Advertisement

Graphdatabases

NoSQL Freelancer & visiting lecturer at Henning Rauch NoSQL Consulting
Jun. 25, 2012
Advertisement

More Related Content

Advertisement

Graphdatabases

  1. GRAPH DATABASES Henning Rauch 1
  2. AGENDA • Overview • Neo4J • InfiniteGraph • Fallen-8 2
  3. OVERVIEW Why it makes sense to know about graph databases „Graph databases will come into vogue. One key gap in the Hadoop ecosystem is for graph databases, which support rich mining and visualization of relationships, influence, and behavioral propensities. The market for graph databases will boom in 2012 as companies everywhere adopt them for social media analytics, marketing campaign optimization, and customer experience fine-tuning. We will see VCs put big money behind graph database and analytics startups. Many big data platform and tool vendors will acquire the startups to supplement their expanding Hadoop, NoSQL, and enterprise data warehousing (EDW) portfolios. Social graph analysis, although not a brand-new field, will become one of the most prestigious specialties in the data science arena, focusing on high-powered drilldown into polystructured behavioral data sets.“ Source: http://blogs.forrester.com/james_kobielus/11-12-19-the_year_ahead_in_big_data_big_cool_new_stuff_looms_large 3
  4. OVERVIEW Example of a real-world graph - facebook Source: http://www.facebook.com/press/info.php?statistics 4
  5. OVERVIEW Example of a real-world graph - NYT „Cascade“ Source: http://nytlabs.com/projects/cascade.html 5
  6. OVERVIEW Example of a real-world graph - phone bill 6
  7. OVERVIEW Delimitation to RDBMS - property graph RDBMS GraphDB 7
  8. OVERVIEW Delimitation to RDBMS - property graph RDBMS GraphDB Person Id Name 0 Henning Rauch 1 René Peinl 2 Foo Bar 3 Bruce Schneier 4 Linus Torwalds 7
  9. OVERVIEW Delimitation to RDBMS - property graph RDBMS GraphDB Person 2 Id Name 3 0 Henning Rauch 1 René Peinl 2 Foo Bar 3 Bruce Schneier 4 4 Linus Torwalds 1 0 7
  10. OVERVIEW Delimitation to RDBMS - property graph RDBMS GraphDB Person Knows_rel 2 Id Name Id_1 Id_2 3 0 Henning Rauch 1 0 1 René Peinl 1 2 2 Foo Bar 1 3 3 Bruce Schneier 1 4 4 4 Linus Torwalds 0 1 1 0 2 0 3 0 4 3 4 4 3 0 7
  11. OVERVIEW Delimitation to RDBMS - property graph RDBMS GraphDB Person Knows_rel 2 Id Name Id_1 Id_2 3 0 Henning Rauch 1 0 1 René Peinl 1 2 2 Foo Bar 1 3 3 Bruce Schneier 1 4 4 4 Linus Torwalds 0 1 1 0 2 0 3 0 4 3 4 4 3 0 7
  12. OVERVIEW Delimitation to RDBMS - property graph RDBMS GraphDB Person Knows_rel 2 Id Name Id_1 Id_2 3 0 Henning Rauch 1 0 1 René Peinl 1 2 2 Foo Bar 1 3 3 Bruce Schneier 1 4 4 4 Linus Torwalds 0 1 1 0 2 0 3 0 4 3 4 4 3 0 Tag Id Name 0 .NET 1 Java 2 PKI 3 NoSQL 7
  13. OVERVIEW Delimitation to RDBMS - property graph RDBMS GraphDB Person Knows_rel 2 Id Name Id_1 Id_2 3 0 Henning Rauch Java 1 0 1 René Peinl 1 2 2 Foo Bar 1 3 3 Bruce Schneier 1 4 4 4 Linus Torwalds 0 1 1 0 2 0 3 0 4 3 4 4 3 0 Tag NoSQL Id Name .NET 0 .NET PKI 1 Java 2 PKI 3 NoSQL 7
  14. OVERVIEW Delimitation to RDBMS - property graph RDBMS GraphDB Person Knows_rel 2 Id Name Id_1 Id_2 3 0 Henning Rauch Java 1 0 1 René Peinl 1 2 2 Foo Bar 1 3 3 Bruce Schneier 1 4 4 4 Linus Torwalds 0 1 1 0 2 0 3 0 4 3 4 4 3 0 Tag Tags_rel NoSQL Id Name Tag_Id Person_Id Significance .NET 0 .NET 0 0 5 PKI 1 Java 1 1 5 2 PKI 2 1 6 3 NoSQL 2 3 10 3 0 7 3 1 7 7
  15. OVERVIEW Delimitation to RDBMS - property graph RDBMS GraphDB Person Knows_rel 2 Id Name Id_1 Id_2 3 0 Henning Rauch Java 1 0 1 René Peinl 1 2 10 2 Foo Bar 1 3 5 3 Bruce Schneier 1 4 4 4 Linus Torwalds 0 1 1 0 2 0 3 0 4 3 4 7 4 3 0 5 Tag Tags_rel NoSQL 7 Id Name Tag_Id Person_Id Significance .NET 0 .NET 0 0 5 6 PKI 1 Java 1 1 5 2 PKI 2 1 6 3 NoSQL 2 3 10 3 0 7 3 1 7 7
  16. OVERVIEW Delimitation to RDBMS - property graph RDBMS GraphDB Person Knows_rel 2 Id Name Id_1 Id_2 3 0 Henning Rauch Java 1 0 1 René Peinl 1 2 10 2 Foo Bar 1 3 5 3 Bruce Schneier 1 4 4 4 Linus Torwalds 0 1 1 0 2 0 3 0 4 3 4 7 4 3 0 5 Tag Tags_rel NoSQL 7 Id Name Tag_Id Person_Id Significance .NET 0 .NET 0 0 5 6 PKI 1 Java 1 1 5 2 PKI 2 1 6 3 NoSQL 2 3 3 0 10 7 vertex = 3 1 7 7 properties + edges
  17. OVERVIEW Delimitation to RDBMS - Scalability Knows_rel Id_1 Id_2 • Relation tables act as a global index over linked 1 1 0 2 data 1 1 3 4 0 1 The bigger the relation table the longer it takes to 0 2 • 0 3 get the interesting information (e.g. local 0 3 4 4 neighbourhood of data) 4 3 Tags_rel • Solution of graph databases: Information on Tag_Id 0 Person_Id 0 Significance 5 relationships (aka edges) are stored locally on the 1 1 5 vertex 2 1 6 2 3 10 3 0 7 3 1 7 8
  18. OVERVIEW Delimitation to RDBMS - example of complexity • Task: Find the persons that are known to Id 0. Knows_rel • Linear table scan: O(n) Id_1 1 Id_2 0 1 2 Index scan: O(log n) 1 3 • 1 4 0 1 0 2 • Because of the dependency to n RDBMS do not 0 0 3 4 perform well on recursive search algorithms 3 4 4 3 • Graph database solve this task in O(1) 9
  19. OVERVIEW Delimitation to other NoSQL products Size > 90% of use cases Complexity Source: http://www.slideshare.net/jexp/neo4j-graph-database-presentation-german 10
  20. OVERVIEW Delimitation to other NoSQL products Size Key/Value stores > 90% of use cases Complexity Source: http://www.slideshare.net/jexp/neo4j-graph-database-presentation-german 10
  21. OVERVIEW Delimitation to other NoSQL products Size Key/Value stores Bigtable clones > 90% of use cases Complexity Source: http://www.slideshare.net/jexp/neo4j-graph-database-presentation-german 10
  22. OVERVIEW Delimitation to other NoSQL products Size Key/Value stores Bigtable clones Document databases > 90% of use cases Complexity Source: http://www.slideshare.net/jexp/neo4j-graph-database-presentation-german 10
  23. OVERVIEW Delimitation to other NoSQL products Size Key/Value stores Bigtable clones Document databases Graph databases > 90% of use cases Complexity Source: http://www.slideshare.net/jexp/neo4j-graph-database-presentation-german 10
  24. OVERVIEW Delimitation to other NoSQL products Size Key/Value stores Bigtable clones Document databases Graph databases In-memory graph databases > 90% of use cases Complexity Source: http://www.slideshare.net/jexp/neo4j-graph-database-presentation-german 10
  25. OVERVIEW Graph processing vs. graph database OLAP Graph affine Universal OLTP Quelle: http://jim.webber.name/2011/08/24/66f1fb4b-83c3-4f52-af40-ee6382ad2155.aspx 11
  26. OVERVIEW Graph processing vs. graph database OLAP Graph affine OLTP RDBMS Universal Quelle: http://jim.webber.name/2011/08/24/66f1fb4b-83c3-4f52-af40-ee6382ad2155.aspx 11
  27. OVERVIEW Graph processing vs. graph database OLAP Graph affine OLTP Hadoop RDBMS Universal Quelle: http://jim.webber.name/2011/08/24/66f1fb4b-83c3-4f52-af40-ee6382ad2155.aspx 11
  28. OVERVIEW Graph processing vs. graph database Graph affine Pregel OLAP OLTP Hadoop RDBMS Universal Quelle: http://jim.webber.name/2011/08/24/66f1fb4b-83c3-4f52-af40-ee6382ad2155.aspx 11
  29. OVERVIEW Graph processing vs. graph database Graph affine Graph databases Pregel OLAP OLTP Hadoop RDBMS Universal Quelle: http://jim.webber.name/2011/08/24/66f1fb4b-83c3-4f52-af40-ee6382ad2155.aspx 11
  30. OVERVIEW Graph processing vs. graph database Graph affine In-memory Graph databases graph database Pregel OLAP OLTP Hadoop RDBMS Universal Quelle: http://jim.webber.name/2011/08/24/66f1fb4b-83c3-4f52-af40-ee6382ad2155.aspx 11
  31. OVERVIEW Graph databases • Neo4J • HypergraphDB • InfiniteGraph (Objectivity) • DEX • Sones GraphDB • FlockDB (Twitter) • AllegroGraph • Trinity (Microsoft) • OrientDB • Fallen-8 Source: http://www.slideshare.net/jexp/neo4j-graph-database-presentation-german 12
  32. 13
  33. NEO4J Overview • Graph database + Lucene index • ACID (isolation level read committed) • High availability in enterprise edition • 32 billion vertices, 32 billion edges, 64 billion properties • Embedded or via REST-API • Support for the Blueprints project 14
  34. NEO4J Architecture Cypher/Gremlin Java/Ruby/.../C# API REST API Core API (Java) Caches (files and objects) HA Record files Transaction-log Disk(s) Source: http://www.slideshare.net/rheehot/eo4j-12713065 15
  35. NEO4J knows Example of the on-disk layout Name: Bob Age: 42 Name: Alice Age: 23 knows knows Name: Carol Age: 22 Source: https://github.com/thobe/presentations 16
  36. NEO4J knows Example of the on-disk layout Name: Bob Age: 42 Name Name: Alice Bob Name Age: 23 Alice knows Age 42 Age 23 knows Name Carol Name: Carol Age: 22 Age 22 Source: https://github.com/thobe/presentations 16
  37. NEO4J knows Example of the on-disk layout SP EP Name: Bob SN EN Age: 42 knows Name Name: Alice SP EP Bob Name Age: 23 SP EP SN EN Alice knows SN EN knows Age knows 42 Age 23 knows Name SP Source Previous Carol SN Source Next Name: Carol EP End Previous Age: 22 EN End Next Age 22 Existent Nonexistent Source: https://github.com/thobe/presentations 16
  38. NEO4J knows Example of the on-disk layout SP EP Name: Bob SN EN Age: 42 knows Name Name: Alice SP EP Bob Name Age: 23 SP EP SN EN Alice knows SN EN knows Age knows 42 Age 23 knows Name SP Source Previous Carol SN Source Next Name: Carol EP End Previous Age: 22 EN End Next Age 22 Existent Nonexistent Source: https://github.com/thobe/presentations 16
  39. NEO4J In-memory layout (cache) ID Relationship ID refs in: R1 R2 ... Rn Type 1 out R1 R2 ... Rn Vertex ... Grouped by type (type = „knows“) • Transformation of the double linked list (on-disk) in: R1 R2 ... Rn Type n out R1 R2 ... Rn to objects Key 1 Key 2 ... Key n • Increases the traversal Val 1 Val 2 Val n speed ID start end type Edge Key 1 Key 2 ... Key n Val 1 Val 2 Val n Source: https://github.com/thobe/presentations 17
  40. NEO4J Traversal • Relationship-expander (delivers edges of a vertex) • Evaluators (evaluate if a vertex is going to be traversed or if it should be taken to the result set) • Projection of the result set (e.g. „take the last vertex of the path“ • Uniqueness level (sets in steps, whether a node could be visited several times) Source: https://github.com/thobe/presentations 18
  41. NEO4J Cypher & Gremlin Feature Gremlin Cypher Paradigm Imperative programming Declarative programming •Developed Marko Rodriguez (Tinkerpop) •In-house development Description • •Cypher provides greater opportunities for optimization Based on xpath to describe the traversal •Developed using Groovy •Good for traversals that need back tracking •30-50% faster on „simple“ traversals •Output is a table START me=node:people(name={myname}) MATCH me-[:HAS_CART]->cart-[:CONTAINS_ITEM]->item outE[label=HAS_CART].inV item<-[:PURCHASED]-user-[:PURCHASED]->recommendation .outE[label=CONTAINS_ITEM].inV RETURN recommendation Example .inE[label=PURCHASED].outV .outE[label=PURCHASED].inV START d=node(1), e=node(2) MATCH p = shortestPath( d-[*..15]->e ) RETURN p Source: https://github.com/thobe/presentations 19
  42. NEO4J WebAdmin Quelle: http://docs.neo4j.org/chunked/stable/images/operations/webadmin-overview.png 20
  43. NEO4J Pricing Price Edition License Description (annual) Complete database Open Source „Community“ including a basic 0 € (GPLv3) management frontend + Monitoring, better „Advanced“ Commercial and AGPL 6,000 € management frontend and support + „Enterprise“ Commercial and AGPL Enterprise frontend, HA and 24,000 € premium support 21
  44. 22
  45. INFINITEGRAPH Overview • Distributed graph database • Implemented in C++ (APIs in Java, C#, Python, etc.) • Based on Objectivity/DB (distributed object database) • Established 1988 in Sunnyvale, California • Enterprise-customers + US-government • Support for Blueprints 23
  46. INFINITEGRAPH Architecture User Apps Blueprints# IG#Core/API# Management# Naviga0on# Session#/#TX# Placement# Configura0on# Extensions# Execu0on# Management# Objec0vity/DB#Distributed#Database# Copyright © InfiniteGraph 24
  47. INFINITEGRAPH Ingest AppD2# AppD1# AppD3# (Ingest#V2)# (Ingest#V1)# (Ingest#V3)# # IG#Core/API# Standard#Blocking#Ingest/Placement#(MDP#Plugin)# Objec@vity/DB# Copyright © InfiniteGraph 25
  48. INFINITEGRAPH Ingest AppD2# AppD1# AppD3# (Ingest#V2)# (Ingest#V1)# (Ingest#V3)# # IG#Core/API# Standard#Blocking#Ingest/Placement#(MDP#Plugin)# Objec@vity/DB# V1# V2# V3# Copyright © InfiniteGraph 25
  49. INFINITEGRAPH Ingest AppD2# App#1% AppD1# App#2% App#3% AppD3# (Ingest#V2)# (Ingest#V )# (E1%2{%V1V21})% (E23{%V2V3})% (Ingest#V3)# % # IG#Core/API# Standard#Blocking#Ingest/Placement#(MDP#Plugin)# Objec@vity/DB# V1# V2# V3# Copyright © InfiniteGraph 25
  50. INFINITEGRAPH Ingest AppD2# App#1% AppD1# App#2% App#3% AppD3# (Ingest#V2)# (Ingest#V )# (E1%2{%V1V21})% (E23{%V2V3})% (Ingest#V3)# % # IG#Core/API# Standard#Blocking#Ingest/Placement#(MDP#Plugin)# Objec@vity/DB# V1# E12$ V2# E23$ V3# Copyright © InfiniteGraph 25
  51. INFINITEGRAPH Ingest AppD2# App#1% AppD1# App#2% App#3% AppD3# (Ingest#V2)# (Ingest#V )# (E1%2{%V1V21})% (E23{%V2V3})% (Ingest#V3)# % # IG#Core/API# Standard#Blocking#Ingest/Placement#(MDP#Plugin)# Objec@vity/DB# V1# E12$ V2# E23$ V3# Copyright © InfiniteGraph 25
  52. INFINITEGRAPH Code (ingest) Vertex alice = myGraph.addVertex(new Person(“Alice”)); Vertex bob = myGraph.addVertex(new Person(“Bob”)); Vertex carlos = myGraph.addVertex(new Person(“Carlos”)); Vertex charlie = myGraph.addVertex(new Person(“Charlie”)); alice.addEdge(new Meeting(“Denver”, “5-27-10”), bob); bob.addEdge(new Call(timestamp), carlos); carlos.addEdge(new Payment(100000.00), charlie); bob.addEdge(new Call(timestamp), charlie); Copyright © InfiniteGraph 26
  53. INFINITEGRAPH Code (ingest) Alice Vertex alice = myGraph.addVertex(new Person(“Alice”)); Vertex bob = myGraph.addVertex(new Person(“Bob”)); Vertex carlos = myGraph.addVertex(new Person(“Carlos”)); Vertex charlie = myGraph.addVertex(new Person(“Charlie”)); alice.addEdge(new Meeting(“Denver”, “5-27-10”), bob); bob.addEdge(new Call(timestamp), carlos); carlos.addEdge(new Payment(100000.00), charlie); bob.addEdge(new Call(timestamp), charlie); Copyright © InfiniteGraph 26
  54. INFINITEGRAPH Code (ingest) Alice Vertex alice = myGraph.addVertex(new Person(“Alice”)); Bob Vertex bob = myGraph.addVertex(new Person(“Bob”)); Vertex carlos = myGraph.addVertex(new Person(“Carlos”)); Vertex charlie = myGraph.addVertex(new Person(“Charlie”)); alice.addEdge(new Meeting(“Denver”, “5-27-10”), bob); bob.addEdge(new Call(timestamp), carlos); carlos.addEdge(new Payment(100000.00), charlie); bob.addEdge(new Call(timestamp), charlie); Copyright © InfiniteGraph 26
  55. INFINITEGRAPH Code (ingest) Alice Vertex alice = myGraph.addVertex(new Person(“Alice”)); Bob Vertex bob = myGraph.addVertex(new Person(“Bob”)); Vertex carlos = myGraph.addVertex(new Person(“Carlos”)); Vertex charlie = myGraph.addVertex(new Person(“Charlie”)); alice.addEdge(new Meeting(“Denver”, “5-27-10”), bob); bob.addEdge(new Call(timestamp), carlos); carlos.addEdge(new Payment(100000.00), charlie); Carlos bob.addEdge(new Call(timestamp), charlie); Copyright © InfiniteGraph 26
  56. INFINITEGRAPH Code (ingest) Alice Vertex alice = myGraph.addVertex(new Person(“Alice”)); Bob Vertex bob = myGraph.addVertex(new Person(“Bob”)); Vertex carlos = myGraph.addVertex(new Person(“Carlos”)); Vertex charlie = myGraph.addVertex(new Person(“Charlie”)); alice.addEdge(new Meeting(“Denver”, “5-27-10”), bob); bob.addEdge(new Call(timestamp), carlos); carlos.addEdge(new Payment(100000.00), charlie); Carlos bob.addEdge(new Call(timestamp), charlie); Charlie Copyright © InfiniteGraph 26
  57. INFINITEGRAPH Code (ingest) Alice meets Vertex alice = myGraph.addVertex(new Person(“Alice”)); Bob Vertex bob = myGraph.addVertex(new Person(“Bob”)); Vertex carlos = myGraph.addVertex(new Person(“Carlos”)); Vertex charlie = myGraph.addVertex(new Person(“Charlie”)); alice.addEdge(new Meeting(“Denver”, “5-27-10”), bob); bob.addEdge(new Call(timestamp), carlos); carlos.addEdge(new Payment(100000.00), charlie); Carlos bob.addEdge(new Call(timestamp), charlie); Charlie Copyright © InfiniteGraph 26
  58. INFINITEGRAPH Code (ingest) Alice meets Vertex alice = myGraph.addVertex(new Person(“Alice”)); Bob Vertex bob = myGraph.addVertex(new Person(“Bob”)); Vertex carlos = myGraph.addVertex(new Person(“Carlos”)); Vertex charlie = myGraph.addVertex(new Person(“Charlie”)); calls alice.addEdge(new Meeting(“Denver”, “5-27-10”), bob); bob.addEdge(new Call(timestamp), carlos); carlos.addEdge(new Payment(100000.00), charlie); Carlos bob.addEdge(new Call(timestamp), charlie); Charlie Copyright © InfiniteGraph 26
  59. INFINITEGRAPH Code (ingest) Alice meets Vertex alice = myGraph.addVertex(new Person(“Alice”)); Bob Vertex bob = myGraph.addVertex(new Person(“Bob”)); Vertex carlos = myGraph.addVertex(new Person(“Carlos”)); Vertex charlie = myGraph.addVertex(new Person(“Charlie”)); calls alice.addEdge(new Meeting(“Denver”, “5-27-10”), bob); bob.addEdge(new Call(timestamp), carlos); carlos.addEdge(new Payment(100000.00), charlie); Carlos bob.addEdge(new Call(timestamp), charlie); pays Charlie Copyright © InfiniteGraph 26
  60. INFINITEGRAPH Code (ingest) Alice meets Vertex alice = myGraph.addVertex(new Person(“Alice”)); Bob Vertex bob = myGraph.addVertex(new Person(“Bob”)); Vertex carlos = myGraph.addVertex(new Person(“Carlos”)); Vertex charlie = myGraph.addVertex(new Person(“Charlie”)); calls calls alice.addEdge(new Meeting(“Denver”, “5-27-10”), bob); bob.addEdge(new Call(timestamp), carlos); carlos.addEdge(new Payment(100000.00), charlie); Carlos bob.addEdge(new Call(timestamp), charlie); pays Charlie Copyright © InfiniteGraph 26
  61. INFINITEGRAPH Code (Navigator) // Create a qualifier that describes the target vertex Qualifier findCharliePredicate = new VertexPredicate(personType, "name == ’Charlie'"); // Construct a navigator which starts with Alice and uses a result qualifier // to find all paths in the graph to Charlie Navigator charlieFinder = alice.navigate( Guide.SIMPLE_BREADTH_FIRST, // default guide Qualifier.ANY, // no path constraints findCharliePredicate , // find paths ending with Charlie myResultHandler); // fire results to supplied handler // Start the navigator charlieFinder.start(); Copyright © InfiniteGraph 27
  62. INFINITEGRAPH Visualization Copyright © InfiniteGraph 28
  63. INFINITEGRAPH Pricing Price Edition License Description (annual) Complete database but „InfiniteGraph FREE“ Free limitation to 1 million 0 € vertices or edges starts at app. 5000 $ „Pay as you go“ Commercial No limitation (depends on count of vertices and edges) Focus on „bigger“ >..... € „Unit or site licensing“ Commercial environments (No price available) Source: http://objectivity.com/products/infinitegraph/overview 29
  64. 30
  65. FALLEN-8 Overview • In-memory graph database • Implemented in C# (platform independent because of mono) • 4 billion vertices or edges, each element can have app. 65000 properties • Indexes on vertices and/or edges • Core is open source (MIT-license), plugins can have any license 31
  66. FALLEN-8 Persistence • Persistence in form of „save-points“ (all vertices and edges are serialized en bloc) • Commodity hardware allows to (de)serialize app. 2 million vertices or edges per second • Saving blocks only write operations • Performance + reliability 32
  67. FALLEN-8 Architecture Services Index- Traversal-framework framework Core API Vertices and edges RAM 33
  68. FALLEN-8 Architecture and some plugins HA + ACID Transaktionen REST API (via JSON) + Management/query frontend Traversal-framework Index-framework (incl. path analysis) (incl R* tree index) Core API Vertices and edges RAM 34
  69. FALLEN-8 Benchmark - friends of a friend 35
  70. FALLEN-8 Benchmark - friends of a friend 1 35
  71. FALLEN-8 Benchmark - friends of a friend 2 3 1 4 5 35
  72. FALLEN-8 Benchmark - friends of a friend 6 7 8 2 9 3 10 1 11 4 12 13 5 14 15 16 35
  73. FALLEN-8 Benchmark - friends of a friend Fallen-8 Neo4J 5,000 4,000 3,000 t in ms 2,000 1,000 0 run Source: Martin Junghanns 36
  74. FALLEN-8 Benchmark - traversals per second Source: Sebastian Dechant 37
  75. FALLEN-8 Benchmark - traversals per second 1 Source: Sebastian Dechant 37
  76. FALLEN-8 Benchmark - traversals per second 1 Source: Sebastian Dechant 37
  77. FALLEN-8 Benchmark - traversals per second 1 2 Source: Sebastian Dechant 37
  78. FALLEN-8 Benchmark - traversals per second 1 2 Graph: |V| = 10000, |E| = 600.000 (equally distributed) System: Windows Server 2008 R2, Intel Xeon E5620 (2,40 GHz), 6 GB RAM Source: Sebastian Dechant 37
  79. FALLEN-8 Benchmark - traversals per second 1 2 Graph: |V| = 10000, |E| = 600.000 (equally distributed) System: Windows Server 2008 R2, Intel Xeon E5620 (2,40 GHz), 6 GB RAM MySQL 62,168 PostgreSQL 78,449 Neo4J 943,580 InfiniteGraph 1,243,084 Fallen-8 196,930,256 1 10 100 1,000 10,000 100,000 1,000,000 10,000,000 100,000,000 1,000,000,000 traversals / sec Source: Sebastian Dechant 37
  80. FALLEN-8 Roadmap • Release: July 2012 • Q3 2012 • High availability (MIT) using Amazon EC2 • 2013 • Graph partitioning (MIT or ???) 38
  81. THANKS & Q&A Email: Henning@RauchEntwicklung.biz Url: http://www.NoSQL-Database.com Twitter: http://www.twitter.com/cosh23 39

Editor's Notes

  1. \n
  2. \n
  3. \n
  4. \n
  5. \n
  6. \n
  7. \n
  8. \n
  9. \n
  10. \n
  11. \n
  12. \n
  13. \n
  14. \n
  15. \n
  16. \n
  17. \n
  18. \n
  19. \n
  20. \n
  21. \n
  22. \n
  23. \n
  24. \n
  25. \n
  26. \n
  27. \n
  28. \n
  29. \n
  30. \n
  31. \n
  32. \n
  33. \n
  34. \n
  35. \n
  36. \n
  37. \n
  38. \n
  39. \n
  40. \n
  41. \n
  42. \n
  43. \n
  44. \n
  45. \n
  46. \n
  47. \n
  48. \n
  49. \n
  50. \n
  51. \n
  52. \n
  53. \n
  54. \n
  55. \n
  56. \n
  57. \n
  58. \n
  59. \n
  60. \n
  61. \n
  62. \n
  63. \n
  64. \n
  65. \n
  66. \n
  67. \n
  68. \n
  69. \n
  70. \n
  71. \n
  72. \n
  73. \n
  74. \n
  75. \n
  76. \n
  77. \n
  78. \n
  79. \n
  80. \n
  81. \n
  82. \n
  83. \n
  84. \n
  85. \n
  86. \n
  87. \n
  88. \n
  89. \n
  90. \n
  91. \n
  92. \n
  93. \n
  94. \n
  95. \n
  96. \n
  97. \n
  98. \n
  99. \n
  100. \n
  101. \n
  102. \n
  103. \n
  104. \n
  105. \n
  106. \n
  107. \n
  108. \n
  109. \n
  110. \n
  111. \n
  112. \n
  113. \n
  114. \n
  115. \n
  116. \n
  117. \n
  118. \n
  119. \n
  120. \n
  121. \n
  122. \n
  123. \n
  124. \n
  125. \n
  126. \n
  127. \n
  128. \n
  129. \n
  130. \n
  131. \n
  132. \n
  133. \n
  134. \n
  135. \n
  136. \n
  137. \n
  138. \n
  139. \n
  140. \n
  141. \n
  142. \n
  143. \n
  144. \n
  145. \n
  146. \n
  147. \n
  148. \n
  149. \n
  150. \n
  151. \n
  152. \n
  153. \n
  154. \n
  155. \n
  156. \n
  157. \n
  158. \n
  159. \n
  160. \n
  161. \n
  162. \n
  163. \n
  164. \n
  165. \n
  166. \n
  167. \n
  168. \n
  169. \n
  170. \n
  171. \n
  172. \n
  173. \n
  174. \n
  175. \n
  176. \n
  177. \n
  178. \n
  179. \n
  180. \n
  181. \n
  182. \n
  183. \n
  184. \n
  185. \n
  186. \n
  187. \n
  188. \n
  189. \n
  190. \n
  191. \n
  192. \n
  193. \n
  194. \n
  195. \n
  196. \n
  197. \n
  198. \n
  199. \n
  200. \n
  201. \n
  202. \n
Advertisement