SlideShare a Scribd company logo

【ECCV 2016 BNMW】Human Action Recognition without Human

Project page: http://www.hirokatsukataoka.net/research/withouthuman/withouthuman.html The objective of this paper is to evaluate "human action recognition without human". Motion representation is frequently discussed in human action recognition. We have examined several sophisticated options, such as dense trajectories (DT) and the two-stream convolutional neural network (CNN). However, some features from the background could be too strong, as shown in some recent studies on human action recognition. Therefore, we considered whether a background sequence alone can classify human actions in current large-scale action datasets (e.g., UCF101). In this paper, we propose a novel concept for human action analysis that is named "human action recognition without human". An experiment clearly shows the effect of a background sequence for understanding an action label. To the best of our knowledge, this is the first study of human action recognition without human. However, we should not have done that kind of thing. The motion representation from a background sequence is effective to classify videos in a human action database. We demonstrated human action recognition in with and without a human settings on the UCF101 dataset. The results show the setting without a human (47.42%; without human setting) was close to the setting with a human (56.91%; with human setting). We must accept this reality to realize better motion representation.

1 of 15
Download to read offline
Human Action Recognition without Human
He Yun1,2, Soma Shirakabe1,2, Yutaka Satoh1,2, Hirokatsu Kataoka1
1Computer Vision Research Group, AIST, Japan
2Human-Centered Vision Lab., University of Tsukuba, Japan
Motion representation
•  Database: UCF101, HMDB51, ActivityNet
•  Approach: IDT, Two-Stream CNN
–  DBs and approaches have been prepared in the field
Action Database
h"p://www.thumos.info/
The problem setting in action recognition
•  Video-level prediction
–  1 action-label prediction per input video
Tennis	Swing	
Mo6on	Descriptor
Dense Trajectories (DT) [Wang+, CVPR11]
•  Trajectory-based representation
–  A large amount of trajectories
–  Feature description (HOG, HOF, MBH)
–  Codeword vector is generated
Two-Stream CNN [Simonyan+, NIPS14]
•  Spatial and temporal convolution
–  Spatial-stream: From a RGB image
–  Temporal-stream: From a stacked flows
–  Score fusion: Average or SVM

Recommended

【ISVC2015】Evaluation of Vision-based Human Activity Recognition in Dense Traj...
【ISVC2015】Evaluation of Vision-based Human Activity Recognition in Dense Traj...【ISVC2015】Evaluation of Vision-based Human Activity Recognition in Dense Traj...
【ISVC2015】Evaluation of Vision-based Human Activity Recognition in Dense Traj...Hirokatsu Kataoka
 
Extended Co-occurrence HOG with Dense Trajectories for Fine-grained Activity ...
Extended Co-occurrence HOG with Dense Trajectories for Fine-grained Activity ...Extended Co-occurrence HOG with Dense Trajectories for Fine-grained Activity ...
Extended Co-occurrence HOG with Dense Trajectories for Fine-grained Activity ...Hirokatsu Kataoka
 
Synthesizing pseudo 2.5 d content from monocular videos for mixed reality
Synthesizing pseudo 2.5 d content from monocular videos for mixed realitySynthesizing pseudo 2.5 d content from monocular videos for mixed reality
Synthesizing pseudo 2.5 d content from monocular videos for mixed realityNAVER Engineering
 
Visual geometry with deep learning
Visual geometry with deep learningVisual geometry with deep learning
Visual geometry with deep learningNAVER Engineering
 
Cross-domain complementary learning with synthetic data for multi-person part...
Cross-domain complementary learning with synthetic data for multi-person part...Cross-domain complementary learning with synthetic data for multi-person part...
Cross-domain complementary learning with synthetic data for multi-person part...哲东 郑
 
Faster R-CNN: Towards real-time object detection with region proposal network...
Faster R-CNN: Towards real-time object detection with region proposal network...Faster R-CNN: Towards real-time object detection with region proposal network...
Faster R-CNN: Towards real-time object detection with region proposal network...Universitat Politècnica de Catalunya
 
Deep Learningを用いた経路予測の研究動向
Deep Learningを用いた経路予測の研究動向Deep Learningを用いた経路予測の研究動向
Deep Learningを用いた経路予測の研究動向HiroakiMinoura
 

More Related Content

What's hot

CVPR2016を自分なりにまとめてみた
CVPR2016を自分なりにまとめてみたCVPR2016を自分なりにまとめてみた
CVPR2016を自分なりにまとめてみたHiroshi Fukui
 
Learning to Find and Match Interest Points
Learning to Find and Match Interest PointsLearning to Find and Match Interest Points
Learning to Find and Match Interest PointsNAVER Engineering
 
Fast Multi-frame Stereo Scene Flow with Motion Segmentation (CVPR 2017)
Fast Multi-frame Stereo Scene Flow with Motion Segmentation (CVPR 2017)Fast Multi-frame Stereo Scene Flow with Motion Segmentation (CVPR 2017)
Fast Multi-frame Stereo Scene Flow with Motion Segmentation (CVPR 2017)Tatsunori Taniai
 
SLAM Zero to One
SLAM Zero to OneSLAM Zero to One
SLAM Zero to OneGavin Gao
 
行動認識手法の論文・ツール紹介
行動認識手法の論文・ツール紹介行動認識手法の論文・ツール紹介
行動認識手法の論文・ツール紹介Kensho Hara
 
SSII2020TS: Event-Based Camera の基礎と ニューラルネットワークによる信号処理 〜 生き物のように「変化」を捉えるビジョンセ...
SSII2020TS: Event-Based Camera の基礎と ニューラルネットワークによる信号処理 〜 生き物のように「変化」を捉えるビジョンセ...SSII2020TS: Event-Based Camera の基礎と ニューラルネットワークによる信号処理 〜 生き物のように「変化」を捉えるビジョンセ...
SSII2020TS: Event-Based Camera の基礎と ニューラルネットワークによる信号処理 〜 生き物のように「変化」を捉えるビジョンセ...SSII
 
物体検出の歴史(R-CNNからSSD・YOLOまで)
物体検出の歴史(R-CNNからSSD・YOLOまで)物体検出の歴史(R-CNNからSSD・YOLOまで)
物体検出の歴史(R-CNNからSSD・YOLOまで)HironoriKanazawa
 
Real Time Human Posture Detection with Multiple Depth Sensors
Real Time Human Posture Detection with Multiple Depth SensorsReal Time Human Posture Detection with Multiple Depth Sensors
Real Time Human Posture Detection with Multiple Depth SensorsWassim Filali
 
Action Genome: Action As Composition of Spatio Temporal Scene Graphs
Action Genome: Action As Composition of Spatio Temporal Scene GraphsAction Genome: Action As Composition of Spatio Temporal Scene Graphs
Action Genome: Action As Composition of Spatio Temporal Scene GraphsSangmin Woo
 
Learning Disentangled Representation for Robust Person Re-identification
Learning Disentangled Representation for Robust Person Re-identificationLearning Disentangled Representation for Robust Person Re-identification
Learning Disentangled Representation for Robust Person Re-identificationNAVER Engineering
 
【DL輪読会】Unpaired Image Super-Resolution Using Pseudo-Supervision
【DL輪読会】Unpaired Image Super-Resolution Using Pseudo-Supervision【DL輪読会】Unpaired Image Super-Resolution Using Pseudo-Supervision
【DL輪読会】Unpaired Image Super-Resolution Using Pseudo-SupervisionDeep Learning JP
 
Human Action Recognition Using 3D Joint Information and HOOFD Features
Human Action Recognition Using 3D Joint Information and HOOFD FeaturesHuman Action Recognition Using 3D Joint Information and HOOFD Features
Human Action Recognition Using 3D Joint Information and HOOFD FeaturesBarış Üstündağ
 
A Comparison of People Counting Techniques via Video Scene Analysis
A Comparison of People Counting Techniques viaVideo Scene AnalysisA Comparison of People Counting Techniques viaVideo Scene Analysis
A Comparison of People Counting Techniques via Video Scene AnalysisPoo Kuan Hoong
 
【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised LearningまとめDeep Learning JP
 
When Remote Sensing Meets Artificial Intelligence
When Remote Sensing Meets Artificial IntelligenceWhen Remote Sensing Meets Artificial Intelligence
When Remote Sensing Meets Artificial IntelligenceWahyuRahmaniar2
 
Real time pedestrian detection, tracking, and distance estimation
Real time pedestrian detection, tracking, and distance estimationReal time pedestrian detection, tracking, and distance estimation
Real time pedestrian detection, tracking, and distance estimationomid Asudeh
 
Image Translation with GAN
Image Translation with GANImage Translation with GAN
Image Translation with GANJunho Cho
 
【CVPR 2020 メタサーベイ】Video Analysis and Understanding
【CVPR 2020 メタサーベイ】Video Analysis and Understanding【CVPR 2020 メタサーベイ】Video Analysis and Understanding
【CVPR 2020 メタサーベイ】Video Analysis and Understandingcvpaper. challenge
 

What's hot (20)

CVPR2016を自分なりにまとめてみた
CVPR2016を自分なりにまとめてみたCVPR2016を自分なりにまとめてみた
CVPR2016を自分なりにまとめてみた
 
Learning to Find and Match Interest Points
Learning to Find and Match Interest PointsLearning to Find and Match Interest Points
Learning to Find and Match Interest Points
 
Fast Multi-frame Stereo Scene Flow with Motion Segmentation (CVPR 2017)
Fast Multi-frame Stereo Scene Flow with Motion Segmentation (CVPR 2017)Fast Multi-frame Stereo Scene Flow with Motion Segmentation (CVPR 2017)
Fast Multi-frame Stereo Scene Flow with Motion Segmentation (CVPR 2017)
 
SLAM Zero to One
SLAM Zero to OneSLAM Zero to One
SLAM Zero to One
 
行動認識手法の論文・ツール紹介
行動認識手法の論文・ツール紹介行動認識手法の論文・ツール紹介
行動認識手法の論文・ツール紹介
 
SSII2020TS: Event-Based Camera の基礎と ニューラルネットワークによる信号処理 〜 生き物のように「変化」を捉えるビジョンセ...
SSII2020TS: Event-Based Camera の基礎と ニューラルネットワークによる信号処理 〜 生き物のように「変化」を捉えるビジョンセ...SSII2020TS: Event-Based Camera の基礎と ニューラルネットワークによる信号処理 〜 生き物のように「変化」を捉えるビジョンセ...
SSII2020TS: Event-Based Camera の基礎と ニューラルネットワークによる信号処理 〜 生き物のように「変化」を捉えるビジョンセ...
 
物体検出の歴史(R-CNNからSSD・YOLOまで)
物体検出の歴史(R-CNNからSSD・YOLOまで)物体検出の歴史(R-CNNからSSD・YOLOまで)
物体検出の歴史(R-CNNからSSD・YOLOまで)
 
Real Time Human Posture Detection with Multiple Depth Sensors
Real Time Human Posture Detection with Multiple Depth SensorsReal Time Human Posture Detection with Multiple Depth Sensors
Real Time Human Posture Detection with Multiple Depth Sensors
 
Action Genome: Action As Composition of Spatio Temporal Scene Graphs
Action Genome: Action As Composition of Spatio Temporal Scene GraphsAction Genome: Action As Composition of Spatio Temporal Scene Graphs
Action Genome: Action As Composition of Spatio Temporal Scene Graphs
 
Learning Disentangled Representation for Robust Person Re-identification
Learning Disentangled Representation for Robust Person Re-identificationLearning Disentangled Representation for Robust Person Re-identification
Learning Disentangled Representation for Robust Person Re-identification
 
【DL輪読会】Unpaired Image Super-Resolution Using Pseudo-Supervision
【DL輪読会】Unpaired Image Super-Resolution Using Pseudo-Supervision【DL輪読会】Unpaired Image Super-Resolution Using Pseudo-Supervision
【DL輪読会】Unpaired Image Super-Resolution Using Pseudo-Supervision
 
Human Action Recognition Using 3D Joint Information and HOOFD Features
Human Action Recognition Using 3D Joint Information and HOOFD FeaturesHuman Action Recognition Using 3D Joint Information and HOOFD Features
Human Action Recognition Using 3D Joint Information and HOOFD Features
 
A Comparison of People Counting Techniques via Video Scene Analysis
A Comparison of People Counting Techniques viaVideo Scene AnalysisA Comparison of People Counting Techniques viaVideo Scene Analysis
A Comparison of People Counting Techniques via Video Scene Analysis
 
ISM2014
ISM2014ISM2014
ISM2014
 
【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ
 
When Remote Sensing Meets Artificial Intelligence
When Remote Sensing Meets Artificial IntelligenceWhen Remote Sensing Meets Artificial Intelligence
When Remote Sensing Meets Artificial Intelligence
 
Real time pedestrian detection, tracking, and distance estimation
Real time pedestrian detection, tracking, and distance estimationReal time pedestrian detection, tracking, and distance estimation
Real time pedestrian detection, tracking, and distance estimation
 
Image Translation with GAN
Image Translation with GANImage Translation with GAN
Image Translation with GAN
 
【CVPR 2020 メタサーベイ】Video Analysis and Understanding
【CVPR 2020 メタサーベイ】Video Analysis and Understanding【CVPR 2020 メタサーベイ】Video Analysis and Understanding
【CVPR 2020 メタサーベイ】Video Analysis and Understanding
 
MIRU2014 SLAC
MIRU2014 SLACMIRU2014 SLAC
MIRU2014 SLAC
 

Viewers also liked

【論文紹介】Fashion Style in 128 Floats: Joint Ranking and Classification using Wea...
【論文紹介】Fashion Style in 128 Floats: Joint Ranking and Classification using Wea...【論文紹介】Fashion Style in 128 Floats: Joint Ranking and Classification using Wea...
【論文紹介】Fashion Style in 128 Floats: Joint Ranking and Classification using Wea...Hirokatsu Kataoka
 
【チュートリアル】コンピュータビジョンによる動画認識
【チュートリアル】コンピュータビジョンによる動画認識【チュートリアル】コンピュータビジョンによる動画認識
【チュートリアル】コンピュータビジョンによる動画認識Hirokatsu Kataoka
 
【慶應大学講演】なぜ、博士課程に進学したか?
【慶應大学講演】なぜ、博士課程に進学したか?【慶應大学講演】なぜ、博士課程に進学したか?
【慶應大学講演】なぜ、博士課程に進学したか?Hirokatsu Kataoka
 
【BMVC2016】Recognition of Transitional Action for Short-Term Action Prediction...
【BMVC2016】Recognition of Transitional Action for Short-Term Action Prediction...【BMVC2016】Recognition of Transitional Action for Short-Term Action Prediction...
【BMVC2016】Recognition of Transitional Action for Short-Term Action Prediction...Hirokatsu Kataoka
 
Deep Residual Learning (ILSVRC2015 winner)
Deep Residual Learning (ILSVRC2015 winner)Deep Residual Learning (ILSVRC2015 winner)
Deep Residual Learning (ILSVRC2015 winner)Hirokatsu Kataoka
 
“Purikura” culture in Japan and our web application architecture
“Purikura” culturein Japan andour web application architecture“Purikura” culturein Japan andour web application architecture
“Purikura” culture in Japan and our web application architectureKoichi Sakata
 
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...cvpaper. challenge
 
スマホマーケットの概要と、 マーケティングの失敗例と改善 (アナリティクス アソシエーション 特別セミナー)
スマホマーケットの概要と、マーケティングの失敗例と改善 (アナリティクス アソシエーション 特別セミナー)スマホマーケットの概要と、マーケティングの失敗例と改善 (アナリティクス アソシエーション 特別セミナー)
スマホマーケットの概要と、 マーケティングの失敗例と改善 (アナリティクス アソシエーション 特別セミナー)Tokoroten Nakayama
 
【CVPR2016_LAP】Dominant Codewords Selection with Topic Model for Action Recogn...
【CVPR2016_LAP】Dominant Codewords Selection with Topic Model for Action Recogn...【CVPR2016_LAP】Dominant Codewords Selection with Topic Model for Action Recogn...
【CVPR2016_LAP】Dominant Codewords Selection with Topic Model for Action Recogn...Hirokatsu Kataoka
 
FacebookとブログからHPへ誘導し売上UPセミナー:新潟県写真館協会主催
 FacebookとブログからHPへ誘導し売上UPセミナー:新潟県写真館協会主催 FacebookとブログからHPへ誘導し売上UPセミナー:新潟県写真館協会主催
FacebookとブログからHPへ誘導し売上UPセミナー:新潟県写真館協会主催新潟コンサルタント横田秀珠
 
Deep Learning技術の最近の動向とPreferred Networksの取り組み
Deep Learning技術の最近の動向とPreferred Networksの取り組みDeep Learning技術の最近の動向とPreferred Networksの取り組み
Deep Learning技術の最近の動向とPreferred Networksの取り組みKenta Oono
 
TensorFlowによるCNNアーキテクチャ構築
TensorFlowによるCNNアーキテクチャ構築TensorFlowによるCNNアーキテクチャ構築
TensorFlowによるCNNアーキテクチャ構築Hirokatsu Kataoka
 
Attribution d'actions gratuites : nouvelle fiscalité !
Attribution d'actions gratuites : nouvelle fiscalité !Attribution d'actions gratuites : nouvelle fiscalité !
Attribution d'actions gratuites : nouvelle fiscalité !Vie Plus
 

Viewers also liked (20)

ECCV 2016 速報
ECCV 2016 速報ECCV 2016 速報
ECCV 2016 速報
 
【論文紹介】Fashion Style in 128 Floats: Joint Ranking and Classification using Wea...
【論文紹介】Fashion Style in 128 Floats: Joint Ranking and Classification using Wea...【論文紹介】Fashion Style in 128 Floats: Joint Ranking and Classification using Wea...
【論文紹介】Fashion Style in 128 Floats: Joint Ranking and Classification using Wea...
 
【チュートリアル】コンピュータビジョンによる動画認識
【チュートリアル】コンピュータビジョンによる動画認識【チュートリアル】コンピュータビジョンによる動画認識
【チュートリアル】コンピュータビジョンによる動画認識
 
【慶應大学講演】なぜ、博士課程に進学したか?
【慶應大学講演】なぜ、博士課程に進学したか?【慶應大学講演】なぜ、博士課程に進学したか?
【慶應大学講演】なぜ、博士課程に進学したか?
 
【BMVC2016】Recognition of Transitional Action for Short-Term Action Prediction...
【BMVC2016】Recognition of Transitional Action for Short-Term Action Prediction...【BMVC2016】Recognition of Transitional Action for Short-Term Action Prediction...
【BMVC2016】Recognition of Transitional Action for Short-Term Action Prediction...
 
Deep Residual Learning (ILSVRC2015 winner)
Deep Residual Learning (ILSVRC2015 winner)Deep Residual Learning (ILSVRC2015 winner)
Deep Residual Learning (ILSVRC2015 winner)
 
CVPR 2016 速報
CVPR 2016 速報CVPR 2016 速報
CVPR 2016 速報
 
“Purikura” culture in Japan and our web application architecture
“Purikura” culturein Japan andour web application architecture“Purikura” culturein Japan andour web application architecture
“Purikura” culture in Japan and our web application architecture
 
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
 
スマホマーケットの概要と、 マーケティングの失敗例と改善 (アナリティクス アソシエーション 特別セミナー)
スマホマーケットの概要と、マーケティングの失敗例と改善 (アナリティクス アソシエーション 特別セミナー)スマホマーケットの概要と、マーケティングの失敗例と改善 (アナリティクス アソシエーション 特別セミナー)
スマホマーケットの概要と、 マーケティングの失敗例と改善 (アナリティクス アソシエーション 特別セミナー)
 
【CVPR2016_LAP】Dominant Codewords Selection with Topic Model for Action Recogn...
【CVPR2016_LAP】Dominant Codewords Selection with Topic Model for Action Recogn...【CVPR2016_LAP】Dominant Codewords Selection with Topic Model for Action Recogn...
【CVPR2016_LAP】Dominant Codewords Selection with Topic Model for Action Recogn...
 
ILSVRC2015 手法のメモ
ILSVRC2015 手法のメモILSVRC2015 手法のメモ
ILSVRC2015 手法のメモ
 
FacebookとブログからHPへ誘導し売上UPセミナー:新潟県写真館協会主催
 FacebookとブログからHPへ誘導し売上UPセミナー:新潟県写真館協会主催 FacebookとブログからHPへ誘導し売上UPセミナー:新潟県写真館協会主催
FacebookとブログからHPへ誘導し売上UPセミナー:新潟県写真館協会主催
 
CVPR 2016 まとめ v1
CVPR 2016 まとめ v1CVPR 2016 まとめ v1
CVPR 2016 まとめ v1
 
Deep Learning技術の最近の動向とPreferred Networksの取り組み
Deep Learning技術の最近の動向とPreferred Networksの取り組みDeep Learning技術の最近の動向とPreferred Networksの取り組み
Deep Learning技術の最近の動向とPreferred Networksの取り組み
 
TensorFlowによるCNNアーキテクチャ構築
TensorFlowによるCNNアーキテクチャ構築TensorFlowによるCNNアーキテクチャ構築
TensorFlowによるCNNアーキテクチャ構築
 
3 Benefits Of Hiring Marketing Contractors
3 Benefits Of Hiring Marketing Contractors3 Benefits Of Hiring Marketing Contractors
3 Benefits Of Hiring Marketing Contractors
 
Webinar Authority
Webinar AuthorityWebinar Authority
Webinar Authority
 
Dani sape96
Dani sape96Dani sape96
Dani sape96
 
Attribution d'actions gratuites : nouvelle fiscalité !
Attribution d'actions gratuites : nouvelle fiscalité !Attribution d'actions gratuites : nouvelle fiscalité !
Attribution d'actions gratuites : nouvelle fiscalité !
 

Similar to 【ECCV 2016 BNMW】Human Action Recognition without Human

Reading group - Week 2 - Trajectory Pooled Deep-Convolutional Descriptors (TDD)
Reading group - Week 2 - Trajectory Pooled Deep-Convolutional Descriptors (TDD)Reading group - Week 2 - Trajectory Pooled Deep-Convolutional Descriptors (TDD)
Reading group - Week 2 - Trajectory Pooled Deep-Convolutional Descriptors (TDD)Saimunur Rahman
 
Human action recognition with kinect using a joint motion descriptor
Human action recognition with kinect using a joint motion descriptorHuman action recognition with kinect using a joint motion descriptor
Human action recognition with kinect using a joint motion descriptorSoma Boubou
 
Towards Accurate Multi-person Pose Estimation in the Wild (My summery)
Towards Accurate Multi-person Pose Estimation in the Wild (My summery)Towards Accurate Multi-person Pose Estimation in the Wild (My summery)
Towards Accurate Multi-person Pose Estimation in the Wild (My summery)Abdulrahman Kerim
 
Visual Object Tracking: review
Visual Object Tracking: reviewVisual Object Tracking: review
Visual Object Tracking: reviewDmytro Mishkin
 
Sparse representation based human action recognition using an action region-a...
Sparse representation based human action recognition using an action region-a...Sparse representation based human action recognition using an action region-a...
Sparse representation based human action recognition using an action region-a...Wesley De Neve
 
Action_recognition-topic.pptx
Action_recognition-topic.pptxAction_recognition-topic.pptx
Action_recognition-topic.pptxcomputerscience98
 
From Bio-Intelligence BI to Artificial-Intelligence AI in Engineering and STE...
From Bio-Intelligence BI to Artificial-Intelligence AI in Engineering and STE...From Bio-Intelligence BI to Artificial-Intelligence AI in Engineering and STE...
From Bio-Intelligence BI to Artificial-Intelligence AI in Engineering and STE...University of Waterloo, Canada
 
From Bio-Intelligence BI to Artificial-Intelligence AI in Engineering and STE...
From Bio-Intelligence BI to Artificial-Intelligence AI in Engineering and STE...From Bio-Intelligence BI to Artificial-Intelligence AI in Engineering and STE...
From Bio-Intelligence BI to Artificial-Intelligence AI in Engineering and STE...Dr. Fayçal Saffih
 
ROBUST STATISTICAL APPROACH FOR EXTRACTION OF MOVING HUMAN SILHOUETTES FROM V...
ROBUST STATISTICAL APPROACH FOR EXTRACTION OF MOVING HUMAN SILHOUETTES FROM V...ROBUST STATISTICAL APPROACH FOR EXTRACTION OF MOVING HUMAN SILHOUETTES FROM V...
ROBUST STATISTICAL APPROACH FOR EXTRACTION OF MOVING HUMAN SILHOUETTES FROM V...ijitjournal
 
Classic video datasets and algorithms.pptx
Classic video datasets and algorithms.pptxClassic video datasets and algorithms.pptx
Classic video datasets and algorithms.pptxAzhanQazi
 
20141003.journal club
20141003.journal club20141003.journal club
20141003.journal clubHayaru SHOUNO
 
Intro to Neural Networks
Intro to Neural NetworksIntro to Neural Networks
Intro to Neural NetworksDean Wyatte
 
An analysis of_machine_and_human_analytics_in_classification
An analysis of_machine_and_human_analytics_in_classificationAn analysis of_machine_and_human_analytics_in_classification
An analysis of_machine_and_human_analytics_in_classificationSubhashis Hazarika
 
ISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing code
ISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing codeISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing code
ISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing codeKengo Sato
 
Poster RITS motion_correction
Poster RITS motion_correctionPoster RITS motion_correction
Poster RITS motion_correctionRania BERRADA
 
A Movement Recognition Method using LBP
A Movement Recognition Method using LBPA Movement Recognition Method using LBP
A Movement Recognition Method using LBPZihui Li
 

Similar to 【ECCV 2016 BNMW】Human Action Recognition without Human (20)

Reading group - Week 2 - Trajectory Pooled Deep-Convolutional Descriptors (TDD)
Reading group - Week 2 - Trajectory Pooled Deep-Convolutional Descriptors (TDD)Reading group - Week 2 - Trajectory Pooled Deep-Convolutional Descriptors (TDD)
Reading group - Week 2 - Trajectory Pooled Deep-Convolutional Descriptors (TDD)
 
Human action recognition with kinect using a joint motion descriptor
Human action recognition with kinect using a joint motion descriptorHuman action recognition with kinect using a joint motion descriptor
Human action recognition with kinect using a joint motion descriptor
 
Towards Accurate Multi-person Pose Estimation in the Wild (My summery)
Towards Accurate Multi-person Pose Estimation in the Wild (My summery)Towards Accurate Multi-person Pose Estimation in the Wild (My summery)
Towards Accurate Multi-person Pose Estimation in the Wild (My summery)
 
Visual Object Tracking: review
Visual Object Tracking: reviewVisual Object Tracking: review
Visual Object Tracking: review
 
Sparse representation based human action recognition using an action region-a...
Sparse representation based human action recognition using an action region-a...Sparse representation based human action recognition using an action region-a...
Sparse representation based human action recognition using an action region-a...
 
Action_recognition-topic.pptx
Action_recognition-topic.pptxAction_recognition-topic.pptx
Action_recognition-topic.pptx
 
Human Action Recognition
Human Action RecognitionHuman Action Recognition
Human Action Recognition
 
From Bio-Intelligence BI to Artificial-Intelligence AI in Engineering and STE...
From Bio-Intelligence BI to Artificial-Intelligence AI in Engineering and STE...From Bio-Intelligence BI to Artificial-Intelligence AI in Engineering and STE...
From Bio-Intelligence BI to Artificial-Intelligence AI in Engineering and STE...
 
From Bio-Intelligence BI to Artificial-Intelligence AI in Engineering and STE...
From Bio-Intelligence BI to Artificial-Intelligence AI in Engineering and STE...From Bio-Intelligence BI to Artificial-Intelligence AI in Engineering and STE...
From Bio-Intelligence BI to Artificial-Intelligence AI in Engineering and STE...
 
ROBUST STATISTICAL APPROACH FOR EXTRACTION OF MOVING HUMAN SILHOUETTES FROM V...
ROBUST STATISTICAL APPROACH FOR EXTRACTION OF MOVING HUMAN SILHOUETTES FROM V...ROBUST STATISTICAL APPROACH FOR EXTRACTION OF MOVING HUMAN SILHOUETTES FROM V...
ROBUST STATISTICAL APPROACH FOR EXTRACTION OF MOVING HUMAN SILHOUETTES FROM V...
 
02-07-20_Anees.pptx
02-07-20_Anees.pptx02-07-20_Anees.pptx
02-07-20_Anees.pptx
 
med_poster_spie
med_poster_spiemed_poster_spie
med_poster_spie
 
Classic video datasets and algorithms.pptx
Classic video datasets and algorithms.pptxClassic video datasets and algorithms.pptx
Classic video datasets and algorithms.pptx
 
20141003.journal club
20141003.journal club20141003.journal club
20141003.journal club
 
Intro to Neural Networks
Intro to Neural NetworksIntro to Neural Networks
Intro to Neural Networks
 
An analysis of_machine_and_human_analytics_in_classification
An analysis of_machine_and_human_analytics_in_classificationAn analysis of_machine_and_human_analytics_in_classification
An analysis of_machine_and_human_analytics_in_classification
 
ISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing code
ISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing codeISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing code
ISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing code
 
Poster RITS motion_correction
Poster RITS motion_correctionPoster RITS motion_correction
Poster RITS motion_correction
 
A Movement Recognition Method using LBP
A Movement Recognition Method using LBPA Movement Recognition Method using LBP
A Movement Recognition Method using LBP
 
Introduction to image processing
Introduction to image processingIntroduction to image processing
Introduction to image processing
 

More from Hirokatsu Kataoka

【チュートリアル】コンピュータビジョンによる動画認識 v2
【チュートリアル】コンピュータビジョンによる動画認識 v2【チュートリアル】コンピュータビジョンによる動画認識 v2
【チュートリアル】コンピュータビジョンによる動画認識 v2Hirokatsu Kataoka
 
【ITSC2015】Fine-grained Walking Activity Recognition via Driving Recorder Dataset
【ITSC2015】Fine-grained Walking Activity Recognition via Driving Recorder Dataset【ITSC2015】Fine-grained Walking Activity Recognition via Driving Recorder Dataset
【ITSC2015】Fine-grained Walking Activity Recognition via Driving Recorder DatasetHirokatsu Kataoka
 
【SSII2015】人を観る技術の先端的研究
【SSII2015】人を観る技術の先端的研究【SSII2015】人を観る技術の先端的研究
【SSII2015】人を観る技術の先端的研究Hirokatsu Kataoka
 
PythonによるCVアルゴリズム実装
PythonによるCVアルゴリズム実装PythonによるCVアルゴリズム実装
PythonによるCVアルゴリズム実装Hirokatsu Kataoka
 
CV分野におけるサーベイ方法
CV分野におけるサーベイ方法CV分野におけるサーベイ方法
CV分野におけるサーベイ方法Hirokatsu Kataoka
 
【チュートリアル】動的な人物・物体認識技術 -Dense Trajectories-
【チュートリアル】動的な人物・物体認識技術 -Dense Trajectories-【チュートリアル】動的な人物・物体認識技術 -Dense Trajectories-
【チュートリアル】動的な人物・物体認識技術 -Dense Trajectories-Hirokatsu Kataoka
 

More from Hirokatsu Kataoka (6)

【チュートリアル】コンピュータビジョンによる動画認識 v2
【チュートリアル】コンピュータビジョンによる動画認識 v2【チュートリアル】コンピュータビジョンによる動画認識 v2
【チュートリアル】コンピュータビジョンによる動画認識 v2
 
【ITSC2015】Fine-grained Walking Activity Recognition via Driving Recorder Dataset
【ITSC2015】Fine-grained Walking Activity Recognition via Driving Recorder Dataset【ITSC2015】Fine-grained Walking Activity Recognition via Driving Recorder Dataset
【ITSC2015】Fine-grained Walking Activity Recognition via Driving Recorder Dataset
 
【SSII2015】人を観る技術の先端的研究
【SSII2015】人を観る技術の先端的研究【SSII2015】人を観る技術の先端的研究
【SSII2015】人を観る技術の先端的研究
 
PythonによるCVアルゴリズム実装
PythonによるCVアルゴリズム実装PythonによるCVアルゴリズム実装
PythonによるCVアルゴリズム実装
 
CV分野におけるサーベイ方法
CV分野におけるサーベイ方法CV分野におけるサーベイ方法
CV分野におけるサーベイ方法
 
【チュートリアル】動的な人物・物体認識技術 -Dense Trajectories-
【チュートリアル】動的な人物・物体認識技術 -Dense Trajectories-【チュートリアル】動的な人物・物体認識技術 -Dense Trajectories-
【チュートリアル】動的な人物・物体認識技術 -Dense Trajectories-
 

Recently uploaded

Hypertension in Children and Adolescents
Hypertension in Children and AdolescentsHypertension in Children and Adolescents
Hypertension in Children and AdolescentsTristanBabaylan1
 
Construction of Magic Squares by Swapping Rows and Columns.pdf
Construction of Magic Squares by Swapping Rows and Columns.pdfConstruction of Magic Squares by Swapping Rows and Columns.pdf
Construction of Magic Squares by Swapping Rows and Columns.pdfLossian Barbosa Bacelar Miranda
 
FINAL Shehnaz and Thane Interview PowerPoint ;-).pdf
FINAL Shehnaz and Thane Interview PowerPoint ;-).pdfFINAL Shehnaz and Thane Interview PowerPoint ;-).pdf
FINAL Shehnaz and Thane Interview PowerPoint ;-).pdfThane Heins
 
Introduction to the research of stem cells
Introduction to the research of stem cellsIntroduction to the research of stem cells
Introduction to the research of stem cellsAlaaOraby6
 
Open Access Publishing in Astrophysics and the Open Journal of Astrophysics
Open Access Publishing in Astrophysics and the Open Journal of AstrophysicsOpen Access Publishing in Astrophysics and the Open Journal of Astrophysics
Open Access Publishing in Astrophysics and the Open Journal of AstrophysicsPeter Coles
 
From Leaf to Lab: Uncovering the Molecular Mysteries of Cannabis
From Leaf to Lab: Uncovering the Molecular Mysteries of CannabisFrom Leaf to Lab: Uncovering the Molecular Mysteries of Cannabis
From Leaf to Lab: Uncovering the Molecular Mysteries of CannabisMarkus Roggen
 
Elbow joint - Anatomy of the Elbow joint
Elbow joint - Anatomy of the Elbow jointElbow joint - Anatomy of the Elbow joint
Elbow joint - Anatomy of the Elbow jointTELISHA2
 
PROSTHETIC FEET description and its types
PROSTHETIC FEET description and its typesPROSTHETIC FEET description and its types
PROSTHETIC FEET description and its typeseshasmalik27
 
green chemistry, clean sustainable environment.ppt
green chemistry, clean sustainable environment.pptgreen chemistry, clean sustainable environment.ppt
green chemistry, clean sustainable environment.pptRashmiSanghi1
 
Earth and Planetary Science | Volume 01 | Issue 01 | April 2022
Earth and Planetary Science | Volume 01 | Issue 01 | April 2022Earth and Planetary Science | Volume 01 | Issue 01 | April 2022
Earth and Planetary Science | Volume 01 | Issue 01 | April 2022Nan Yang Academy of Sciences
 
Open Access Publishing and the Open Journal of Astrophysics
Open Access Publishing and the Open Journal of AstrophysicsOpen Access Publishing and the Open Journal of Astrophysics
Open Access Publishing and the Open Journal of AstrophysicsPeter Coles
 
LIGHT Community Medicine LIGHT IS A SOURCE OF ENERGY THERE ARE TWO TYPE OF S...
LIGHT  Community Medicine LIGHT IS A SOURCE OF ENERGY THERE ARE TWO TYPE OF S...LIGHT  Community Medicine LIGHT IS A SOURCE OF ENERGY THERE ARE TWO TYPE OF S...
LIGHT Community Medicine LIGHT IS A SOURCE OF ENERGY THERE ARE TWO TYPE OF S...Abhinav S
 
The ExoGRAVITY project - observations of exoplanets from the ground with opti...
The ExoGRAVITY project - observations of exoplanets from the ground with opti...The ExoGRAVITY project - observations of exoplanets from the ground with opti...
The ExoGRAVITY project - observations of exoplanets from the ground with opti...Advanced-Concepts-Team
 
Anti-Obesity Activity of Anthocyanins and Corresponding Introduction in Dieta...
Anti-Obesity Activity of Anthocyanins and Corresponding Introduction in Dieta...Anti-Obesity Activity of Anthocyanins and Corresponding Introduction in Dieta...
Anti-Obesity Activity of Anthocyanins and Corresponding Introduction in Dieta...AmalDhivaharS
 
2024 Insilicogen Company English Brochure
2024 Insilicogen Company English Brochure2024 Insilicogen Company English Brochure
2024 Insilicogen Company English BrochureInsilico Gen
 
ROLES OF MICROBES IN BIOCONTROL BY ANKIT CHOUDHARY.ppsx
ROLES OF MICROBES IN BIOCONTROL BY ANKIT CHOUDHARY.ppsxROLES OF MICROBES IN BIOCONTROL BY ANKIT CHOUDHARY.ppsx
ROLES OF MICROBES IN BIOCONTROL BY ANKIT CHOUDHARY.ppsxAnkitChoudhary955647
 
Volatile Oils-Introduction for pharmacy students and graduates
Volatile Oils-Introduction for pharmacy students and graduatesVolatile Oils-Introduction for pharmacy students and graduates
Volatile Oils-Introduction for pharmacy students and graduatesAhmed Metwaly
 
dkNET Webinar: An Encyclopedia of the Adipose Tissue Secretome to Identify Me...
dkNET Webinar: An Encyclopedia of the Adipose Tissue Secretome to Identify Me...dkNET Webinar: An Encyclopedia of the Adipose Tissue Secretome to Identify Me...
dkNET Webinar: An Encyclopedia of the Adipose Tissue Secretome to Identify Me...dkNET
 
Study of X - Ray Spectra and its types
Study  of X  - Ray Spectra and its typesStudy  of X  - Ray Spectra and its types
Study of X - Ray Spectra and its typestanishashukla147
 
Quality safety and legislations of cosmetics.pptx
Quality safety and legislations of cosmetics.pptxQuality safety and legislations of cosmetics.pptx
Quality safety and legislations of cosmetics.pptxDeviSky1
 

Recently uploaded (20)

Hypertension in Children and Adolescents
Hypertension in Children and AdolescentsHypertension in Children and Adolescents
Hypertension in Children and Adolescents
 
Construction of Magic Squares by Swapping Rows and Columns.pdf
Construction of Magic Squares by Swapping Rows and Columns.pdfConstruction of Magic Squares by Swapping Rows and Columns.pdf
Construction of Magic Squares by Swapping Rows and Columns.pdf
 
FINAL Shehnaz and Thane Interview PowerPoint ;-).pdf
FINAL Shehnaz and Thane Interview PowerPoint ;-).pdfFINAL Shehnaz and Thane Interview PowerPoint ;-).pdf
FINAL Shehnaz and Thane Interview PowerPoint ;-).pdf
 
Introduction to the research of stem cells
Introduction to the research of stem cellsIntroduction to the research of stem cells
Introduction to the research of stem cells
 
Open Access Publishing in Astrophysics and the Open Journal of Astrophysics
Open Access Publishing in Astrophysics and the Open Journal of AstrophysicsOpen Access Publishing in Astrophysics and the Open Journal of Astrophysics
Open Access Publishing in Astrophysics and the Open Journal of Astrophysics
 
From Leaf to Lab: Uncovering the Molecular Mysteries of Cannabis
From Leaf to Lab: Uncovering the Molecular Mysteries of CannabisFrom Leaf to Lab: Uncovering the Molecular Mysteries of Cannabis
From Leaf to Lab: Uncovering the Molecular Mysteries of Cannabis
 
Elbow joint - Anatomy of the Elbow joint
Elbow joint - Anatomy of the Elbow jointElbow joint - Anatomy of the Elbow joint
Elbow joint - Anatomy of the Elbow joint
 
PROSTHETIC FEET description and its types
PROSTHETIC FEET description and its typesPROSTHETIC FEET description and its types
PROSTHETIC FEET description and its types
 
green chemistry, clean sustainable environment.ppt
green chemistry, clean sustainable environment.pptgreen chemistry, clean sustainable environment.ppt
green chemistry, clean sustainable environment.ppt
 
Earth and Planetary Science | Volume 01 | Issue 01 | April 2022
Earth and Planetary Science | Volume 01 | Issue 01 | April 2022Earth and Planetary Science | Volume 01 | Issue 01 | April 2022
Earth and Planetary Science | Volume 01 | Issue 01 | April 2022
 
Open Access Publishing and the Open Journal of Astrophysics
Open Access Publishing and the Open Journal of AstrophysicsOpen Access Publishing and the Open Journal of Astrophysics
Open Access Publishing and the Open Journal of Astrophysics
 
LIGHT Community Medicine LIGHT IS A SOURCE OF ENERGY THERE ARE TWO TYPE OF S...
LIGHT  Community Medicine LIGHT IS A SOURCE OF ENERGY THERE ARE TWO TYPE OF S...LIGHT  Community Medicine LIGHT IS A SOURCE OF ENERGY THERE ARE TWO TYPE OF S...
LIGHT Community Medicine LIGHT IS A SOURCE OF ENERGY THERE ARE TWO TYPE OF S...
 
The ExoGRAVITY project - observations of exoplanets from the ground with opti...
The ExoGRAVITY project - observations of exoplanets from the ground with opti...The ExoGRAVITY project - observations of exoplanets from the ground with opti...
The ExoGRAVITY project - observations of exoplanets from the ground with opti...
 
Anti-Obesity Activity of Anthocyanins and Corresponding Introduction in Dieta...
Anti-Obesity Activity of Anthocyanins and Corresponding Introduction in Dieta...Anti-Obesity Activity of Anthocyanins and Corresponding Introduction in Dieta...
Anti-Obesity Activity of Anthocyanins and Corresponding Introduction in Dieta...
 
2024 Insilicogen Company English Brochure
2024 Insilicogen Company English Brochure2024 Insilicogen Company English Brochure
2024 Insilicogen Company English Brochure
 
ROLES OF MICROBES IN BIOCONTROL BY ANKIT CHOUDHARY.ppsx
ROLES OF MICROBES IN BIOCONTROL BY ANKIT CHOUDHARY.ppsxROLES OF MICROBES IN BIOCONTROL BY ANKIT CHOUDHARY.ppsx
ROLES OF MICROBES IN BIOCONTROL BY ANKIT CHOUDHARY.ppsx
 
Volatile Oils-Introduction for pharmacy students and graduates
Volatile Oils-Introduction for pharmacy students and graduatesVolatile Oils-Introduction for pharmacy students and graduates
Volatile Oils-Introduction for pharmacy students and graduates
 
dkNET Webinar: An Encyclopedia of the Adipose Tissue Secretome to Identify Me...
dkNET Webinar: An Encyclopedia of the Adipose Tissue Secretome to Identify Me...dkNET Webinar: An Encyclopedia of the Adipose Tissue Secretome to Identify Me...
dkNET Webinar: An Encyclopedia of the Adipose Tissue Secretome to Identify Me...
 
Study of X - Ray Spectra and its types
Study  of X  - Ray Spectra and its typesStudy  of X  - Ray Spectra and its types
Study of X - Ray Spectra and its types
 
Quality safety and legislations of cosmetics.pptx
Quality safety and legislations of cosmetics.pptxQuality safety and legislations of cosmetics.pptx
Quality safety and legislations of cosmetics.pptx
 

【ECCV 2016 BNMW】Human Action Recognition without Human

  • 1. Human Action Recognition without Human He Yun1,2, Soma Shirakabe1,2, Yutaka Satoh1,2, Hirokatsu Kataoka1 1Computer Vision Research Group, AIST, Japan 2Human-Centered Vision Lab., University of Tsukuba, Japan
  • 2. Motion representation •  Database: UCF101, HMDB51, ActivityNet •  Approach: IDT, Two-Stream CNN –  DBs and approaches have been prepared in the field
  • 4. The problem setting in action recognition •  Video-level prediction –  1 action-label prediction per input video Tennis Swing Mo6on Descriptor
  • 5. Dense Trajectories (DT) [Wang+, CVPR11] •  Trajectory-based representation –  A large amount of trajectories –  Feature description (HOG, HOF, MBH) –  Codeword vector is generated
  • 6. Two-Stream CNN [Simonyan+, NIPS14] •  Spatial and temporal convolution –  Spatial-stream: From a RGB image –  Temporal-stream: From a stacked flows –  Score fusion: Average or SVM
  • 7. Is background enough to classify actions? •  RGB input is too strong! –  The two-stream CNN[Simonyan+, NIPS14] reported spatial-stream can understand an action more than expected •  72.4% with spatial-stream (RGB) @UCF101 •  “Human Action Recognition without Human”
  • 8. Without Human? •  Human action recognition can be done just by motion of the background? Tennis Swing Mo6on Descriptor Tennis Swing? Mo6on Descriptor
  • 9. Detailed setting of w/ and w/o Human •  With and without human setting –  Without human setting: center-blind image with UCF101 –  With human setting: inverse of the without human setting I (x, y) f (x, y) * I’ (x, y) 1/2 1/4 1/4 1/2 1/4 1/4 I (x, y) f (x, y) * I’ (x, y) 1/2 1/4 1/4 1/2 1/4 1/4 ー ー Without Human SeIng With Human SeIng
  • 10. Framework –  Baseline: Very deep two-stream CNN [Wang+, arXiv15] –  Two different scenarios: without human and with human
  • 11. Exploration experiment •  @UCF101 –  UCF101 pre-trained model with very deep two-stream CNN –  With/Without Human Setting
  • 13. Visual results (Without Human Setting)
  • 14. Without Human •  The concept of ”Human Action Recognition without Human” –  The accuracies are very close •  With human is +9.49% better than without human –  The current motion representation heavily rely on the backgrounds
  • 15. Future work •  This is a suggestive reality –  We must accept this reality to realize better motion representation –  Pure motion representation is an urgent work! •  More sophisticated approach •  Human only motion