We've updated our privacy policy. Click here to review the details. Tap here to review the details.
Activate your 30 day free trial to unlock unlimited reading.
Activate your 30 day free trial to continue reading.
Download to read offline
Introduction: This workshop will provide a hands-on introduction to Machine Learning (ML) with an overview of Deep Learning (DL).
Format: An introductory lecture on several supervised and unsupervised ML techniques followed by light introduction to DL and short discussion what is current state-of-the-art. Several python code samples using the scikit-learn library will be introduced that users will be able to run in the Cloudera Data Science Workbench (CDSW).
Objective: To provide a quick and short hands-on introduction to ML with python’s scikit-learn library. The environment in CDSW is interactive and the step-by-step guide will walk you through setting up your environment, to exploring datasets, training and evaluating models on popular datasets. By the end of the crash course, attendees will have a high-level understanding of popular ML algorithms and the current state of DL, what problems they can solve, and walk away with basic hands-on experience training and evaluating ML models.
Prerequisites: For the hands-on portion, registrants must bring a laptop with a Chrome or Firefox web browser. These labs will be done in the cloud, no installation needed. Everyone will be able to register and start using CDSW after the introductory lecture concludes (about 1hr in). Basic knowledge of python highly recommended.
Introduction: This workshop will provide a hands-on introduction to Machine Learning (ML) with an overview of Deep Learning (DL).
Format: An introductory lecture on several supervised and unsupervised ML techniques followed by light introduction to DL and short discussion what is current state-of-the-art. Several python code samples using the scikit-learn library will be introduced that users will be able to run in the Cloudera Data Science Workbench (CDSW).
Objective: To provide a quick and short hands-on introduction to ML with python’s scikit-learn library. The environment in CDSW is interactive and the step-by-step guide will walk you through setting up your environment, to exploring datasets, training and evaluating models on popular datasets. By the end of the crash course, attendees will have a high-level understanding of popular ML algorithms and the current state of DL, what problems they can solve, and walk away with basic hands-on experience training and evaluating ML models.
Prerequisites: For the hands-on portion, registrants must bring a laptop with a Chrome or Firefox web browser. These labs will be done in the cloud, no installation needed. Everyone will be able to register and start using CDSW after the introductory lecture concludes (about 1hr in). Basic knowledge of python highly recommended.
You just clipped your first slide!
Clipping is a handy way to collect important slides you want to go back to later. Now customize the name of a clipboard to store your clips.The SlideShare family just got bigger. Enjoy access to millions of ebooks, audiobooks, magazines, and more from Scribd.
Cancel anytime.Unlimited Reading
Learn faster and smarter from top experts
Unlimited Downloading
Download to take your learnings offline and on the go
You also get free access to Scribd!
Instant access to millions of ebooks, audiobooks, magazines, podcasts and more.
Read and listen offline with any device.
Free access to premium services like Tuneln, Mubi and more.
We’ve updated our privacy policy so that we are compliant with changing global privacy regulations and to provide you with insight into the limited ways in which we use your data.
You can read the details below. By accepting, you agree to the updated privacy policy.
Thank you!