Advertisement
Advertisement

More Related Content

Slideshows for you(20)

Similar to Efficient processing of large and complex XML documents in Hadoop(20)

Advertisement

More from DataWorks Summit(20)

Advertisement

Efficient processing of large and complex XML documents in Hadoop

  1. Efficient  processing  of  large  and   complex  XML  documents  in  Hadoop     Sujoe  Bose   Senior  Principal,   Sabre  Holdings   June,  2013  
  2. Presenta.on  Outline   §  MoBvaBon   §  ETL  vs.  ELT   §  Avro  Format   §  Mapping  from  XML  to  Avro   §  Interfaces  to  access  Avro   §  Performance  and  Storage  consideraBons   §  Other  types  of  storage/processing  formats   confidenBal   2  
  3. You  will  learn  about  …   §  A  method  to  store  and  process  complex  XML  data  in   Hadoop  as  Avro  files   §  Interfaces  to  access  and  analyze  data  in  Avro  from   Hive,  Java  and  Pig   §  VariaBons  of  the  method  and  their  relaBve  trade-­‐offs   in  storage  and  processing   confidenBal   3  
  4. Mo.va.on   §  Prevalence  of  XML  and  its  derivaBves   –  Spurred  by  WebServices  and  SOA   –  Preferred  communicaBon  format  unBl  newer  formats   entered   –  Data  and  logs  represented  in  XML   §  XML  –  metadata  combined  data     –  Flexibility  vs.  Complexity   §  Could  be  arbitrarily  nested  and  large   §  Volumes  of  documents  –  Big  Data   confidenBal   4  
  5. Challenges   §  Parsing  XML  is  CPU  Intensive   §  Certain  parsers/parsing  methods  result  in  more   memory  consumpBon   §  Repeated  parsing  for  each  query   §  Large  and  deeply  nested  XMLs  makes  problem  worse   §  Presence  of  tags  in  data  result  in  high  I/O  due  to   storage  size   §  Special  handling  of  opBonal  fields   confidenBal   5  
  6. ETL  vs.  ELT   confidenBal   6   §  Hadoop  generally  built  for  EL  –  T   –  aka  Schema-­‐on-­‐Read   –  Load  as-­‐is   –  Transform  on  Access/Query   §  Compare  with  Data  Warehouse  ETL   –  Aka  Schema-­‐on-­‐Write   –  Transform  and  Load   –  Queries  are  lot  simpler   –  TransformaBon  and  cleansing  done  a  priori  
  7. Mix  of  ETL  and  ELT   §  Generally  beaer  in   Flexibility   §  More  suitable  for  simpler   and  well-­‐defined  formats   §  More  applicable  for   experimentaBon   §  XML  data  parsed  on   demand  for  every  query   confidenBal   7   §  Generally  beaer  in   Performance   §  More  suitable  when   substanBal  cleansing  and   reformacng  is  needed   §  RepeBBve  queries  and   producBon  workloads   §  XML  Data  pre-­‐parsed  to   minimize  resource  usage   ELT   ETL  
  8. Approaches   confidenBal   8   XML  Files   Avro  Files   ETL   Pre-­‐parsing   Pig   UDF   Avro   Schema   On-­‐demand   Parsing   Interfaces  Processing  Data   Hive   SerDe   MapReduce   Pig   UDF   Hive   SerDe   MapReduce  
  9. ELT   confidenBal   9  confidenBal   9   XML  Files   Avro  Files   ETL   Pre-­‐parsing   Pig   UDF   Avro   Schema   On-­‐demand   Parsing   Interfaces  Processing  Data   Hive   SerDe   MapReduce   Pig   UDF   Hive   SerDe   MapReduce  
  10. ETL   confidenBal   10  confidenBal   10   XML  Files   Avro  Files   ETL   Pre-­‐parsing   Pig   UDF   Avro   Schema   On-­‐demand   Parsing   Interfaces  Processing  Data   Hive   SerDe   MapReduce   Pig   UDF   Hive   SerDe   MapReduce  
  11. XML  Pre-­‐parsing   §  Nested  Elements  and  Aaributes   §  RepresentaBon  of  parsed  XML  Structure   §  Enter  Avro!   confidenBal   11  
  12. Avro   §  Data  serializaBon  system   §  Specifically  designed  for  Hadoop,  but  used  in  other   environments  also   §  Rich  data  structures:  Arrays,  Records,  Maps  etc.   §  Compact,  fast,  binary  data  format   §  Metadata  stored  at  file  level  –  not  record  level   §   Split-­‐able  –  Ideal  for  Map-­‐Reduce   confidenBal   12  
  13. Avro  APIs   §  Generic  Objects  and  Pre-­‐generated  Objects   –  Easy  API  including  simple  gets  and  puts   §  APIs  in  several  languages   –  Java   –  C#   –  C/C++   –  Python   –  Ruby   confidenBal   13  
  14. Use-­‐case   §  FIXML  –  Financial  InformaBon  eXchange   –  hap://www.fixprotocol.org/specificaBons/   §  XML  Database  Benchmark   –  hap://tpox.sourceforge.net/   §  Provides  sample  data  for  benchmarking   §  Data  Generator  for  generaBng  large  and  predictable   datasets   confidenBal   14  
  15. FIXML   §  XML  Data  Generator   –  hap://tpox.sourceforge.net/tpoxdata.htm   §  Order:  Buy  and  sell  order  of  securiBes   confidenBal   15  
  16. Simple  mapping   confidenBal   16   XML   Avro   Pig   Elements  with  repeated   nested  elements   Array   Bag   Elements  with  aaributes  and   text  elements   Record   Tuple   Aaributes  and  Text  Elements   Field   Field  
  17. Avro  Schema   { "type": "record", "name": "FIXOrder", "namespace": "com.sabre.fixml", "doc": "Definition and mapping for FIX Orders", "mapping": "/FIXML", "fields": [ { "name":"v", "type":"string", "mapping":"@v"}, { "name":"r", "type":"string", "mapping":"@r"}, { "name":"s", "type":"string", "mapping":"@s"}, { "name":"Order", "mapping":"Order", "type": { "name":"OrderRecord", "mapping":"Order", "type": "record", "fields": [ { "name":"ID", "type":"string", "mapping":"@ID"}, { "name":"ID2", "type":"string", "mapping":"@ID2"}, { "name":"OrignDt", "type":"string", "mapping":"@OrignDt"}, { "name":"TrdDt", "type":"string", "mapping":"@TrdDt"}, { "name":"Acct", "type":"string", "mapping":"@Acct"}, { "name":"AcctTyp", "type":"string", "mapping":"@AcctTyp"}, { "name":"DayBkngInst", "type":"string", "mapping":"@DayBkngInst"}, { "name":"BkngUnit", "type":"string", "mapping":"@BkngUnit"}, { "name":"PreallocMeth", "type":"string", "mapping":"@PreallocMeth"}, { "name":"AllocID", "type":"string", "mapping":"@AllocID"}, { "name":"CshMgn", "type":"string", "mapping":"@CshMgn"}, { "name":"ClrFeeInd", "type":"string", "mapping":"@ClrFeeInd"}, ...   confidenBal   17  
  18. Pig  Schema   FIXOrder: tuple ( v: chararray, r: chararray, s: chararray, Order: tuple ( ID: chararray, ID2: chararray, OrignDt: chararray, TrdDt: chararray, Acct: chararray, AcctTyp: chararray, DayBkngInst: chararray, BkngUnit: chararray, PreallocMeth: chararray, AllocID: chararray, CshMgn: chararray, ClrFeeInd: chararray, confidenBal   18  
  19. Avro  –  Access  Methods   §  Direct  support  for  access  from  Hive  (using  SerDe)     CREATE EXTERNAL TABLE <TableName>! ROW FORMAT SERDE ‘org.apache.hadoop.hive.serde2.avro.AvroSerDe’! STORED as INPUTFORMAT ‘org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat’! OUTPUTFORMAT! ‘org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat’! LOCATION ‘location-of-avro-files’! TBLPROPERTIES ('avro.schema.url'=‘location-of-schema- file.avsc')   §  Access  via  Pig  -­‐  AvroStorage   §  Avro  API  -­‐  Java  MapReduce   confidenBal   19  
  20. Test  Data   §  Base  SecuriBes  Order  file  500,000  records   §  Replicated  for  volume   –  15x  -­‐  7.5  million  records   –  30x  -­‐  15  million  records   –  45x  -­‐  22.5  million  records   –  60x  –  30  million  records   –  75x  –  37.5  million  records     confidenBal   20  
  21. Comparison   confidenBal   21   XML  Files   Avro  Files   ETL   Pre-­‐parsing   Pig   UDF   Avro   Schema   On-­‐demand   Parsing   Interfaces  Processing  Data   Hive   SerDe   MapReduce   Pig   UDF   Hive   SerDe   MapReduce  
  22. File  sizes:  Orders   §  Base  Data   –  XML  file  size  as  is:  749,337,916  (750MB)     –  Gzip  Compressed:  182,687,654  (183MB)     §  Applied  Avro  conversion   –  Avro  Snappy:  151,647,926  (152MB)     –  Avro  Gzip:  107,898,177  (108MB)     confidenBal   22  
  23. Storage  Size  Comparison   confidenBal   23  
  24. Test  Environment   §  18  Nodes   §  Node  configuraBon:   –  12  cores  per  node   –  48GB  memory   –   36  TB  with  12  disks  of  3TB  each   §  CDH  4.1.2   confidenBal   24  
  25. Sample  Query   §  Security  Orders  per  Account   order_records  =  LOAD  '$AVRO_INPUT'  using  AVRO_LOAD  AS  (   -­‐-­‐-­‐-­‐-­‐-­‐-­‐  Pig  Schema  goes  here  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐   );     order_projecBon  =  FOREACH  order_records  GENERATE  Order.Acct  as  Account,  Order.OrdQty.Qty   as  QuanBty;     order_group  =  GROUP  order_projecBon  BY  Account;     order_count  =  FOREACH  order_group  GENERATE  group,  SUM(order_projecBon.QuanBty);     STORE  order_count  INTO  '$PIG_OUTPUT'  Using  PigStorage(',');   confidenBal   25  
  26. Run  Types   §  Pre-­‐parsed  approach:   –  XML  to  Avro  materializaBon:  xml-­‐to-­‐avro   •  XML  to  Avro  is  run  only  once  on  the  data   –  Avro  to  Pig  via  UDF:  avro-­‐to-­‐pig   §  Parse  on  demand   –  XML  parsing  using  Pig  UDF:  xml-­‐to-­‐pig   confidenBal   26  
  27. confidenBal   27   Run  .me  in  Seconds   Analysis  on  raw  XML:   XML  to  Pig   Pre-­‐parsing  XML:   XML  to  Avro   Analysis  on  parsed  XML:   Avro  to  Pig  
  28. confidenBal   28   CPU  Usage  Comparison   Analysis  on  raw  XML:   XML  to  Pig   Pre-­‐parsing  XML:   XML  to  Avro   Analysis  on  parsed  XML:   Avro  to  Pig  
  29. confidenBal   29  confidenBal   29   Memory  Usage  Comparison:  Total  Memused  (GB)   Analysis  on  raw  XML:   XML  to  Pig   Pre-­‐parsing  XML:   XML  to  Avro   Analysis  on  parsed  XML:   Avro  to  Pig  
  30. Results   §  Analysis  on  pre-­‐parsed  data  compared  raw  XML   –  RunBme  reducBon  by  more  than  50%   –  Memory  and  CPU  consumpBon  reduced  by  about  50%   §  Pre-­‐parsing  stage  takes  more  resources  and  Bme   than  on-­‐demand  parsing   §  RepeBBve  queries  will  benefit  from  one-­‐Bme  pre-­‐ parsing   confidenBal   30  
  31. Caveats   §  Not  all  fields  were  extracted  from  the  XML  input   (opBonal  elements)   §  Challenge  in  keeping-­‐up  with  versions/changes  of   XML   §  Performance  numbers  can  depend  on  the  type  of   data  and  the  mapping  used   confidenBal   31  
  32. Alterna.ves   §  Formats  other  than  Avro  may  be  more  suitable   §  Record  Columnar  formats  (RC  Files  &  ORC  Files)   §  Trevni:  a  column  file  format  supporBng  Avro   §  Parquet:  another  columnar  storage  for  Hadoop   confidenBal   32  
  33. Mo.va.on  for  Columnar  Format   §  Map  Reduce  capability   §  Column  ProjecBons  reduce  I/O   §  Column  Compression  due  to  similarity  of  data   further  reduces  I/O   confidenBal   33  
  34. Summary   §  Materialized  version  well-­‐suited  for  repeated  queries   §  For  ad-­‐hoc/experimental  queries  parse-­‐on-­‐demand   is  beaer   §  Mapping  from  XML  to  Avro  can  be  automated   §  Hive,  Pig  and  MapReduce  Interfaces  to  access  Avro   Files   §  RelaBve  trade-­‐offs  between  flexibility  and   performance/storage   confidenBal   34  
  35. Ques.ons  &  Comments   confidenBal   35   Thanks  for  Listening    sujoe.bose@sabre.com    
Advertisement