5
− 5𝑥3
+ 4𝑥 = 24(5𝑦 + 1)
Bài 8. G...
PT nghiệm nguyên Thầy Hồng Trí Quang
4
Bài 23.
a) Giải phương trình nghiệm nguyên 2
3v u u v  
b) Chuyên KHTN V1 2014. ...
PT nghiệm nguyên Thầy Hồng Trí Quang
5
Bài 34. Chuyên KHTN 2013
Có bao nhiêu số nguyên dương có 5 chữ số abcde sao cho (10...
PT nghiệm nguyên Thầy Hồng Trí Quang
6
Bài 45. Tìm hai số chính phương có bốn chữ số, biết rằng mỗi chữ số của số thứ nhất...
PT nghiệm nguyên Thầy Hồng Trí Quang
7
a) 2 2 2 2
6( )x y z t   b) 2 2 2
2x y z xyz  
Bài 54.Tìm nghiệm hữu tỉ của p...
PT nghiệm nguyên Thầy Hồng Trí Quang
8
Bài 61.Tìm nghiệm nguyên dương của phương trình: 𝑥3
+ 𝑦3
= (𝑥 + 𝑦)2
+ 𝑥𝑦
Tự luyện
B...
PT nghiệm nguyên Thầy Hồng Trí Quang
9
Bài 68.*Tìm nghiệm tự nhiên của phương trình: 2 3
2 1y
x x x   
Bài 69.Cho a, b...
PT nghiệm nguyên Thầy Hồng Trí Quang
10
Bài 81.Tìm số tự nhiên n để 3 1n
 là số chính phương
Bài 82.Cho p là một số nguyê...
PT nghiệm nguyên Thầy Hồng Trí Quang
11
Bài 91.Giải phương trình nghiệm nguyên
a) 2 2
3 6 10 0x x y y     ; b) 2 2
2 ...
PT nghiệm nguyên Thầy Hồng Trí Quang
12
Tự luyện
Bài 102. Giải phương trình nghiệm nguyên: 𝑥2
+ 𝑥 = 𝑦4
+ 𝑦3
+ 𝑦2
+ 𝑦
Bài 1...
PT nghiệm nguyên Thầy Hồng Trí Quang
13
Các cặp (a; b) thỏa mãn đề bài là (4; 3); (3; 2); (2; 1).
Tự luyện
Bài 114. Giải p...
PT nghiệm nguyên Thầy Hồng Trí Quang
14
Bài 125. Cho a, b  Z và a ≠ b thỏa mãn: ab(a+b) chia hết cho a2
+ ab + b2.
Chứng ...
PT nghiệm nguyên Thầy Hồng Trí Quang
15
Phần 3. Tam thức bậc hai
1. Điều kiện có nghiệm và công thức nghiệm
Bài 139. Tìm n...
PT nghiệm nguyên Thầy Hồng Trí Quang
16
Phương trình đã cho tương đương với
   3 2 2 2 2 2 2 2
2 3 3 0 2 3 3 0y x y xy...
PT nghiệm nguyên Thầy Hồng Trí Quang
17
2
' , ' 6x x Ay x x y    nên 'x Z và ' 0x  . Do cách chọn các cặp ,x y nên '...
PT nghiệm nguyên Thầy Hồng Trí Quang
18
3. Nhị thức Newton
Bài 153. Tìm hai số nguyên dương thỏa mãn phương trình:  
201...
PT nghiệm nguyên Thầy Hồng Trí Quang
19
b) Chứng minh rằng có vô hạn số nguyên tố dạng 4 1m
5. Định lí Willson
“Với p là ...
Upcoming SlideShare
Loading in …5
×

9 phuong trinh nghiem nguyen htq

7,307 views

Published on

Pt nghiệm nguyên

Published in: Education
  • Sex in your area is here: ♥♥♥ http://bit.ly/2F4cEJi ♥♥♥
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Follow the link, new dating source: ♥♥♥ http://bit.ly/2F4cEJi ♥♥♥
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here

9 phuong trinh nghiem nguyen htq

  1. 1. PT nghiệm nguyên Thầy Hồng Trí Quang 1 Phương pháp chia hết 1. Phương pháp xét số dư 2. Biểu thị một ẩn theo ẩn còn lại 3. Phương trình tích (pt ước số) 4. Phương pháp lùi vô hạn 5. Phương pháp sử dụng tính chia hết 6. Kĩ thuật sử dụng ước chung lớn nhất 7. Tính chất số nguyên tố, số mũ 8. Tính chất số chính phương, Phương pháp đánh giá 1. Phân tích thành các tổng bình phương, tổng lập phương 2. Nguyên lí kẹp 3. Phương pháp sắp thứ tự các ẩn Phương pháp sử dụng tam thức bậc hai 1. Sử dụng tam thức bậc hai để phân tích thành nhân tử 2. Sử dụng điều kiện có nghiệm của tam thức bậc hai 3. Sử dụng điều kiện 𝛥 là số chính phương Một số dạng khác 1. Dạng căn thức 2. Dạng phần nguyên 3. Sử dụng nhị thức Newton 4. Định lí Fermat 5. I. PHƯƠNG PHÁP XÉT TÍNH CHIA HẾT 1. Phương pháp xét số dư PP này thường để chứng minh pt vô nghiệm, ví dụ một vế lẻ, vế chẵn thì không thể bằng nhau, đó là chia hết cho 2. Mở rộng ra với các số khác. Bổ đề 1. Xét số chính phương 2 a khi chia cho một số +) 2 0;1(mod3)a  +) 2 a chia 4 dư 0, 1 +) 2 a chia 5 dư 0, 1, 4; +) 4 a chia 5 dư 0, 1. +) 3 a chia 5 dư?
  2. 2. PT nghiệm nguyên Thầy Hồng Trí Quang 2 +) 2 a chia 8 dư 0, 1, 4. +) 4 a chia 8 dư 0, 1. +) 2 a chia 9 dư 0, 1, 4, 7. +) 3 0; 1(mod9)a   Bổ đề 2. Nếu a, b nguyên và 2 2 a b chia hết cho 3 thì a và b đều chia hết cho 3 Bổ đề 3. Nếu 1(modb)a  1(modb)n a  Bài 1. Giải phương trình nghiệm nguyên 𝑥2 = 2𝑦2 − 8𝑦 + 3 Bài 2. Phương trình 2 2 2 1) 1( ( )z x y n    có nghiệm nguyên không nếu? a) n = 2013 b) n = 2012 c) n = 1984 Bài 3. Giải phương trình nghiệm nguyên 2 2 15 7 9yx   . HD từ pt y chia hết cho 3, thay vào x chia hết cho 3, suy ra scp chia 3 dư 2 (vô lí) Bài 4. Giải phương trình nghiệm nguyên 15 15 15 2003 2003 2003 19 7 9x y z     . Bài 5. Giải mỗi phương trình sau với nghiệm tự nhiên: a) 3 3 7x y  ; b) 2 2 2x y x y   ; c) (2 1)(2 2) 3 307x x y     d) 4 y x x Chia hết với bài toán tìm số Bài 6. Tìm nghiệm nguyên của phương trình:   |x| 2 2 5 1 2014 105x y y x x      Lời giải Vì   |x| 2 2 5 1 2014 105x y y x x      và 105 lẻ nên 2x + 5y +1 lẻ suy ra 5y chẵn dẫn đến y chẵn. Vì  |x| 2 2014 y x x   lẻ, y chẵn và x2 + x = x(x+1) chẵn nên 2014|x| lẻ Nhưng như vậy chỉ có thể |x| = 0 ⟺ x = 0. Thay x = 0 vào phương trình ta được: (5y +1) (y+1) = 105 ⟺ 5y2 + 6y -104 =0 ⟺ 4 26 5 y y Z       Vậy chỉ có nghiệm x = 0, y = 4 thỏa mãn yêu cầu bài toán.
  3. 3. PT nghiệm nguyên Thầy Hồng Trí Quang 3 Tự luyện Bài 7. Giải phương trình nghiệm nguyên 𝑥5 − 5𝑥3 + 4𝑥 = 24(5𝑦 + 1) Bài 8. Giải phương trình nghiệm nguyên 𝑎) 7𝑥2 − 5𝑦2 = 3; 𝑏) 2𝑥2 + 𝑦2 = 1007 Bài 9. Tìm các số nguyên x, y thỏa mãn: 4 7 2014y x   Bài 10.Giải phương trình nghiệm nguyên a) 9𝑥3 + 6 = 𝑦3 ; b) 3 3 3 2003x y z   Bài 11.Chuyên KHTN 2011 V1. Chứng minh rằng không tồn tại các bộ ba số nguyên (x, y, z) thoả mãn đẳng thức 4 4 4 7 5x y z   Bài 12.Tìm nghiệm nguyên của phương trình: Bài 13.Tìm nghiệm tự nhiên của pt    2 1 2 2 2 3 2 4 5 11879x x x x y       Bài 14.Giải mỗi phương trình sau với nghiệm tự nhiên: a) 2 5 48x y  ; b) 2 3 8x y  ; c) 2 2 1x y  d) 2 4 5x y  ; e) 2 2 45x y  Bài 15.Giải phương trình nghiệm nguyên 𝑥2 + 𝑦2 + 𝑧2 = 2015 Bài 16.Chuyên KHTN V1 2013. Tìm các cặp số nguyên (x; y) thỏa mãn: 2 2 5 8 20412x y  Đs x = 54; y = 27; (-54; -27), (54; -27), (-54; 27) Bài 17.Giải phương trình nghiệm nguyên 𝑥4 + 𝑦4 + 𝑧4 + 𝑡4 = 2015 Bài 18.Tìm nghiệm nguyên của phương trình: 9𝑥 + 2 = 𝑦2 + 𝑦 Bài 19.Tìm nghiệm tự nhiên của phương trình 2 2 3x y  Bài 20.Cho đa thức f(x) có các hệ số nguyên. Biết rằng 𝑓(1). 𝑓(2) = 35. Chứng minh rằng đa thức f(x) không có nghiệm nguyên. Bài 21.Giải phương trình nghiệm nguyên:   4 4 4 3996x y x y    Bài 22.Tìm ba số nguyên tố liên tiếp a, b, c biết rằng 2 2 2 a b c  cũng là một số nguyên tố 2. Biểu thị một ẩn theo ẩn còn lại Lý thuyết. Nếu a, b nguyên và a Z b  thì |b a 2 1! 2! 3! 4!.... ! .x y    
  4. 4. PT nghiệm nguyên Thầy Hồng Trí Quang 4 Bài 23. a) Giải phương trình nghiệm nguyên 2 3v u u v   b) Chuyên KHTN V1 2014. Tìm nghiệm nguyên của phương trình: 2 2 ( ) 3x y x y x y xy     Bài 24.Giải phương trình nghiệm nguyên 8𝑦2 − 25 = 3𝑥𝑦 + 5𝑥 Bài 25.Tìm tất cả các cặp số nguyên (x; y) sao cho 3 2 3 2 5 0x x y x y     Tự luyện Bài 26.Giải phương trình nghiệm nguyên 𝑎)𝑥𝑦 − 2𝑦 − 3 = 3𝑥 − 𝑥2 ; 𝑏) 4𝑥2 + 2𝑥𝑦 + 4𝑥 + 𝑦 + 3 = 0; Bài 27.Tìm nghiệm nguyên của phương trình: 𝑥3 − 𝑥2 𝑦 + 3𝑥 − 2𝑦 − 5 = 0 3. Phương trình tích Lý thuyết. Nếu a.b = c thì a|c Một số dạng tích cơ bản   au bv ab uv a v u b      3 3 3 2 2 2 3 ( )( )a b c abc a b c a b c ab bc ca           Bài 28.Ams 2014. Tìm các cặp số nguyên (x; y) thỏa mãn: 2 2 2 3 4 0x y xy x x     Bài 29.Chuyên KHTN V2 2015. Tìm số tự nhiên n để n + 5 và n + 30 đều là các số chính phương. Bài 30.Tìm nghiệm tự nhiên của phương trình: a) 3 8 37x y  c) 2 2 (2 )(2 2 ) 37x x x y y y    , (2; 3) b) 2 2 57x y  Bài 31.Giải phương trình nghiệm nguyên a) 3 3 3 3;x y xy   b) 3 3 8x y xy   Bài 32.Tìm tất cả các số tự nhiên abc có 3 chữ số sao cho   2 2 1 2 abc n cba n       với n là số nguyên lớn hơn 2 Bài 33.Tìm hai số tự nhiên liên tiếp, mỗi số có hai chữ số biết rằng nếu viết số lớn hơn trước số nhỏ hơn thì ta được một số chính phương
  5. 5. PT nghiệm nguyên Thầy Hồng Trí Quang 5 Bài 34. Chuyên KHTN 2013 Có bao nhiêu số nguyên dương có 5 chữ số abcde sao cho (10 )abc d e  chia hết cho 101? Điều kiện 0a  ; a; b; c; d; e là các chữ sô Tự luyện Bài 35. a) 2 2 5 4 9 0x y xy    (x + y)(5x – y) = 9; (1; 2), (-1; -2) b) Chuyên KHTN 2012 Tìm tất cả các cặp số nguyên  ;x y thỏa mãn đẳng thức    1 5 2x y xy x y x y       Bài 36. Tìm số nguyên x để biểu thức sau là số chính phương 𝑥2 + 7𝑥 = 𝑦2 HD (2𝑥 + 7)2 − (2𝑦)2 = 49 Bài 37.Ams 2008. Với mỗi số tự nhiên n đặt 𝑎 𝑛 = 3𝑛2 + 6𝑛 + 13 1) Chứng minh rằng nếu hai số 𝑎𝑖, 𝑎𝑗 không chia hết cho 5 và có số dư khác nhau thì 𝑎𝑖 + 𝑎𝑗 chia hết cho 5. 2) Tìm tất cả các số tự nhiên n lẻ sao cho 𝑎 𝑛 là số chính phương. Bài 38. Giải phương trình nghiệm nguyên a) 2 2 2 3 3 0x y xy x y      b) (x + y)(x + 2y – 1) = -3; (-8;5), (-6;5), (6;-3), (4;-3) b)     2 1 7 8x x x x y    Bài 39. Chứng minh rằng phương trình sau không có nghiệm nguyên 𝑥4 − 5𝑥2 𝑦2 + 4𝑦4 = 3 Bài 40.Giải phương trình nghiệm nguyên 𝑥(𝑥 + 1)(𝑥 + 2)(𝑥 + 3) = 𝑦2 Bài 41.Tìm tất cả các cặp (x;n) nguyên dương thỏa mãn 3 3367 2n x   Bài 42.Giải phương trình nghiệm nguyên 𝑥3 + 𝑦3 + 𝑧3 = 3𝑥𝑦𝑧 + 1 Bài 43.Giải phương trình nghiệm nguyên a) 3 3 3 1x y xy   b) 3 3 21 6x y xy   ; Bài toán tìm số Bài 44.Tìm các số tự nhiên có ba chữ số, biết rằng nếu cộng chữ số hàng trăm với n, trừ các chữ số hàng chục và hàng đơn vị cho n thì được một số gấp n lần số ban đầu với n là số tự nhiên nhỏ hơn chữ số hàng chục và chữ số hàng đơn vị. đs 178
  6. 6. PT nghiệm nguyên Thầy Hồng Trí Quang 6 Bài 45. Tìm hai số chính phương có bốn chữ số, biết rằng mỗi chữ số của số thứ nhất đều lớn hơn chữ số cùng hàng của số thứ hai cùng bằng một số đs 3136, 2025 và 4489; 1156 Bài 46.Xác định tất cả các cặp số nguyên không âm (x;y) sao cho 2 2 2 ( 7)xy x y   Bài 47.Tìm tất cả các tam giác vuông có các cạnh là số nguyên và có diện tích bằng chu vi. Bài 48.Giải phương trình nghiệm nguyên sau: 2 2 ( 1) ( 1) 1x y y x    4. Phương pháp cực hạn (xuống thang) Fermat đã dùng phương pháp xuống thang để chứng minh phương trình 4 4 4 x y z  . Xuất phát từ ý tưởng này, ông đã chứng minh được rằng phương trình n n n x y z  không tồn tại nghiệm nguyên khác 0 với n > 2. Ông ghi chú rằng ông đã tìm ra cách chứng minh rất hay, nhưng vì lề cuốn sổ nhỏ quá không đủ ghi. Tuy nhiên, tính từ lúc ông ghi câu đó thì gần 4 thập kỉ sau, năm 1993 Andrew Wiles mới chứng minh được sau 8 năm ròng nghiên cứu. Bước 1. Chứng minh rằng trong tất cả các nghiệm, luôn tồn tại giá trị lớn nhất hoặc nhỏ nhất. Gọi giá trị đó là M Bước 2. Xét bài toán trong trường hợp riêng M này. Chỉ ra một giá trị nhỏ hơn (hoặc lớn hơn) M. Từ đó suy ra mâu thuẫn Bài 49. a) Tìm nghiệm nguyên của phương trình 2 2 2 7x y z  b) Tìm nghiệm nguyên dương của phương trình 2 2 2 x y az  , trong đó a là số tự nhiên dạng 4k – 1 với k là số tự nhiên. c) Chứng minh rằng số 7 không viết được thành tổng bình phương của hai số hữu tỉ Bài 50.Giải phương trình nghiệm nguyên 𝑥2 + 𝑦2 + 𝑧2 = 𝑥2 𝑦2 nghiệm (0; 0; 0). Bài 51.Tìm tất cả các số nguyên tố p sao cho với số p đó tồn tại các số nguyên dương n, x, y thỏa mãn: pn = x3 + y3 . Tự luyện Bài 52.Tìm nghiệm nguyên của phương trình: a) 3 3 3 2 4x y z  b) 3 3 3 3 9x y z  Bài 53.Giải phương trình nghiệm nguyên ( , , ) (5,12,13);(6,8,10);x y z 
  7. 7. PT nghiệm nguyên Thầy Hồng Trí Quang 7 a) 2 2 2 2 6( )x y z t   b) 2 2 2 2x y z xyz   Bài 54.Tìm nghiệm hữu tỉ của phương trình 2 2 2 x y pz  , với p là số nguyên tố. Bài 55.Giải phương trình 2 2 2 2 2 2 2 x y z t x y z    a) Nghiệm nguyên dương b) Nghiệm nguyên 5. Tính chất chia hết 5.1.Tính chất Tính chất 1. Cho a, b, c nguyên Nếu |ab c mà (a;c) = 1 thì |b c . Đặc biệt nếu |a c mà (a;c) = 1 thì 1a   Bài 56.Giải phương trình nghiệm x hữu tỉ, y nguyên 𝑥2 + 7𝑥 = 𝑦2 𝐻𝐷 𝑥 = 𝑚 𝑛 → 𝑚2 + 7𝑚𝑛 = 𝑦2 𝑛2 → 𝑚2 ⋮ 𝑛 → 𝑥 ∈ 𝑍 Tính chất 2. Cho a, b, c nguyên Nếu |a bvà |b a thì a b  Bài 57.Chuyên KHTN 2015 Tìm các số nguyên x, y không nhỏ hơn 2 sao cho xy – 1 chia hết cho (x – 1)(y – 1) Tự luyện Bài 58. a) Tìm nghiệm nguyên của phương trình: 𝑥2 + 𝑥 + 6 = 𝑦2 ; b) Tìm các số hữu tỉ x để x2 + x + 6 là số chính phương 6. Ước chung lớn nhất Nếu |a bvà |b a thì a = b Nếu ( ; )a b d mà . '; . 'a d a b d b  thì ( '; ') 1a b  Bài 59.Tìm số nguyên x sao cho 3 4 6 x x   là bình phương của một số hữu tỉ. Bài 60.* Chứng minh rằng không tồn tại các số nguyên dương a, b sao cho a > b và    2 2 2 2 a b a b 
  8. 8. PT nghiệm nguyên Thầy Hồng Trí Quang 8 Bài 61.Tìm nghiệm nguyên dương của phương trình: 𝑥3 + 𝑦3 = (𝑥 + 𝑦)2 + 𝑥𝑦 Tự luyện Bài 62.Tìm các số nguyên x sao cho 37 43 x x   là bình phương của một số hữu tỉ. Đs 38, 47, 55, 82, 101, 199, 398 Bài 63.Tính giá trị biểu thức 2 2 x y M xy   biết x, y, M đều là các số nguyên dương HD M = 2 7. Số nguyên tố Cho p là số nguyên tố, a và b là hai số tự nhiên Tính chất 1. Nếu ( ;p) 1a  thì |p a Tính chất 2. Nếu 2 | ap thì 2 2 | ap Tính chất 3. Nếu p = a.b thì a = 1 hoặc a = p. Đặc biệt nếu 1a  thì mà |a p thì p = a. Tính chất 4. Nếu a.bn p  thì 1 2 ;bn n a p p  Tính chất 5. Một hợp số đều có ước nguyên tố Bài 64.Tìm các số nguyên x để 9x + 5 là tích của hai số nguyên liên tiếp HD 2 3(12 7) (2 1)x n   , VT chia hết cho 3 nên VP chia hết cho 9, suy ra VT chia hết 9 (vô lí) Bài 65.Tìm các số tự nhiên n sao cho mỗi biểu thức sau là số nguyên tố a) 4 2 1n n  b) ( 1)( 2) 1 6 n n n   Bài 66. a) Tìm số nguyên tố p để 2 2p p cũng là số nguyên tố b) Tìm tất cả các số nguyên tố p, q, r thỏa mãn pn + qn = r Phân tích. Với dạng tìm số nguyên tố p, ta chủ yếu xét số dư để sử dụng tính chất 2. Bài 67.Cho n là số nguyên dương. Chứng minh rằng nếu 2n+1 và 3n +1 là các số chính phương thì 5n +3 không phải là số nguyên tố.
  9. 9. PT nghiệm nguyên Thầy Hồng Trí Quang 9 Bài 68.*Tìm nghiệm tự nhiên của phương trình: 2 3 2 1y x x x    Bài 69.Cho a, b, c là những số nguyên khác không, a ≠ c sao cho 2 2 2 2 a a b c c b    . Chứng minh rằng: a2 + b2 + c2 không phải là số nguyên tố. Bài 70.Tìm tất cả các bộ ba số nguyên dương ( ;y;z)x sao cho 3 3 3 3x y z xyz p    với p là một số nguyên tố 3p  Tự luyện Bài 71.Tìm các số tự nhiên n sao cho mỗi biểu thức sau là số nguyên tố a) 3 2 2n n n   ; b) 3 2 4 4 1n n n   c) 2 2 ( 8) 36n   d) 5 1n n  Bài 72.Giải phương trình nghiệm nguyên 3𝑥5 − 𝑥3 + 6𝑥2 − 15 = 2013 Bài 73.Tìm các số tự nhiên n sao cho mỗi biểu thức sau là số nguyên tố: a) 4 4n  ; b) 4 4n n  Bài 74.Cho p, q là hai số nguyên tố sao cho p > q > 3 và p – q = 2. Chứng minh rằng: (p + q) ⋮ 12 Bài 75.Tìm các số nguyên tố p sao cho mỗi biểu thức sau là số nguyên tố: a) 2 8 1p  ; b) 3 2 11 2p p p   ; Bài 76.Tìm nghiệm nguyên tố của phương trình: a) 2 2 2 x y z xyz   ; b) 2 2 2 2 x y z t xyzt    ; c) 5( )x y z xyz   Bài 77.Chứng minh rằng không tồn tại các số nguyên tố a, b, m, n, p thỏa mãn phương trình: a) 2 2 2 a m n  ; b) 2 2 2 2 2 a b m n p    Bài 78.Cho x, y, p là các số nguyên và p > 1 sao cho mỗi số x2014 và y2015 đều chia hết cho p. Tìm x, y sao cho p chia hết A= 1 + x + y. Bài 79.*Giải các phương trình nghiệm nguyên 3 𝑥 + 4 𝑦 = 5 𝑧 8. Số chính phương Tích hai số nguyên tố cùng nhau là số chính phương thì hai số đó là số chính phương. Đặc biệt tích hai số tự nhiên liên tiếp thì phải có một số bằng 0 Bài 80.Giải phương trình nghiệm nguyên 𝑥2 + 𝑦3 = 𝑦6
  10. 10. PT nghiệm nguyên Thầy Hồng Trí Quang 10 Bài 81.Tìm số tự nhiên n để 3 1n  là số chính phương Bài 82.Cho p là một số nguyên tố. Tìm tất cả k  Z sao cho 2 k pk là một số nguyên dương. Bài 83.Tìm số nguyên dương bé nhất 1n  sao cho 2 2 2 1 2 ... n n    là một số chính phương. Tự luyện Bài 84.Tìm nghiệm nguyên của phương trình: a) 2 2 2 2 x xy y x y   b) 2 2 2 2 2 16x y xy x y   Bài 85.Tìm nghiệm nguyên của phương trình: 𝑥(1 + 𝑥 + 𝑥2) = 4𝑦(𝑦 + 1) ÔN TẬP PHẦN 1 Bài 86.Tìm số nguyên x thỏa mãn: a) 3x  chia hết cho 2 1x  ; b) 3 2 2 8 3x x x  chia hết cho 2 1x  c) ( 2)( 3)x x  chia hết cho 3x c) 4 6x  chia hết cho 2 1x x  Đs a); 0; 1; -1; 2; -3; b) -8; 0; 2 c) 1; -2; -3; 6; d) 0; -1 Bài 87.Tìm nghiệm nguyên dương của hệ phương trình: 2 2 ! 1 ! 1 2 2 4 2 ab b a bc c b a b a b              Bài 88.Tìm nghiệm nguyên của pt: (𝑦 − 2)𝑥2 + (𝑦2 − 6𝑦 + 8)𝑥 = 𝑦2 − 5𝑦 + 62 𝐻𝐷 (𝑦 − 2)(𝑥 − 1)(𝑥 + 𝑦 − 3) = 0 Bài 89.Giải phương trình trên tập số tự nhiên (p là số nguyên tố) 1 1 1 x y p   Bài 90.Chứng minh rằng mọi phương trình bậc hai với các hệ số đều là số nguyên lẻ thì không thể có nghiệm hữu tỉ. DẠNG 2. PHƯƠNG PHÁP ĐÁNH GIÁ 1. Phân tích thành các tổng không âm Phương pháp A + B + C = 0 Nếu A, B, C đều không âm thì A = B = C = 0 Nếu A, B > 0 thì C < 0
  11. 11. PT nghiệm nguyên Thầy Hồng Trí Quang 11 Bài 91.Giải phương trình nghiệm nguyên a) 2 2 3 6 10 0x x y y     ; b) 2 2 2 22 4 4 5 0x y x y zxy     Bài 92.Tìm số tự nhiên có 4 chữ số biết rằng số đó bằng tổng bình phương của số tạo bởi hai chữ số đầu và hai chữ số cuối, biết rằng hai chữ số cuối giống nhau. Bài 93.Tìm nghiệm nguyên không âm của phương trình: 3 3 3 2 2 4 2 3 0x y xy y x y      Tự luyện Bài 94.Giải phương trình nghiệm nguyên a) 2 2 5 4 4 4 0x y xy y     b)    2 2 2 1 3 1x y x y     Bài 95.Tìm nghiệm nguyên dương của pt: 3𝑥2 + 2𝑦2 + 𝑧2 + 4𝑥𝑦 + 2𝑦𝑧 = 26 − 2𝑥𝑧 Bài 96.Tìm nghiệm nguyên không âm của pt: 𝑥2 + 𝑦3 − 3𝑦2 = 65 − 3𝑦 2. Nguyên lí Kẹp Phương pháp Nếu số chính phương (hoặc lập phương) bị kẹp giữa hai số chính phương (lập phương) liên tiếp thì phải bằng một trong hai số đó. Ví dụ 2 2 2 ( 1) ( 1)a b a a b      ( ; )a b N Tương tự với biểu thức của tích hai số tự nhiên liên tiếp. Việc dự đoán biểu thức kẹp thường biến đổi biểu thức đã cho thành bình phương và dựa vào biểu thức chính phương gần nhất. Bài 97.Chuyên KHTN 2014 V2 Cho x, y là những số nguyên lớn hơn 1 sao cho: 2 2 4 7 7x y x y  là số chính phương. Chứng minh rằng x = y Bài 98.Giải phương trình nghiệm nguyên 𝑥4 + 2𝑥3 + 2𝑥2 + 𝑥 + 1 = 𝑦2 Bài 99.Giải phương trình nghiệm nguyên 𝑥4 − 2𝑦2 = 1 Bài 100. Giải phương trình nghiệm nguyên 9𝑥2 − 6𝑥 = 𝑦3 Bài 101. Giải phương trình nghiệm nguyên 2 2008 2008 1 x x x y   
  12. 12. PT nghiệm nguyên Thầy Hồng Trí Quang 12 Tự luyện Bài 102. Giải phương trình nghiệm nguyên: 𝑥2 + 𝑥 = 𝑦4 + 𝑦3 + 𝑦2 + 𝑦 Bài 103. Tìm nghiệm nguyên của pt: 𝑦3 = 𝑥6 + 2𝑥4 − 1000 Bài 104. Chứng minh rằng tất cả các phương trình: 6 4 2 3 x ax bx c y    với  3;4;5a ,  4;5;...;12b ,  1;2;...;8c đều không có nghiệm nguyên Bài 105. Giải phương trình nghiệm nguyên: 4 4 4 2 2 2 2 2 3 4 1 0x y z x z x z       Bài 106. Tìm tất cả các nghiệm nguyên của phương trình:       3 3 33 3 1 2 ... 7x x x x y        3. Sắp thứ tự các ẩn Bài 107. Giải phương trình nghiệm nguyên dương a) xyz x y z   b) 2 2x y z xyz   Bài 108. Tìm các số tự nhiên x, y thỏa mãn điều kiện 3 x x chia hết cho xy – 1 Bài 109. Tìm các số nguyên dương x và y sao cho x + 1 chia hết cho y và y + 1 chia hết cho x Mở rộng với bài 3 số Tìm các số nguyên dương x, y, z biết (𝑥𝑦 + 1) chia hết cho z, (𝑦𝑧 + 1) chia hết cho x và (𝑥𝑧 + 1) chia hết cho y. Bài 110. Tìm các cặp số nguyên dương  ,x y thỏa mãn 2 3x y và 2 3y x đều là các số chính phương. Bài 111. Tìm tất cả các số nguyên dương phân biệt a, b, c thỏa mãn điều kiện abc-1 chia hết cho (a-1) (b-1) (c-1). các nghiệm của bài toán là: a=2, b=4,c=8; a=3,b=5, c=15 Bài 112. Chuyên SPHN 2011 Tìm tất cả các số nguyên tố p có dạng 𝑝 = 𝑎2 + 𝑏2 + 𝑐2 với a, b, c là các số nguyên dương sao cho 𝑎4 + 𝑏4 + 𝑐4 chia hết cho p. Đs a=b=c=1 p=3 thỏa mãn Bài 113. Tìm tất cả các số nguyên dương n sao cho 2 2 n a b  với a, b là các số nguyên dương nguyên tố cùng nhau và ab chia hết cho mọi số nguyên tố bé hơn hoặc bằng n
  13. 13. PT nghiệm nguyên Thầy Hồng Trí Quang 13 Các cặp (a; b) thỏa mãn đề bài là (4; 3); (3; 2); (2; 1). Tự luyện Bài 114. Giải phương trình nghiệm nguyên 1 𝑥2(𝑥2 + 𝑦2) + 1 (𝑥2 + 𝑦2)(𝑥2 + 𝑦2 + 𝑧2) + 1 𝑥2(𝑥2 + 𝑦2 + 𝑧2) = 1 Bài 115. Tìm tất cả các số nguyên tố a, b, c sao cho ab + bc + ca > abc. Bài 116. Tìm tất cả các cặp số tự nhiên (x; y) thỏa mãn:{ 2 𝑥 = 2𝑦 2 𝑦 = 2𝑥 Bài 117. Tìm các số nguyên dương ; ; ;wx y z phân biệt thỏa điều kiện: 2 2 2 2 w 3( w)x y z x y z       Bài 118. Tìm tất cả bộ ba số nguyên dương  ; ;x y z thỏa mãn điều kiện: 1 1 1 1 1 1 2 x y z                   Bài 119. Tìm tất cả các bộ ba ( ; ; )x y z nguyên dương sao cho: 2xy yz zx xyz    4. Bất đẳng thức số học Cho a, b là hai số tự nhiên nếu |b a thì 0a b a    Bài 120. Tìm các số tự nhiên x, y thỏa mãn điều kiện a) 2 1xy  chia hết cho (x – 1)(y – 1) b) 2 4 8 3x x  chia hết cho 4xy – 1 Bài 121. Tìm các số nguyên dương x, y, z biết (𝑥𝑦 + 1) chia hết cho z, (𝑦𝑧 + 1) chia hết cho x và (𝑥𝑧 + 1) chia hết cho y. Bài 122. Tìm bộ số nguyên dương (m, n) sao cho p = m2 +n2 là số nguyên tố và m3 + n3 – 4 chia hết cho p Tự luyện Bài 123. Tìm các số tự nhiên x, y thỏa mãn điều kiện 2 ( 2)x  chia hết cho xy + 1; Bài 124. Tìm các số nguyên dương x, y, z thỏa mãn: 2 2 2 2 2 3 18 2 3 18 27x y z y z x     .
  14. 14. PT nghiệm nguyên Thầy Hồng Trí Quang 14 Bài 125. Cho a, b  Z và a ≠ b thỏa mãn: ab(a+b) chia hết cho a2 + ab + b2. Chứng minh rằng: |a – b| > 3 ab 5. Đánh giá Bài 126. Giải phương trình nghiệm nguyên dương (𝑥 + 𝑦)4 = 40𝑦 + 1 Bài 127. Giải phương trình nghiệm nguyên (𝑥2 − 𝑦2)2 = 10𝑦 + 9 Bài 128. Tìm tất cả các nghiệm nguyên của phương trình:   22 2 1 16x y y   Bài 129. Tìm tất cả các cặp số nguyên không âm  ;x y thỏa mãn 3 2 3 8 8 8x x x y    Sử dụng BĐT AM – GM Bài 130. Giải phương trình nghiệm nguyên dương của phương trình: 2 2 2 3x y y z z x xyz   Bài 131. Tìm nghiệm nguyên dương của phương trình:   36 3 2 2 2 2 2 15 3 5x z x z x y z y     . Cauchy Bài 132. Tìm nghiệm nguyên dương của phương trình    22 2 4 4 2 4 28 17 4 49x y x y y      Tự luyện Bài 133. Tìm các số nguyên thỏa mãn BĐT sau: 𝑥2 + 𝑦2 + 𝑧2 < 𝑥𝑦 + 3𝑦 + 2𝑧 − 3 Bài 134. Tìm tất cả các cặp số nguyên  ;x y thỏa mãn phương trình: 3 3 2 8x y xy   Luyện tập phần 2 Bài 135. Giải phương trình nghiệm nguyên dương 𝑥𝑦 + 𝑥𝑧 − 2𝑦𝑧 + 2 + 𝑧 = 0 Bài 136. Tìm tất cả các nghiệm nguyên của phương trình: ...x x x y    (1993 dấu căn). Bài 137. Tìm nghiệm nguyên của phương trình sau: 𝑎) √ 𝑥 + √𝑦 − 1 + √𝑧 − 2 = 1 2 (𝑥 + 𝑦 + 𝑧); 𝑏) 1 √𝑥 − 2 + 1 √𝑦 − 1 + 1225 √𝑧 − 771 = 74 − √𝑥 − 2 − √𝑦 − 1 − √𝑧 − 771 Bài 138. Tìm nghiệm nguyên dương của phương trình: 2012 2011 2 2011 4023 2012 x y x y y x z       
  15. 15. PT nghiệm nguyên Thầy Hồng Trí Quang 15 Phần 3. Tam thức bậc hai 1. Điều kiện có nghiệm và công thức nghiệm Bài 139. Tìm nghiệm nguyên của phương trình Giải: Phương trình đã cho được viết lại là: . Phương trình (1) có nghiệm khi và chỉ khi: Do y nguyên nên . +)Với y = 0 ta có x = 0. +)Với y = 1 ta có x = 1. +)Với y = 2 và y = 2 ta có không tìm được x nguyên. Vậy phương trình có hai nghiệm nguyên là ( x ; y ) = ( 0 ; 0 ); ( 1 ; 1 ); Bài 140. Cho phương trình 7𝑦2 − 6𝑥2 = 𝑥 − 𝑦 trong đó x, y nguyên dương và x > y. a) Gọi d = UCLN (x; y). Chứng minh rằng: 𝑥 − 𝑦 = 𝑑2 b) Chứng minh rằng d nhỏ nhất thì x nhỏ nhất và y nhỏ nhất. Từ đó tìm nghiệm nguyên nhỏ nhất của phương trình trên. HD 𝑦2 = (𝑥 − 𝑦)(6𝑥 + 6𝑦 + 1) 𝑥 = 𝑑𝑚, 𝑦 = 𝑑𝑛 → 𝑥 − 𝑦 = 𝑑(𝑚 − 𝑛), đặt 𝑚 − 𝑛 = 𝑘 → (𝑛, 𝑘) = 1 chứng minh d = k. 𝑑𝑛2 = 𝑘(6𝑑𝑚 + 6𝑑𝑛 + 1)(∗) → 𝑑 ⋮ 𝑘 Mà 6𝑑𝑘𝑚 + 6𝑑2 + 𝑘 chia hết cho d, nên 𝑘 ⋮ 𝑑 b) Giải n theo d, từ (*) có: 𝑛2 = 6(𝑑𝑛 + 𝑑2) + 6𝑑𝑛 + 1 = 6𝑑2 + 12𝑑𝑛 + 1 Pt bậc 2 ẩn n: 𝑛2 − 12𝑑𝑛 − (6𝑑2 + 1) = 0 𝑛 = 6𝑑 + √42𝑑2 + 1 → +) 𝑑 = 1 → 𝑛 = 6 + √43 (𝑙) +) 𝑑 = 2 → 𝑛 = 25; 𝑥 = 54, 𝑦 = 50 2. Delta là số chính phương Bài 141. Tìm nghiệm nguyên của phương trình   2 2 2 ( )x y y x x y    Lời giải 2 2 3( ) 8 .x xy y x y    2 2 3 (3 1) 3 8 0(1)x y x y y     2 2 2 (3 1) 12(3 8 ) 0 27 90 1 0.y y y y y           0 3 0;1;2;3y y   
  16. 16. PT nghiệm nguyên Thầy Hồng Trí Quang 16 Phương trình đã cho tương đương với    3 2 2 2 2 2 2 2 2 3 3 0 2 3 3 0y x y xy x y xy y y x x y x x             - Nếu 0y  thì mọi x đều thỏa mãn - Nếu 0y  thì    2 2 2 2 3 3 0y x x y x x     (*) Xem (*) là một phương trình bậc 2 ẩn y Ta có ∆ 2 ( 1) ( 8)x x x   Phương trình (*) có nghiệm nguyên  ∆ là số chính phương 2 ( 8) , ( 4 )(x 4 k) 16x x k k x k          (**) Do 4 4x k x k     (do k  ); 4x k  và 4x k  là các số chẵn nên từ (**) ta suy ra các hệ phương trình như sau: 4 2 4 4 ; ; 4 8 4 4 x k x k x k x k                 4 4 4 8 ; ; 4 4 4 2 x k x k x k x k                     Lần lượt giải các hệ phương trình này để thu được các nghiệm  ;x k sau đó thay các x tìm được vào (**) để tìm y Tóm lại, phương trình đã cho có các nghiệm sau (9; 6),(9; 21),(8;10),( 1; 1),(k;0)    với k là một số nguyên tùy ý. 3. Viete Bài 142. Cho x, y là các số nguyên sao cho 2 2 6x y A xy    là một số nguyên. Chứng minh rằng A là một lập phương đúng. Lời giải Giả sử , 0x y  . Cố định A chọn cặp ,x y sao cho x y nhỏ nhất và x y . Coi 2 2 6 Ax 0x y y    là phương trình bậc hai đối với x và gọi x’ là nghiệm còn lại. Ta có:
  17. 17. PT nghiệm nguyên Thầy Hồng Trí Quang 17 2 ' , ' 6x x Ay x x y    nên 'x Z và ' 0x  . Do cách chọn các cặp ,x y nên 'x x và 2 2 6x y  . Suy ra  2 2 0;1;2;3;4;5;6x y  Nếu x y thì do A là số nguyên nên 2 6x hay 1x  . Khi đó 8A  là lập phương đúng. Nếu x y thì bằng cách giải trực tiếp phương trình nghiệm nguyên ta suy ra không tồn tại x, y Tự luyện Bài 143. Chuyên tin Ams 2014 Tìm các cặp số nguyên (x; y) thỏa mãn: 2 2 5 2 2 2 4 0x y xy x y      1. Dạng căn thức Bài 144. Tìm nghiệm nguyên dương của phương trình: 2. Dạng phần nguyên Bài 145. Chứng minh rằng với n là số nguyên dương bất kỳ, ta có 1 3 1 2 4 2 n n             Bài 146. Cho p, q là các số nguyên dương, nguyên tố cùng nhau, chứng minh rằng: 2 ( 1) 2 ( 1) ... ... p p q p q q p q q q q p p p                                           Bài 147. Giải phương trình 4 8 3x x    trên tập số tự nhiên. Bài 148. Xác định tất cả các số thực a của phương trình: 2 3 5 a a a a                    . Bài 149. Giải bất phương trình:   1x x x    Bài 150. Giải phương trình:  2 2x x x        . Bài 151. Tìm tất cả các số tự nhiên n sao cho n chia hết cho n    . Bài 152. Giải hệ phương trình       200 190,1 178,8 x y z x y z x y z                        50.x y 
  18. 18. PT nghiệm nguyên Thầy Hồng Trí Quang 18 3. Nhị thức Newton Bài 153. Tìm hai số nguyên dương thỏa mãn phương trình:   20112011 2011 2013 .x y  Bài 154. Tìm tất cả các số nguyên dương n sao cho 2 3n n là số chính phương. Bài 155. Cho p là một số nguyên tố và ,a n là các số nguyên dương. Chứng minh rằng nếu 2 3p p n a  thì 1n  . Bài 156. Chứng minh rằng tích của ba số nguyên liên tiếp không thể là lũy thừa của một số nguyên. Bài 157. Cho P(x) là đa thức với hệ số nguyên. Chứng minh không tồn tại ba số nguyên phân biệt a, b, c sao cho P(a) = b, P(b) = c, P(c) = a. 4. Định lí Fermat Giả sử rằng gcd( , ) 1a p  và cần chứng minh rằng 1 1(mod )p a p  Xét các số nguyên ,2 ,...,( 1)a a p a mà các số dư khi chia cho p phân biệt (nếu không thì, với (modep)ia ja thì ( )p i j a hay là ,p i j dấu “=” xảy ra chỉ nếu i j ). Do đó .(2a)...(p 1)a 1.2.(p 1)(modp)a    Tức là 1 ( 1)! (p 1)!(modp)p a p    Vì gcd( ,( 1)!) 1p p   nên ta suy ra điều phải chứng minh Lưu ý: Định lý này có thể viết gọn dưới dạng: 1 1(mod )p a p  Bài 158. Giải phương trình nghiệm nguyên 𝑥2 + 𝑦2 = 9900 Bài 159. Giải phương trình nghiệm nguyên 𝑥2 + 5 = 𝑦3 Bài 160. a) Tìm tất cả các số nguyên dương n sao cho 7 chia hết cho 2 1n  b) Chứng minh rằng với mỗi số nguyên dương n số 2 1n  không thể chia hết cho 7 Bài 161. Tìm các cặp số nguyên x,y sao cho 2 2 101 14( ) 2018x xy y x y     Bài 162. a) Cho a là một số nguyên dương. Chứng minh rằng bất cứ thừa số nguyên tố nào lớn hơn 2 của 2 1a  đều có dạng 4 1m
  19. 19. PT nghiệm nguyên Thầy Hồng Trí Quang 19 b) Chứng minh rằng có vô hạn số nguyên tố dạng 4 1m 5. Định lí Willson “Với p là số nguyên tố thì ( 1)! 1(mod )p p   ” Chứng minh: Chi tập  1,2,..., 1X p  thành 3 tập A,B,C rời nhau sao cho:    (mod ) ; ;A u u u p B v A v C       w w ;C A B   Khi đó w w ( 1)! w w 1( 1) ( ) 1(mod ) u A u Av B C v B C v B p u v u v p vv p               Vậy ta hoàn tất chứng minh Bài 163. Cho 5n  là số tự nhiên. Chứng minh rằng ( 1)!n n      chia hết cho 1n  Bài 164. Chứng minh rằng nếu p là một số nguyên tố thì  ( 2)! 1p p  nhưng nếu 5p  thì ( 2)! 1p   không phải là một lũy thừa của p

×