We've updated our privacy policy. Click here to review the details. Tap here to review the details.
Activate your 30 day free trial to unlock unlimited reading.
Activate your 30 day free trial to continue reading.
Download to read offline
Background: Some early applications of Computer Vision in Retail arose from e-commerce use cases - but increasingly, it is being used in physical stores in a variety of new and exciting ways, such as:
● Optimizing merchandising execution, in-stocks and sell-thru
● Enhancing operational efficiencies, enable real-time customer engagement
● Enhancing loss prevention capabilities, response time
● Creating frictionless experiences for shoppers
Abstract: This talk will cover the use of Computer Vision in Retail, the implications to the broader Consumer Goods industry and share business drivers, use cases and benefits that are unfolding as an integral component in the remaking of an age-old industry.
We will also take a ‘peek under the hood’ of Computer Vision and Deep Learning, sharing technology design principles and skill set profiles to consider before starting your CV journey.
Deep learning has matured considerably in the past few years to produce human or superhuman abilities in a variety of computer vision paradigms. We will discuss ways to recognize these paradigms in retail settings, collect and organize data to create actionable outcomes with the new insights and applications that deep learning enables.
We will cover the basics of object detection, then move into the advanced processing of images describing the possible ways that a retail store of the near future could operate. Identifying various storefront situations by having a deep learning system attached to a camera stream. Such things as; identifying item stocks on shelves, a shelf in need of organization, or perhaps a wandering customer in need of assistance.
We will also cover how to use a computer vision system to automatically track customer purchases to enable a streamlined checkout process, and how deep learning can power plausible wardrobe suggestions based on what a customer is currently wearing or purchasing.
Finally, we will cover the various technologies that are powering these applications today. Deep learning tools for research and development. Production tools to distribute that intelligence to an entire inventory of all the cameras situation around a retail location. Tools for exploring and understanding the new data streams produced by the computer vision systems.
By the end of this talk, attendees should understand the impact Computer Vision and Deep Learning are having in the Consumer Goods industry, key use cases, techniques and key considerations leaders are exploring and implementing today.
Background: Some early applications of Computer Vision in Retail arose from e-commerce use cases - but increasingly, it is being used in physical stores in a variety of new and exciting ways, such as:
● Optimizing merchandising execution, in-stocks and sell-thru
● Enhancing operational efficiencies, enable real-time customer engagement
● Enhancing loss prevention capabilities, response time
● Creating frictionless experiences for shoppers
Abstract: This talk will cover the use of Computer Vision in Retail, the implications to the broader Consumer Goods industry and share business drivers, use cases and benefits that are unfolding as an integral component in the remaking of an age-old industry.
We will also take a ‘peek under the hood’ of Computer Vision and Deep Learning, sharing technology design principles and skill set profiles to consider before starting your CV journey.
Deep learning has matured considerably in the past few years to produce human or superhuman abilities in a variety of computer vision paradigms. We will discuss ways to recognize these paradigms in retail settings, collect and organize data to create actionable outcomes with the new insights and applications that deep learning enables.
We will cover the basics of object detection, then move into the advanced processing of images describing the possible ways that a retail store of the near future could operate. Identifying various storefront situations by having a deep learning system attached to a camera stream. Such things as; identifying item stocks on shelves, a shelf in need of organization, or perhaps a wandering customer in need of assistance.
We will also cover how to use a computer vision system to automatically track customer purchases to enable a streamlined checkout process, and how deep learning can power plausible wardrobe suggestions based on what a customer is currently wearing or purchasing.
Finally, we will cover the various technologies that are powering these applications today. Deep learning tools for research and development. Production tools to distribute that intelligence to an entire inventory of all the cameras situation around a retail location. Tools for exploring and understanding the new data streams produced by the computer vision systems.
By the end of this talk, attendees should understand the impact Computer Vision and Deep Learning are having in the Consumer Goods industry, key use cases, techniques and key considerations leaders are exploring and implementing today.
You just clipped your first slide!
Clipping is a handy way to collect important slides you want to go back to later. Now customize the name of a clipboard to store your clips.The SlideShare family just got bigger. Enjoy access to millions of ebooks, audiobooks, magazines, and more from Scribd.
Cancel anytime.Unlimited Reading
Learn faster and smarter from top experts
Unlimited Downloading
Download to take your learnings offline and on the go
You also get free access to Scribd!
Instant access to millions of ebooks, audiobooks, magazines, podcasts and more.
Read and listen offline with any device.
Free access to premium services like Tuneln, Mubi and more.
We’ve updated our privacy policy so that we are compliant with changing global privacy regulations and to provide you with insight into the limited ways in which we use your data.
You can read the details below. By accepting, you agree to the updated privacy policy.
Thank you!