Funções trigonométricas

1,592 views

Published on

Published in: Education
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,592
On SlideShare
0
From Embeds
0
Number of Embeds
871
Actions
Shares
0
Downloads
22
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Funções trigonométricas

  1. 1. Funções TrigonométricasFunções Trigonométricas Casos GeraisCasos Gerais
  2. 2. As funções do tipo trigonométricasAs funções do tipo trigonométricas são escritas na formasão escritas na forma ( ) . ( )f x a b trig cx d= + + a, b, c e d são constantes, com b e c diferentes de zero. trig é uma das funções estudadas
  3. 3. ExemplosExemplos ( ) 3.cos , 0, 3, 1 0 ( ) 2 5. 2 , 2, 5, 2 3 3 f x x temos a b c e d f x tg x temos a b c e d π π = = = = =   = + − = = = = − ÷  
  4. 4. GráficosGráficos Os valores deOs valores de aa ee bb alteram os valores de y.alteram os valores de y.  O valor deO valor de aa faz com que o gráfico “suba”,faz com que o gráfico “suba”, para a>0, e “desça”, para a<0, |para a>0, e “desça”, para a<0, |a|a| unidadesunidades
  5. 5. Exemplo:Exemplo: f(x)=2+sen(x)f(x)=2+sen(x)
  6. 6.  O valor deO valor de b “esmaga” ou “estica” ab “esmaga” ou “estica” a função nafunção na verticalvertical  Se b>0, esticaSe b>0, estica  Se 0<b<1, esmagaSe 0<b<1, esmaga  Se b<0, fica simétrico em relação ao eixoSe b<0, fica simétrico em relação ao eixo x, ou seja, troca de posição e estica.x, ou seja, troca de posição e estica.
  7. 7. Exemplo:Exemplo: f(x)= 3.senx,f(x)= 3.senx, b maior que zero.b maior que zero.
  8. 8. Exemplo:Exemplo: f(x)= (1/3).senx,f(x)= (1/3).senx, 0<b<1.0<b<1.
  9. 9. Exemplo:Exemplo: f(x)= -3.senx, b<0.f(x)= -3.senx, b<0.
  10. 10. Os valores deOs valores de cc ee dd alteram os valores de x.alteram os valores de x.  A constanteA constante cc altera o período da função, oualtera o período da função, ou seja, “estica” ou “esmaga” a função naseja, “estica” ou “esmaga” a função na horizontalhorizontal..  C>0, esmaga a funçãoC>0, esmaga a função  0<c<1, estica0<c<1, estica  C<0, simétrica em relação ao eixo do xC<0, simétrica em relação ao eixo do x
  11. 11. f(x)=senxf(x)=senx
  12. 12. f(x)=sen(2x)f(x)=sen(2x)
  13. 13. f(x)=sen(1/2x)f(x)=sen(1/2x)
  14. 14. f(x)=sen(-1/2x)f(x)=sen(-1/2x)
  15. 15. Para calcular o período de uma função qualquerPara calcular o período de uma função qualquer basta usarbasta usar Período=Período= ( ) | | per trigo c
  16. 16. ExemploExemplo  Calcule o período das funçõesCalcule o período das funções ( ) 1 2 3 f x tg x π  = + − ÷   ( ) | | 2 per tg p c π = = ( ) 3cos 2 x f x = (cos) 2 4 1| | 2 per p c π π= = =
  17. 17.  A constanteA constante d faz com que o gráfico anded faz com que o gráfico ande |d/c| para:|d/c| para:  Direita, se d<0Direita, se d<0  Esquerda, se d>0Esquerda, se d>0
  18. 18. ExercíciosExercícios (UFRGS) Se(UFRGS) Se f(x)=a+b.senxf(x)=a+b.senx tem comotem como gráficográfico então, qual o valor de a e b?então, qual o valor de a e b?
  19. 19. Observando o gráfico da função seno naObservando o gráfico da função seno na origem, ele vale 0.origem, ele vale 0. Já o gráfico da questão, ele começa no 1.Já o gráfico da questão, ele começa no 1. É como se ele tivesse subido 1 unidade.É como se ele tivesse subido 1 unidade. Logo, a=1Logo, a=1
  20. 20. A primeira concavidade da função seno éA primeira concavidade da função seno é voltada para baixo. Já no gráfico, ela évoltada para baixo. Já no gráfico, ela é voltada para cima, ou seja, houve umavoltada para cima, ou seja, houve uma translação em relação ao eixo do x.translação em relação ao eixo do x. Quando isso acontece é porque o b éQuando isso acontece é porque o b é negativo.negativo. Agora, qual o valor de b?Agora, qual o valor de b?
  21. 21. Analisando a função seno novamente, aAnalisando a função seno novamente, a distância do começo do gráfico (x=0) até odistância do começo do gráfico (x=0) até o valor máximo e mínimo é 1.valor máximo e mínimo é 1. O que é lógico porqueO que é lógico porque f(x)=senx=1.senxf(x)=senx=1.senx
  22. 22. Já no gráfico da questão, a distância doJá no gráfico da questão, a distância do início até o valor máximo e mínimo são 2início até o valor máximo e mínimo são 2 unidades.unidades. Logo, b= -2Logo, b= -2
  23. 23. (Faap - SP) Considerando x entre 0° e 360°, o(Faap - SP) Considerando x entre 0° e 360°, o gráfico a seguir corresponde a:gráfico a seguir corresponde a: a)a) y= sen(x+1)y= sen(x+1) b)b) y= 1+sen xy= 1+sen x c)c) y= sen x + cos xy= sen x + cos x e) y= 1-cos xe) y= 1-cos x 2 2 cosy sen x x= +
  24. 24. A dúvida é: a função é seno ou cosseno?A dúvida é: a função é seno ou cosseno? A única alternativa que traz cosseno oA única alternativa que traz cosseno o valor de b vale -1 e a=1. O que não évalor de b vale -1 e a=1. O que não é verdade.verdade. Sabemos pelas alternativas que a funçãoSabemos pelas alternativas que a função é a seno.é a seno.
  25. 25. O período não mudou, logo c=0.O período não mudou, logo c=0. A distância do começo do gráfico até seusA distância do começo do gráfico até seus pontos de máximo e mínimo é 1, logopontos de máximo e mínimo é 1, logo a=1.a=1. Em relação ao eixo do x o gráfico do senoEm relação ao eixo do x o gráfico do seno não andou, logo d=0.não andou, logo d=0. Assim,Assim, f(x)=1+sen x.f(x)=1+sen x. Alternativa: bAlternativa: b

×