SlideShare a Scribd company logo

HBaseCon 2015: HBase @ Flipboard

HBaseCon
HBaseCon

Flipboard services over 100 million users using heterogenous results including user generated content, interest profile, algorithmically generated content, social firehose, friends graph, ads, and web/rss crawlers. To personalize and serve these results in real time, Flipboard employs a variety of data models, access patterns and configuration. This talk will present how some of these strategies are implemented using HBase.

1 of 34
HBASE @ FLIPBOARD
What is Flipboard?
HBaseCon 2015: HBase @ Flipboard
Publications
People
Topics
Ad

Recommended

Keynote: The Future of Apache HBase
Keynote: The Future of Apache HBaseKeynote: The Future of Apache HBase
Keynote: The Future of Apache HBaseHBaseCon
 
Optimizing Apache HBase for Cloud Storage in Microsoft Azure HDInsight
Optimizing Apache HBase for Cloud Storage in Microsoft Azure HDInsightOptimizing Apache HBase for Cloud Storage in Microsoft Azure HDInsight
Optimizing Apache HBase for Cloud Storage in Microsoft Azure HDInsightHBaseCon
 
HBaseCon 2012 | Building a Large Search Platform on a Shoestring Budget
HBaseCon 2012 | Building a Large Search Platform on a Shoestring BudgetHBaseCon 2012 | Building a Large Search Platform on a Shoestring Budget
HBaseCon 2012 | Building a Large Search Platform on a Shoestring BudgetCloudera, Inc.
 
HBaseCon 2015: Apache Phoenix - The Evolution of a Relational Database Layer ...
HBaseCon 2015: Apache Phoenix - The Evolution of a Relational Database Layer ...HBaseCon 2015: Apache Phoenix - The Evolution of a Relational Database Layer ...
HBaseCon 2015: Apache Phoenix - The Evolution of a Relational Database Layer ...HBaseCon
 
HBaseCon 2012 | HBase, the Use Case in eBay Cassini
HBaseCon 2012 | HBase, the Use Case in eBay Cassini HBaseCon 2012 | HBase, the Use Case in eBay Cassini
HBaseCon 2012 | HBase, the Use Case in eBay Cassini Cloudera, Inc.
 
HBaseCon 2013: Using Coprocessors to Index Columns in an Elasticsearch Cluster
HBaseCon 2013: Using Coprocessors to Index Columns in an Elasticsearch Cluster HBaseCon 2013: Using Coprocessors to Index Columns in an Elasticsearch Cluster
HBaseCon 2013: Using Coprocessors to Index Columns in an Elasticsearch Cluster Cloudera, Inc.
 
HBaseCon 2012 | Mignify: A Big Data Refinery Built on HBase - Internet Memory...
HBaseCon 2012 | Mignify: A Big Data Refinery Built on HBase - Internet Memory...HBaseCon 2012 | Mignify: A Big Data Refinery Built on HBase - Internet Memory...
HBaseCon 2012 | Mignify: A Big Data Refinery Built on HBase - Internet Memory...Cloudera, Inc.
 
A Survey of HBase Application Archetypes
A Survey of HBase Application ArchetypesA Survey of HBase Application Archetypes
A Survey of HBase Application ArchetypesHBaseCon
 

More Related Content

What's hot

Harmonizing Multi-tenant HBase Clusters for Managing Workload Diversity
Harmonizing Multi-tenant HBase Clusters for Managing Workload DiversityHarmonizing Multi-tenant HBase Clusters for Managing Workload Diversity
Harmonizing Multi-tenant HBase Clusters for Managing Workload DiversityHBaseCon
 
HBaseCon 2013: Project Valta - A Resource Management Layer over Apache HBase
HBaseCon 2013: Project Valta - A Resource Management Layer over Apache HBaseHBaseCon 2013: Project Valta - A Resource Management Layer over Apache HBase
HBaseCon 2013: Project Valta - A Resource Management Layer over Apache HBaseCloudera, Inc.
 
HBase Read High Availability Using Timeline-Consistent Region Replicas
HBase Read High Availability Using Timeline-Consistent Region ReplicasHBase Read High Availability Using Timeline-Consistent Region Replicas
HBase Read High Availability Using Timeline-Consistent Region ReplicasHBaseCon
 
HBaseCon 2013: Compaction Improvements in Apache HBase
HBaseCon 2013: Compaction Improvements in Apache HBaseHBaseCon 2013: Compaction Improvements in Apache HBase
HBaseCon 2013: Compaction Improvements in Apache HBaseCloudera, Inc.
 
Large-scale Web Apps @ Pinterest
Large-scale Web Apps @ PinterestLarge-scale Web Apps @ Pinterest
Large-scale Web Apps @ PinterestHBaseCon
 
HBase: Extreme Makeover
HBase: Extreme MakeoverHBase: Extreme Makeover
HBase: Extreme MakeoverHBaseCon
 
Real-Time Video Analytics Using Hadoop and HBase (HBaseCon 2013)
Real-Time Video Analytics Using Hadoop and HBase (HBaseCon 2013)Real-Time Video Analytics Using Hadoop and HBase (HBaseCon 2013)
Real-Time Video Analytics Using Hadoop and HBase (HBaseCon 2013)Suman Srinivasan
 
HBaseCon 2015: Graph Processing of Stock Market Order Flow in HBase on AWS
HBaseCon 2015: Graph Processing of Stock Market Order Flow in HBase on AWSHBaseCon 2015: Graph Processing of Stock Market Order Flow in HBase on AWS
HBaseCon 2015: Graph Processing of Stock Market Order Flow in HBase on AWSHBaseCon
 
HBase at Bloomberg: High Availability Needs for the Financial Industry
HBase at Bloomberg: High Availability Needs for the Financial IndustryHBase at Bloomberg: High Availability Needs for the Financial Industry
HBase at Bloomberg: High Availability Needs for the Financial IndustryHBaseCon
 
HBaseCon 2013: Apache HBase Replication
HBaseCon 2013: Apache HBase ReplicationHBaseCon 2013: Apache HBase Replication
HBaseCon 2013: Apache HBase ReplicationCloudera, Inc.
 
HBaseCon 2012 | HBase and HDFS: Past, Present, Future - Todd Lipcon, Cloudera
HBaseCon 2012 | HBase and HDFS: Past, Present, Future - Todd Lipcon, ClouderaHBaseCon 2012 | HBase and HDFS: Past, Present, Future - Todd Lipcon, Cloudera
HBaseCon 2012 | HBase and HDFS: Past, Present, Future - Todd Lipcon, ClouderaCloudera, Inc.
 
HBaseCon 2015: State of HBase Docs and How to Contribute
HBaseCon 2015: State of HBase Docs and How to ContributeHBaseCon 2015: State of HBase Docs and How to Contribute
HBaseCon 2015: State of HBase Docs and How to ContributeHBaseCon
 
HBaseCon 2013: Apache HBase at Pinterest - Scaling Our Feed Storage
HBaseCon 2013: Apache HBase at Pinterest - Scaling Our Feed StorageHBaseCon 2013: Apache HBase at Pinterest - Scaling Our Feed Storage
HBaseCon 2013: Apache HBase at Pinterest - Scaling Our Feed StorageCloudera, Inc.
 
Hadoop World 2011: Advanced HBase Schema Design - Lars George, Cloudera
Hadoop World 2011: Advanced HBase Schema Design - Lars George, ClouderaHadoop World 2011: Advanced HBase Schema Design - Lars George, Cloudera
Hadoop World 2011: Advanced HBase Schema Design - Lars George, ClouderaCloudera, Inc.
 
HBaseCon 2015: HBase and Spark
HBaseCon 2015: HBase and SparkHBaseCon 2015: HBase and Spark
HBaseCon 2015: HBase and SparkHBaseCon
 
Facebook - Jonthan Gray - Hadoop World 2010
Facebook - Jonthan Gray - Hadoop World 2010Facebook - Jonthan Gray - Hadoop World 2010
Facebook - Jonthan Gray - Hadoop World 2010Cloudera, Inc.
 
HBaseCon 2013: Streaming Data into Apache HBase using Apache Flume: Experienc...
HBaseCon 2013: Streaming Data into Apache HBase using Apache Flume: Experienc...HBaseCon 2013: Streaming Data into Apache HBase using Apache Flume: Experienc...
HBaseCon 2013: Streaming Data into Apache HBase using Apache Flume: Experienc...Cloudera, Inc.
 
HBase Status Report - Hadoop Summit Europe 2014
HBase Status Report - Hadoop Summit Europe 2014HBase Status Report - Hadoop Summit Europe 2014
HBase Status Report - Hadoop Summit Europe 2014larsgeorge
 

What's hot (20)

Harmonizing Multi-tenant HBase Clusters for Managing Workload Diversity
Harmonizing Multi-tenant HBase Clusters for Managing Workload DiversityHarmonizing Multi-tenant HBase Clusters for Managing Workload Diversity
Harmonizing Multi-tenant HBase Clusters for Managing Workload Diversity
 
HBaseCon 2013: Project Valta - A Resource Management Layer over Apache HBase
HBaseCon 2013: Project Valta - A Resource Management Layer over Apache HBaseHBaseCon 2013: Project Valta - A Resource Management Layer over Apache HBase
HBaseCon 2013: Project Valta - A Resource Management Layer over Apache HBase
 
HBase Read High Availability Using Timeline-Consistent Region Replicas
HBase Read High Availability Using Timeline-Consistent Region ReplicasHBase Read High Availability Using Timeline-Consistent Region Replicas
HBase Read High Availability Using Timeline-Consistent Region Replicas
 
HBaseCon 2013: Compaction Improvements in Apache HBase
HBaseCon 2013: Compaction Improvements in Apache HBaseHBaseCon 2013: Compaction Improvements in Apache HBase
HBaseCon 2013: Compaction Improvements in Apache HBase
 
Large-scale Web Apps @ Pinterest
Large-scale Web Apps @ PinterestLarge-scale Web Apps @ Pinterest
Large-scale Web Apps @ Pinterest
 
HBase: Extreme Makeover
HBase: Extreme MakeoverHBase: Extreme Makeover
HBase: Extreme Makeover
 
HBase in Practice
HBase in Practice HBase in Practice
HBase in Practice
 
Real-Time Video Analytics Using Hadoop and HBase (HBaseCon 2013)
Real-Time Video Analytics Using Hadoop and HBase (HBaseCon 2013)Real-Time Video Analytics Using Hadoop and HBase (HBaseCon 2013)
Real-Time Video Analytics Using Hadoop and HBase (HBaseCon 2013)
 
HBaseCon 2015: Graph Processing of Stock Market Order Flow in HBase on AWS
HBaseCon 2015: Graph Processing of Stock Market Order Flow in HBase on AWSHBaseCon 2015: Graph Processing of Stock Market Order Flow in HBase on AWS
HBaseCon 2015: Graph Processing of Stock Market Order Flow in HBase on AWS
 
NoSQL: Cassadra vs. HBase
NoSQL: Cassadra vs. HBaseNoSQL: Cassadra vs. HBase
NoSQL: Cassadra vs. HBase
 
HBase at Bloomberg: High Availability Needs for the Financial Industry
HBase at Bloomberg: High Availability Needs for the Financial IndustryHBase at Bloomberg: High Availability Needs for the Financial Industry
HBase at Bloomberg: High Availability Needs for the Financial Industry
 
HBaseCon 2013: Apache HBase Replication
HBaseCon 2013: Apache HBase ReplicationHBaseCon 2013: Apache HBase Replication
HBaseCon 2013: Apache HBase Replication
 
HBaseCon 2012 | HBase and HDFS: Past, Present, Future - Todd Lipcon, Cloudera
HBaseCon 2012 | HBase and HDFS: Past, Present, Future - Todd Lipcon, ClouderaHBaseCon 2012 | HBase and HDFS: Past, Present, Future - Todd Lipcon, Cloudera
HBaseCon 2012 | HBase and HDFS: Past, Present, Future - Todd Lipcon, Cloudera
 
HBaseCon 2015: State of HBase Docs and How to Contribute
HBaseCon 2015: State of HBase Docs and How to ContributeHBaseCon 2015: State of HBase Docs and How to Contribute
HBaseCon 2015: State of HBase Docs and How to Contribute
 
HBaseCon 2013: Apache HBase at Pinterest - Scaling Our Feed Storage
HBaseCon 2013: Apache HBase at Pinterest - Scaling Our Feed StorageHBaseCon 2013: Apache HBase at Pinterest - Scaling Our Feed Storage
HBaseCon 2013: Apache HBase at Pinterest - Scaling Our Feed Storage
 
Hadoop World 2011: Advanced HBase Schema Design - Lars George, Cloudera
Hadoop World 2011: Advanced HBase Schema Design - Lars George, ClouderaHadoop World 2011: Advanced HBase Schema Design - Lars George, Cloudera
Hadoop World 2011: Advanced HBase Schema Design - Lars George, Cloudera
 
HBaseCon 2015: HBase and Spark
HBaseCon 2015: HBase and SparkHBaseCon 2015: HBase and Spark
HBaseCon 2015: HBase and Spark
 
Facebook - Jonthan Gray - Hadoop World 2010
Facebook - Jonthan Gray - Hadoop World 2010Facebook - Jonthan Gray - Hadoop World 2010
Facebook - Jonthan Gray - Hadoop World 2010
 
HBaseCon 2013: Streaming Data into Apache HBase using Apache Flume: Experienc...
HBaseCon 2013: Streaming Data into Apache HBase using Apache Flume: Experienc...HBaseCon 2013: Streaming Data into Apache HBase using Apache Flume: Experienc...
HBaseCon 2013: Streaming Data into Apache HBase using Apache Flume: Experienc...
 
HBase Status Report - Hadoop Summit Europe 2014
HBase Status Report - Hadoop Summit Europe 2014HBase Status Report - Hadoop Summit Europe 2014
HBase Status Report - Hadoop Summit Europe 2014
 

Viewers also liked

Tales from Taming the Long Tail
Tales from Taming the Long TailTales from Taming the Long Tail
Tales from Taming the Long TailHBaseCon
 
Rolling Out Apache HBase for Mobile Offerings at Visa
Rolling Out Apache HBase for Mobile Offerings at Visa Rolling Out Apache HBase for Mobile Offerings at Visa
Rolling Out Apache HBase for Mobile Offerings at Visa HBaseCon
 
Breaking the Sound Barrier with Persistent Memory
Breaking the Sound Barrier with Persistent Memory Breaking the Sound Barrier with Persistent Memory
Breaking the Sound Barrier with Persistent Memory HBaseCon
 
HBaseCon 2015: HBase at Scale in an Online and High-Demand Environment
HBaseCon 2015: HBase at Scale in an Online and  High-Demand EnvironmentHBaseCon 2015: HBase at Scale in an Online and  High-Demand Environment
HBaseCon 2015: HBase at Scale in an Online and High-Demand EnvironmentHBaseCon
 
Apache HBase Improvements and Practices at Xiaomi
Apache HBase Improvements and Practices at XiaomiApache HBase Improvements and Practices at Xiaomi
Apache HBase Improvements and Practices at XiaomiHBaseCon
 
Apache HBase, Accelerated: In-Memory Flush and Compaction
Apache HBase, Accelerated: In-Memory Flush and Compaction Apache HBase, Accelerated: In-Memory Flush and Compaction
Apache HBase, Accelerated: In-Memory Flush and Compaction HBaseCon
 
Keynote: Apache HBase at Yahoo! Scale
Keynote: Apache HBase at Yahoo! ScaleKeynote: Apache HBase at Yahoo! Scale
Keynote: Apache HBase at Yahoo! ScaleHBaseCon
 
Apache HBase at Airbnb
Apache HBase at Airbnb Apache HBase at Airbnb
Apache HBase at Airbnb HBaseCon
 
HBaseCon 2015: S2Graph - A Large-scale Graph Database with HBase
HBaseCon 2015: S2Graph - A Large-scale Graph Database with HBaseHBaseCon 2015: S2Graph - A Large-scale Graph Database with HBase
HBaseCon 2015: S2Graph - A Large-scale Graph Database with HBaseHBaseCon
 
Improvements to Apache HBase and Its Applications in Alibaba Search
Improvements to Apache HBase and Its Applications in Alibaba Search Improvements to Apache HBase and Its Applications in Alibaba Search
Improvements to Apache HBase and Its Applications in Alibaba Search HBaseCon
 
Apache HBase - Just the Basics
Apache HBase - Just the BasicsApache HBase - Just the Basics
Apache HBase - Just the BasicsHBaseCon
 
Apache Phoenix: Use Cases and New Features
Apache Phoenix: Use Cases and New FeaturesApache Phoenix: Use Cases and New Features
Apache Phoenix: Use Cases and New FeaturesHBaseCon
 
Argus Production Monitoring at Salesforce
Argus Production Monitoring at Salesforce Argus Production Monitoring at Salesforce
Argus Production Monitoring at Salesforce HBaseCon
 
Date-tiered Compaction Policy for Time-series Data
Date-tiered Compaction Policy for Time-series DataDate-tiered Compaction Policy for Time-series Data
Date-tiered Compaction Policy for Time-series DataHBaseCon
 
Update on OpenTSDB and AsyncHBase
Update on OpenTSDB and AsyncHBase Update on OpenTSDB and AsyncHBase
Update on OpenTSDB and AsyncHBase HBaseCon
 
Time-Series Apache HBase
Time-Series Apache HBaseTime-Series Apache HBase
Time-Series Apache HBaseHBaseCon
 
HBaseCon 2013: Apache HBase, Meet Ops. Ops, Meet Apache HBase.
HBaseCon 2013: Apache HBase, Meet Ops. Ops, Meet Apache HBase.HBaseCon 2013: Apache HBase, Meet Ops. Ops, Meet Apache HBase.
HBaseCon 2013: Apache HBase, Meet Ops. Ops, Meet Apache HBase.Cloudera, Inc.
 
HBaseCon 2015: DeathStar - Easy, Dynamic, Multi-tenant HBase via YARN
HBaseCon 2015: DeathStar - Easy, Dynamic,  Multi-tenant HBase via YARNHBaseCon 2015: DeathStar - Easy, Dynamic,  Multi-tenant HBase via YARN
HBaseCon 2015: DeathStar - Easy, Dynamic, Multi-tenant HBase via YARNHBaseCon
 
HBaseCon 2012 | Building Mobile Infrastructure with HBase
HBaseCon 2012 | Building Mobile Infrastructure with HBaseHBaseCon 2012 | Building Mobile Infrastructure with HBase
HBaseCon 2012 | Building Mobile Infrastructure with HBaseCloudera, Inc.
 
HBaseCon 2012 | Scaling GIS In Three Acts
HBaseCon 2012 | Scaling GIS In Three ActsHBaseCon 2012 | Scaling GIS In Three Acts
HBaseCon 2012 | Scaling GIS In Three ActsCloudera, Inc.
 

Viewers also liked (20)

Tales from Taming the Long Tail
Tales from Taming the Long TailTales from Taming the Long Tail
Tales from Taming the Long Tail
 
Rolling Out Apache HBase for Mobile Offerings at Visa
Rolling Out Apache HBase for Mobile Offerings at Visa Rolling Out Apache HBase for Mobile Offerings at Visa
Rolling Out Apache HBase for Mobile Offerings at Visa
 
Breaking the Sound Barrier with Persistent Memory
Breaking the Sound Barrier with Persistent Memory Breaking the Sound Barrier with Persistent Memory
Breaking the Sound Barrier with Persistent Memory
 
HBaseCon 2015: HBase at Scale in an Online and High-Demand Environment
HBaseCon 2015: HBase at Scale in an Online and  High-Demand EnvironmentHBaseCon 2015: HBase at Scale in an Online and  High-Demand Environment
HBaseCon 2015: HBase at Scale in an Online and High-Demand Environment
 
Apache HBase Improvements and Practices at Xiaomi
Apache HBase Improvements and Practices at XiaomiApache HBase Improvements and Practices at Xiaomi
Apache HBase Improvements and Practices at Xiaomi
 
Apache HBase, Accelerated: In-Memory Flush and Compaction
Apache HBase, Accelerated: In-Memory Flush and Compaction Apache HBase, Accelerated: In-Memory Flush and Compaction
Apache HBase, Accelerated: In-Memory Flush and Compaction
 
Keynote: Apache HBase at Yahoo! Scale
Keynote: Apache HBase at Yahoo! ScaleKeynote: Apache HBase at Yahoo! Scale
Keynote: Apache HBase at Yahoo! Scale
 
Apache HBase at Airbnb
Apache HBase at Airbnb Apache HBase at Airbnb
Apache HBase at Airbnb
 
HBaseCon 2015: S2Graph - A Large-scale Graph Database with HBase
HBaseCon 2015: S2Graph - A Large-scale Graph Database with HBaseHBaseCon 2015: S2Graph - A Large-scale Graph Database with HBase
HBaseCon 2015: S2Graph - A Large-scale Graph Database with HBase
 
Improvements to Apache HBase and Its Applications in Alibaba Search
Improvements to Apache HBase and Its Applications in Alibaba Search Improvements to Apache HBase and Its Applications in Alibaba Search
Improvements to Apache HBase and Its Applications in Alibaba Search
 
Apache HBase - Just the Basics
Apache HBase - Just the BasicsApache HBase - Just the Basics
Apache HBase - Just the Basics
 
Apache Phoenix: Use Cases and New Features
Apache Phoenix: Use Cases and New FeaturesApache Phoenix: Use Cases and New Features
Apache Phoenix: Use Cases and New Features
 
Argus Production Monitoring at Salesforce
Argus Production Monitoring at Salesforce Argus Production Monitoring at Salesforce
Argus Production Monitoring at Salesforce
 
Date-tiered Compaction Policy for Time-series Data
Date-tiered Compaction Policy for Time-series DataDate-tiered Compaction Policy for Time-series Data
Date-tiered Compaction Policy for Time-series Data
 
Update on OpenTSDB and AsyncHBase
Update on OpenTSDB and AsyncHBase Update on OpenTSDB and AsyncHBase
Update on OpenTSDB and AsyncHBase
 
Time-Series Apache HBase
Time-Series Apache HBaseTime-Series Apache HBase
Time-Series Apache HBase
 
HBaseCon 2013: Apache HBase, Meet Ops. Ops, Meet Apache HBase.
HBaseCon 2013: Apache HBase, Meet Ops. Ops, Meet Apache HBase.HBaseCon 2013: Apache HBase, Meet Ops. Ops, Meet Apache HBase.
HBaseCon 2013: Apache HBase, Meet Ops. Ops, Meet Apache HBase.
 
HBaseCon 2015: DeathStar - Easy, Dynamic, Multi-tenant HBase via YARN
HBaseCon 2015: DeathStar - Easy, Dynamic,  Multi-tenant HBase via YARNHBaseCon 2015: DeathStar - Easy, Dynamic,  Multi-tenant HBase via YARN
HBaseCon 2015: DeathStar - Easy, Dynamic, Multi-tenant HBase via YARN
 
HBaseCon 2012 | Building Mobile Infrastructure with HBase
HBaseCon 2012 | Building Mobile Infrastructure with HBaseHBaseCon 2012 | Building Mobile Infrastructure with HBase
HBaseCon 2012 | Building Mobile Infrastructure with HBase
 
HBaseCon 2012 | Scaling GIS In Three Acts
HBaseCon 2012 | Scaling GIS In Three ActsHBaseCon 2012 | Scaling GIS In Three Acts
HBaseCon 2012 | Scaling GIS In Three Acts
 

Similar to HBaseCon 2015: HBase @ Flipboard

HBase in Practice
HBase in PracticeHBase in Practice
HBase in Practicelarsgeorge
 
Hbase schema design and sizing apache-con europe - nov 2012
Hbase schema design and sizing   apache-con europe - nov 2012Hbase schema design and sizing   apache-con europe - nov 2012
Hbase schema design and sizing apache-con europe - nov 2012Chris Huang
 
HBase Advanced - Lars George
HBase Advanced - Lars GeorgeHBase Advanced - Lars George
HBase Advanced - Lars GeorgeJAX London
 
Introduction to Apache HBase
Introduction to Apache HBaseIntroduction to Apache HBase
Introduction to Apache HBaseGokuldas Pillai
 
Need for Time series Database
Need for Time series DatabaseNeed for Time series Database
Need for Time series DatabasePramit Choudhary
 
SE2016 Java Valerii Moisieienko "Apache HBase Workshop"
SE2016 Java Valerii Moisieienko "Apache HBase Workshop"SE2016 Java Valerii Moisieienko "Apache HBase Workshop"
SE2016 Java Valerii Moisieienko "Apache HBase Workshop"Inhacking
 
Intro to HBase - Lars George
Intro to HBase - Lars GeorgeIntro to HBase - Lars George
Intro to HBase - Lars GeorgeJAX London
 
Big Data and Hadoop - History, Technical Deep Dive, and Industry Trends
Big Data and Hadoop - History, Technical Deep Dive, and Industry TrendsBig Data and Hadoop - History, Technical Deep Dive, and Industry Trends
Big Data and Hadoop - History, Technical Deep Dive, and Industry TrendsEsther Kundin
 
Big Data and Hadoop - History, Technical Deep Dive, and Industry Trends
Big Data and Hadoop - History, Technical Deep Dive, and Industry TrendsBig Data and Hadoop - History, Technical Deep Dive, and Industry Trends
Big Data and Hadoop - History, Technical Deep Dive, and Industry TrendsEsther Kundin
 
Technologies for Data Analytics Platform
Technologies for Data Analytics PlatformTechnologies for Data Analytics Platform
Technologies for Data Analytics PlatformN Masahiro
 
Thug feb 23 2015 Chen Zhang
Thug feb 23 2015 Chen ZhangThug feb 23 2015 Chen Zhang
Thug feb 23 2015 Chen ZhangChen Zhang
 
Schema Design
Schema DesignSchema Design
Schema DesignQBurst
 
Hbasepreso 111116185419-phpapp02
Hbasepreso 111116185419-phpapp02Hbasepreso 111116185419-phpapp02
Hbasepreso 111116185419-phpapp02Gokuldas Pillai
 
Unit II Hadoop Ecosystem_Updated.pptx
Unit II Hadoop Ecosystem_Updated.pptxUnit II Hadoop Ecosystem_Updated.pptx
Unit II Hadoop Ecosystem_Updated.pptxBhavanaHotchandani
 
AWS Webcast - Managing Big Data in the AWS Cloud_20140924
AWS Webcast - Managing Big Data in the AWS Cloud_20140924AWS Webcast - Managing Big Data in the AWS Cloud_20140924
AWS Webcast - Managing Big Data in the AWS Cloud_20140924Amazon Web Services
 

Similar to HBaseCon 2015: HBase @ Flipboard (20)

Apache HBase™
Apache HBase™Apache HBase™
Apache HBase™
 
HBase in Practice
HBase in PracticeHBase in Practice
HBase in Practice
 
Apache HBase Workshop
Apache HBase WorkshopApache HBase Workshop
Apache HBase Workshop
 
Hbase schema design and sizing apache-con europe - nov 2012
Hbase schema design and sizing   apache-con europe - nov 2012Hbase schema design and sizing   apache-con europe - nov 2012
Hbase schema design and sizing apache-con europe - nov 2012
 
HBase Advanced - Lars George
HBase Advanced - Lars GeorgeHBase Advanced - Lars George
HBase Advanced - Lars George
 
Introduction to Apache HBase
Introduction to Apache HBaseIntroduction to Apache HBase
Introduction to Apache HBase
 
Need for Time series Database
Need for Time series DatabaseNeed for Time series Database
Need for Time series Database
 
SE2016 Java Valerii Moisieienko "Apache HBase Workshop"
SE2016 Java Valerii Moisieienko "Apache HBase Workshop"SE2016 Java Valerii Moisieienko "Apache HBase Workshop"
SE2016 Java Valerii Moisieienko "Apache HBase Workshop"
 
Valerii Moisieienko Apache hbase workshop
Valerii Moisieienko	Apache hbase workshopValerii Moisieienko	Apache hbase workshop
Valerii Moisieienko Apache hbase workshop
 
Intro to HBase - Lars George
Intro to HBase - Lars GeorgeIntro to HBase - Lars George
Intro to HBase - Lars George
 
Big Data and Hadoop - History, Technical Deep Dive, and Industry Trends
Big Data and Hadoop - History, Technical Deep Dive, and Industry TrendsBig Data and Hadoop - History, Technical Deep Dive, and Industry Trends
Big Data and Hadoop - History, Technical Deep Dive, and Industry Trends
 
Big Data and Hadoop - History, Technical Deep Dive, and Industry Trends
Big Data and Hadoop - History, Technical Deep Dive, and Industry TrendsBig Data and Hadoop - History, Technical Deep Dive, and Industry Trends
Big Data and Hadoop - History, Technical Deep Dive, and Industry Trends
 
Apache hadoop hbase
Apache hadoop hbaseApache hadoop hbase
Apache hadoop hbase
 
Technologies for Data Analytics Platform
Technologies for Data Analytics PlatformTechnologies for Data Analytics Platform
Technologies for Data Analytics Platform
 
Thug feb 23 2015 Chen Zhang
Thug feb 23 2015 Chen ZhangThug feb 23 2015 Chen Zhang
Thug feb 23 2015 Chen Zhang
 
Schema Design
Schema DesignSchema Design
Schema Design
 
HBase ArcheTypes
HBase ArcheTypesHBase ArcheTypes
HBase ArcheTypes
 
Hbasepreso 111116185419-phpapp02
Hbasepreso 111116185419-phpapp02Hbasepreso 111116185419-phpapp02
Hbasepreso 111116185419-phpapp02
 
Unit II Hadoop Ecosystem_Updated.pptx
Unit II Hadoop Ecosystem_Updated.pptxUnit II Hadoop Ecosystem_Updated.pptx
Unit II Hadoop Ecosystem_Updated.pptx
 
AWS Webcast - Managing Big Data in the AWS Cloud_20140924
AWS Webcast - Managing Big Data in the AWS Cloud_20140924AWS Webcast - Managing Big Data in the AWS Cloud_20140924
AWS Webcast - Managing Big Data in the AWS Cloud_20140924
 

More from HBaseCon

hbaseconasia2017: Building online HBase cluster of Zhihu based on Kubernetes
hbaseconasia2017: Building online HBase cluster of Zhihu based on Kuberneteshbaseconasia2017: Building online HBase cluster of Zhihu based on Kubernetes
hbaseconasia2017: Building online HBase cluster of Zhihu based on KubernetesHBaseCon
 
hbaseconasia2017: HBase on Beam
hbaseconasia2017: HBase on Beamhbaseconasia2017: HBase on Beam
hbaseconasia2017: HBase on BeamHBaseCon
 
hbaseconasia2017: HBase Disaster Recovery Solution at Huawei
hbaseconasia2017: HBase Disaster Recovery Solution at Huaweihbaseconasia2017: HBase Disaster Recovery Solution at Huawei
hbaseconasia2017: HBase Disaster Recovery Solution at HuaweiHBaseCon
 
hbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinterest
hbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinteresthbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinterest
hbaseconasia2017: Removable singularity: a story of HBase upgrade in PinterestHBaseCon
 
hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程
hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程
hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程HBaseCon
 
hbaseconasia2017: Apache HBase at Netease
hbaseconasia2017: Apache HBase at Neteasehbaseconasia2017: Apache HBase at Netease
hbaseconasia2017: Apache HBase at NeteaseHBaseCon
 
hbaseconasia2017: HBase在Hulu的使用和实践
hbaseconasia2017: HBase在Hulu的使用和实践hbaseconasia2017: HBase在Hulu的使用和实践
hbaseconasia2017: HBase在Hulu的使用和实践HBaseCon
 
hbaseconasia2017: 基于HBase的企业级大数据平台
hbaseconasia2017: 基于HBase的企业级大数据平台hbaseconasia2017: 基于HBase的企业级大数据平台
hbaseconasia2017: 基于HBase的企业级大数据平台HBaseCon
 
hbaseconasia2017: HBase at JD.com
hbaseconasia2017: HBase at JD.comhbaseconasia2017: HBase at JD.com
hbaseconasia2017: HBase at JD.comHBaseCon
 
hbaseconasia2017: Large scale data near-line loading method and architecture
hbaseconasia2017: Large scale data near-line loading method and architecturehbaseconasia2017: Large scale data near-line loading method and architecture
hbaseconasia2017: Large scale data near-line loading method and architectureHBaseCon
 
hbaseconasia2017: Ecosystems with HBase and CloudTable service at Huawei
hbaseconasia2017: Ecosystems with HBase and CloudTable service at Huaweihbaseconasia2017: Ecosystems with HBase and CloudTable service at Huawei
hbaseconasia2017: Ecosystems with HBase and CloudTable service at HuaweiHBaseCon
 
hbaseconasia2017: HBase Practice At XiaoMi
hbaseconasia2017: HBase Practice At XiaoMihbaseconasia2017: HBase Practice At XiaoMi
hbaseconasia2017: HBase Practice At XiaoMiHBaseCon
 
hbaseconasia2017: hbase-2.0.0
hbaseconasia2017: hbase-2.0.0hbaseconasia2017: hbase-2.0.0
hbaseconasia2017: hbase-2.0.0HBaseCon
 
HBaseCon2017 Democratizing HBase
HBaseCon2017 Democratizing HBaseHBaseCon2017 Democratizing HBase
HBaseCon2017 Democratizing HBaseHBaseCon
 
HBaseCon2017 Removable singularity: a story of HBase upgrade in Pinterest
HBaseCon2017 Removable singularity: a story of HBase upgrade in PinterestHBaseCon2017 Removable singularity: a story of HBase upgrade in Pinterest
HBaseCon2017 Removable singularity: a story of HBase upgrade in PinterestHBaseCon
 
HBaseCon2017 Quanta: Quora's hierarchical counting system on HBase
HBaseCon2017 Quanta: Quora's hierarchical counting system on HBaseHBaseCon2017 Quanta: Quora's hierarchical counting system on HBase
HBaseCon2017 Quanta: Quora's hierarchical counting system on HBaseHBaseCon
 
HBaseCon2017 Transactions in HBase
HBaseCon2017 Transactions in HBaseHBaseCon2017 Transactions in HBase
HBaseCon2017 Transactions in HBaseHBaseCon
 
HBaseCon2017 Highly-Available HBase
HBaseCon2017 Highly-Available HBaseHBaseCon2017 Highly-Available HBase
HBaseCon2017 Highly-Available HBaseHBaseCon
 
HBaseCon2017 Apache HBase at Didi
HBaseCon2017 Apache HBase at DidiHBaseCon2017 Apache HBase at Didi
HBaseCon2017 Apache HBase at DidiHBaseCon
 
HBaseCon2017 gohbase: Pure Go HBase Client
HBaseCon2017 gohbase: Pure Go HBase ClientHBaseCon2017 gohbase: Pure Go HBase Client
HBaseCon2017 gohbase: Pure Go HBase ClientHBaseCon
 

More from HBaseCon (20)

hbaseconasia2017: Building online HBase cluster of Zhihu based on Kubernetes
hbaseconasia2017: Building online HBase cluster of Zhihu based on Kuberneteshbaseconasia2017: Building online HBase cluster of Zhihu based on Kubernetes
hbaseconasia2017: Building online HBase cluster of Zhihu based on Kubernetes
 
hbaseconasia2017: HBase on Beam
hbaseconasia2017: HBase on Beamhbaseconasia2017: HBase on Beam
hbaseconasia2017: HBase on Beam
 
hbaseconasia2017: HBase Disaster Recovery Solution at Huawei
hbaseconasia2017: HBase Disaster Recovery Solution at Huaweihbaseconasia2017: HBase Disaster Recovery Solution at Huawei
hbaseconasia2017: HBase Disaster Recovery Solution at Huawei
 
hbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinterest
hbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinteresthbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinterest
hbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinterest
 
hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程
hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程
hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程
 
hbaseconasia2017: Apache HBase at Netease
hbaseconasia2017: Apache HBase at Neteasehbaseconasia2017: Apache HBase at Netease
hbaseconasia2017: Apache HBase at Netease
 
hbaseconasia2017: HBase在Hulu的使用和实践
hbaseconasia2017: HBase在Hulu的使用和实践hbaseconasia2017: HBase在Hulu的使用和实践
hbaseconasia2017: HBase在Hulu的使用和实践
 
hbaseconasia2017: 基于HBase的企业级大数据平台
hbaseconasia2017: 基于HBase的企业级大数据平台hbaseconasia2017: 基于HBase的企业级大数据平台
hbaseconasia2017: 基于HBase的企业级大数据平台
 
hbaseconasia2017: HBase at JD.com
hbaseconasia2017: HBase at JD.comhbaseconasia2017: HBase at JD.com
hbaseconasia2017: HBase at JD.com
 
hbaseconasia2017: Large scale data near-line loading method and architecture
hbaseconasia2017: Large scale data near-line loading method and architecturehbaseconasia2017: Large scale data near-line loading method and architecture
hbaseconasia2017: Large scale data near-line loading method and architecture
 
hbaseconasia2017: Ecosystems with HBase and CloudTable service at Huawei
hbaseconasia2017: Ecosystems with HBase and CloudTable service at Huaweihbaseconasia2017: Ecosystems with HBase and CloudTable service at Huawei
hbaseconasia2017: Ecosystems with HBase and CloudTable service at Huawei
 
hbaseconasia2017: HBase Practice At XiaoMi
hbaseconasia2017: HBase Practice At XiaoMihbaseconasia2017: HBase Practice At XiaoMi
hbaseconasia2017: HBase Practice At XiaoMi
 
hbaseconasia2017: hbase-2.0.0
hbaseconasia2017: hbase-2.0.0hbaseconasia2017: hbase-2.0.0
hbaseconasia2017: hbase-2.0.0
 
HBaseCon2017 Democratizing HBase
HBaseCon2017 Democratizing HBaseHBaseCon2017 Democratizing HBase
HBaseCon2017 Democratizing HBase
 
HBaseCon2017 Removable singularity: a story of HBase upgrade in Pinterest
HBaseCon2017 Removable singularity: a story of HBase upgrade in PinterestHBaseCon2017 Removable singularity: a story of HBase upgrade in Pinterest
HBaseCon2017 Removable singularity: a story of HBase upgrade in Pinterest
 
HBaseCon2017 Quanta: Quora's hierarchical counting system on HBase
HBaseCon2017 Quanta: Quora's hierarchical counting system on HBaseHBaseCon2017 Quanta: Quora's hierarchical counting system on HBase
HBaseCon2017 Quanta: Quora's hierarchical counting system on HBase
 
HBaseCon2017 Transactions in HBase
HBaseCon2017 Transactions in HBaseHBaseCon2017 Transactions in HBase
HBaseCon2017 Transactions in HBase
 
HBaseCon2017 Highly-Available HBase
HBaseCon2017 Highly-Available HBaseHBaseCon2017 Highly-Available HBase
HBaseCon2017 Highly-Available HBase
 
HBaseCon2017 Apache HBase at Didi
HBaseCon2017 Apache HBase at DidiHBaseCon2017 Apache HBase at Didi
HBaseCon2017 Apache HBase at Didi
 
HBaseCon2017 gohbase: Pure Go HBase Client
HBaseCon2017 gohbase: Pure Go HBase ClientHBaseCon2017 gohbase: Pure Go HBase Client
HBaseCon2017 gohbase: Pure Go HBase Client
 

Recently uploaded

P1 Inspection Types in Municity 5 Smartsheet
P1 Inspection Types in Municity 5 SmartsheetP1 Inspection Types in Municity 5 Smartsheet
P1 Inspection Types in Municity 5 SmartsheetMatthewTHawley
 
Manual de la Mezcladora SoundCraft Notepad -12Fx
Manual de la Mezcladora SoundCraft Notepad -12FxManual de la Mezcladora SoundCraft Notepad -12Fx
Manual de la Mezcladora SoundCraft Notepad -12Fxjavierdavidvelasco17
 
OpenChain AI Study Group - North America and Europe - 2024-02-20
OpenChain AI Study Group - North America and Europe - 2024-02-20OpenChain AI Study Group - North America and Europe - 2024-02-20
OpenChain AI Study Group - North America and Europe - 2024-02-20Shane Coughlan
 
100 TOOLS TO MEASURE AND ANALYSE YOUR DIGITAL MARKETING EFFORTS
100 TOOLS TO MEASURE AND ANALYSE YOUR DIGITAL MARKETING EFFORTS100 TOOLS TO MEASURE AND ANALYSE YOUR DIGITAL MARKETING EFFORTS
100 TOOLS TO MEASURE AND ANALYSE YOUR DIGITAL MARKETING EFFORTSi-engage
 
"Discovery and Delivery through Product IntelliGenAI framework" by Ramkumar A...
"Discovery and Delivery through Product IntelliGenAI framework" by Ramkumar A..."Discovery and Delivery through Product IntelliGenAI framework" by Ramkumar A...
"Discovery and Delivery through Product IntelliGenAI framework" by Ramkumar A...ISPMAIndia
 
Steps to Build a PWA with Odoo.pdf
Steps to Build a PWA with Odoo.pdfSteps to Build a PWA with Odoo.pdf
Steps to Build a PWA with Odoo.pdfayushinwizards
 
SPM 2024 – Overview of and benefits of AI in Product Management
SPM 2024 – Overview of and benefits of AI in Product ManagementSPM 2024 – Overview of and benefits of AI in Product Management
SPM 2024 – Overview of and benefits of AI in Product ManagementISPMAIndia
 
maximum subarray ppt for killing camp students
maximum subarray ppt for killing camp studentsmaximum subarray ppt for killing camp students
maximum subarray ppt for killing camp studentsssuser82c38d
 
The Age of AI: Elevating Experiences & Delivering Customer Value!
The Age of AI: Elevating Experiences & Delivering Customer Value!The Age of AI: Elevating Experiences & Delivering Customer Value!
The Age of AI: Elevating Experiences & Delivering Customer Value!ISPMAIndia
 
killingcamp 광고삽입문제 풀이, killingcamp 광고삽입문제 풀이
killingcamp 광고삽입문제 풀이, killingcamp 광고삽입문제 풀이killingcamp 광고삽입문제 풀이, killingcamp 광고삽입문제 풀이
killingcamp 광고삽입문제 풀이, killingcamp 광고삽입문제 풀이ssuser82c38d
 
Embracing Change - The Impact of Generative AI on Strategic Portfolio Management
Embracing Change - The Impact of Generative AI on Strategic Portfolio ManagementEmbracing Change - The Impact of Generative AI on Strategic Portfolio Management
Embracing Change - The Impact of Generative AI on Strategic Portfolio ManagementOnePlan Solutions
 
Getting Started with Trello for Beginners.pptx
Getting Started with Trello for Beginners.pptxGetting Started with Trello for Beginners.pptx
Getting Started with Trello for Beginners.pptxmavinoikein
 
Open Sprintera (Where Open Source Sparks a Sprint of Possibilities)
Open Sprintera (Where Open Source Sparks a Sprint of Possibilities)Open Sprintera (Where Open Source Sparks a Sprint of Possibilities)
Open Sprintera (Where Open Source Sparks a Sprint of Possibilities)GDSCNiT
 
App Builder - Hierarchical Data Apps.pptx
App Builder - Hierarchical Data Apps.pptxApp Builder - Hierarchical Data Apps.pptx
App Builder - Hierarchical Data Apps.pptxPoojitha B
 
The Game-Changer_ How Software Development Outsource Can Catapult Your Growth...
The Game-Changer_ How Software Development Outsource Can Catapult Your Growth...The Game-Changer_ How Software Development Outsource Can Catapult Your Growth...
The Game-Changer_ How Software Development Outsource Can Catapult Your Growth...emili denli
 
killing camp week 6 problem - maximal matrix.pdf
killing camp week 6 problem - maximal matrix.pdfkilling camp week 6 problem - maximal matrix.pdf
killing camp week 6 problem - maximal matrix.pdfssuser82c38d
 
Industry 4.0: Building the Unified Namespace with Confluent, HiveMQ and Spark...
Industry 4.0: Building the Unified Namespace with Confluent, HiveMQ and Spark...Industry 4.0: Building the Unified Namespace with Confluent, HiveMQ and Spark...
Industry 4.0: Building the Unified Namespace with Confluent, HiveMQ and Spark...confluent
 
AUTOKEYUNLOCKER-BRANDS-SUPPORT-STANDARD-VERSION.pdf
AUTOKEYUNLOCKER-BRANDS-SUPPORT-STANDARD-VERSION.pdfAUTOKEYUNLOCKER-BRANDS-SUPPORT-STANDARD-VERSION.pdf
AUTOKEYUNLOCKER-BRANDS-SUPPORT-STANDARD-VERSION.pdfAutokey
 
Self scaling Multi cloud nomad workloads
Self scaling Multi cloud nomad workloadsSelf scaling Multi cloud nomad workloads
Self scaling Multi cloud nomad workloadsBram Vogelaar
 
AI Product Management by Abhijit Bendigiri
AI Product Management by Abhijit BendigiriAI Product Management by Abhijit Bendigiri
AI Product Management by Abhijit BendigiriISPMAIndia
 

Recently uploaded (20)

P1 Inspection Types in Municity 5 Smartsheet
P1 Inspection Types in Municity 5 SmartsheetP1 Inspection Types in Municity 5 Smartsheet
P1 Inspection Types in Municity 5 Smartsheet
 
Manual de la Mezcladora SoundCraft Notepad -12Fx
Manual de la Mezcladora SoundCraft Notepad -12FxManual de la Mezcladora SoundCraft Notepad -12Fx
Manual de la Mezcladora SoundCraft Notepad -12Fx
 
OpenChain AI Study Group - North America and Europe - 2024-02-20
OpenChain AI Study Group - North America and Europe - 2024-02-20OpenChain AI Study Group - North America and Europe - 2024-02-20
OpenChain AI Study Group - North America and Europe - 2024-02-20
 
100 TOOLS TO MEASURE AND ANALYSE YOUR DIGITAL MARKETING EFFORTS
100 TOOLS TO MEASURE AND ANALYSE YOUR DIGITAL MARKETING EFFORTS100 TOOLS TO MEASURE AND ANALYSE YOUR DIGITAL MARKETING EFFORTS
100 TOOLS TO MEASURE AND ANALYSE YOUR DIGITAL MARKETING EFFORTS
 
"Discovery and Delivery through Product IntelliGenAI framework" by Ramkumar A...
"Discovery and Delivery through Product IntelliGenAI framework" by Ramkumar A..."Discovery and Delivery through Product IntelliGenAI framework" by Ramkumar A...
"Discovery and Delivery through Product IntelliGenAI framework" by Ramkumar A...
 
Steps to Build a PWA with Odoo.pdf
Steps to Build a PWA with Odoo.pdfSteps to Build a PWA with Odoo.pdf
Steps to Build a PWA with Odoo.pdf
 
SPM 2024 – Overview of and benefits of AI in Product Management
SPM 2024 – Overview of and benefits of AI in Product ManagementSPM 2024 – Overview of and benefits of AI in Product Management
SPM 2024 – Overview of and benefits of AI in Product Management
 
maximum subarray ppt for killing camp students
maximum subarray ppt for killing camp studentsmaximum subarray ppt for killing camp students
maximum subarray ppt for killing camp students
 
The Age of AI: Elevating Experiences & Delivering Customer Value!
The Age of AI: Elevating Experiences & Delivering Customer Value!The Age of AI: Elevating Experiences & Delivering Customer Value!
The Age of AI: Elevating Experiences & Delivering Customer Value!
 
killingcamp 광고삽입문제 풀이, killingcamp 광고삽입문제 풀이
killingcamp 광고삽입문제 풀이, killingcamp 광고삽입문제 풀이killingcamp 광고삽입문제 풀이, killingcamp 광고삽입문제 풀이
killingcamp 광고삽입문제 풀이, killingcamp 광고삽입문제 풀이
 
Embracing Change - The Impact of Generative AI on Strategic Portfolio Management
Embracing Change - The Impact of Generative AI on Strategic Portfolio ManagementEmbracing Change - The Impact of Generative AI on Strategic Portfolio Management
Embracing Change - The Impact of Generative AI on Strategic Portfolio Management
 
Getting Started with Trello for Beginners.pptx
Getting Started with Trello for Beginners.pptxGetting Started with Trello for Beginners.pptx
Getting Started with Trello for Beginners.pptx
 
Open Sprintera (Where Open Source Sparks a Sprint of Possibilities)
Open Sprintera (Where Open Source Sparks a Sprint of Possibilities)Open Sprintera (Where Open Source Sparks a Sprint of Possibilities)
Open Sprintera (Where Open Source Sparks a Sprint of Possibilities)
 
App Builder - Hierarchical Data Apps.pptx
App Builder - Hierarchical Data Apps.pptxApp Builder - Hierarchical Data Apps.pptx
App Builder - Hierarchical Data Apps.pptx
 
The Game-Changer_ How Software Development Outsource Can Catapult Your Growth...
The Game-Changer_ How Software Development Outsource Can Catapult Your Growth...The Game-Changer_ How Software Development Outsource Can Catapult Your Growth...
The Game-Changer_ How Software Development Outsource Can Catapult Your Growth...
 
killing camp week 6 problem - maximal matrix.pdf
killing camp week 6 problem - maximal matrix.pdfkilling camp week 6 problem - maximal matrix.pdf
killing camp week 6 problem - maximal matrix.pdf
 
Industry 4.0: Building the Unified Namespace with Confluent, HiveMQ and Spark...
Industry 4.0: Building the Unified Namespace with Confluent, HiveMQ and Spark...Industry 4.0: Building the Unified Namespace with Confluent, HiveMQ and Spark...
Industry 4.0: Building the Unified Namespace with Confluent, HiveMQ and Spark...
 
AUTOKEYUNLOCKER-BRANDS-SUPPORT-STANDARD-VERSION.pdf
AUTOKEYUNLOCKER-BRANDS-SUPPORT-STANDARD-VERSION.pdfAUTOKEYUNLOCKER-BRANDS-SUPPORT-STANDARD-VERSION.pdf
AUTOKEYUNLOCKER-BRANDS-SUPPORT-STANDARD-VERSION.pdf
 
Self scaling Multi cloud nomad workloads
Self scaling Multi cloud nomad workloadsSelf scaling Multi cloud nomad workloads
Self scaling Multi cloud nomad workloads
 
AI Product Management by Abhijit Bendigiri
AI Product Management by Abhijit BendigiriAI Product Management by Abhijit Bendigiri
AI Product Management by Abhijit Bendigiri
 

HBaseCon 2015: HBase @ Flipboard

  • 7. Scale 100+ million users 250,000+ new users/day 15+ million magazines
  • 8. Why HBase? • Transferrable Hadoop operational expertise • MapReduce! • Write throughput • Better elasticity than MySQL, our other primary data store • Strong consistency • Column-oriented, as opposed to simple K/V
  • 9. What do we use it for? • User-generated magazines, likes, comments • Vanity metrics for those magazines- daily + all-time counters/HLLs • Follow graph • RSS feeds • More and more every day…
  • 10. Magazine Storage • Stored in a single HBase table • Magazines live in one column family (“magazine”) • Articles in temporal order in another CF (“article”) • Logically, everything shared is tagged with magazine ID (prefix compression helps here) • Makes the calculation of everything a user shared efficient
  • 11. User Magazines magazine:<magazineid> magazine:<magazineid> magazine:<magazineid> sha1(userid) MagazineData (serialized JSON) MagazineData (serialized JSON) MagazineData (serialized JSON) Magazine CF of Collection Table Listing magazines a user has created is a single read Data is stored in serialized JSON for language interoperability but is parsed and serialized by plain old java objects
  • 12. User Magazines [Reverse Unix TS]: [magazineid] [Reverse Unix TS]: [magazineid] sha1(userid) Article Data(Serialized JSON) Article Data(Serialized JSON) Articles CF of Collection Table Kept in temporal order so that most recently shared articles are first Access patterns are usually newest first. HBase Filters are used to slice wide rows.
  • 13. User Magazines like:[userid] reflip:[new article id] comment:[timestamp] [userid] Article ID JSON (who/when) JSON (where it was reflipped) JSON (comment/person) Social Activity One cell per like, since you can only do it once per user Can be many comment and reflip cells by one user per article Alternative orderings can be computed from Elasticsearch indexes
  • 14. User Magazines magazine:<magazineid> contributor:<magazine>: <userid> sha1(userid) JSON metadata JSON metadata Multiple Contributors Magazine CF contains magazines that user can share into. Contributor CF contains user’s magazines that others are allowed to share into.
  • 15. User Magazines <metric>:<day> <metric>_count magID long count for day alltime count Per magazine metrics live in Stats CF Atomic increments for counters, both a per day count and a total count: Total Articles Contributors etc.
  • 16. User Magazines <unique>:<day> <unique>_count magID HLL for individual day Premerged HLL Unique readers kept in each magazine’s row as a serialized HyperLogLog Allows for merging unique data over day ranges or displaying all time
  • 17. Social Graph follow:userid follower:userid stats:<counter> sha1(userid) JSON person that I follow JSON person that follows me long count of followers/ following Stored in friends table, follower/followers/stats CFs; metadata in MySQL Alternative indexes in Elasticsearch
  • 18. HBase Table Access Patterns • Tables optimized for application access patterns (“design for the questions, not the answers”) • Fetching an individual magazine- collection table, magazine CF, [magazine ID] -> cell • Fetching an individual article - article table, article:[article ID] cell • Fetch an article’s stats - article table, article:stats cells • Fetching a magazine’s articles: collection table, article CF, with cell limit and column qualifier starts with magazine id • Fetching a user’s magazines- collection table, magazine CF, [magazine ID] in the CQ
  • 19. Client Stats • Articles: sum(magazine stats:article_count for each magazine) • Magazines: count(collection:magazine) cells • Followers: friends:stats:follower_count + sum(magazine stats:subscriber_count for each magazine)
  • 20. More Client Stats • Summary stats use counters from the article table, detailed stats (who liked the article?) read cells • We can cache the feed of items, but the stats/like state is calculated per user • likes: article:stats:like_count • reflips: article:stats:reflip_count • comments: article:stats:comment_count
  • 22. AsyncHBase Usage • Our fork adds column filters on wide rows- we’d like to get these upstream • Stats requests require scatter/gather reads for several tables, sometimes over multiple HBase clusters • HBaseAsync requests are grouped into a single Deferred • Most requests are a get on a single row, no multi row scans • Most requests wait once until the results are returned or a deadline expires • If data is returned late or HBase regions are not available, partial calculations are allowed (we just display the stats we’ve got)
  • 23. Handling HBase Failures • Most patterns are read before write which causes early failure • We can tolerate some data loss (atomic increments, vanity stats) • Individual servers track inflight requests to HBase, slow puts and gets, and report to Graphite • Various levels of caching allow HBase recovery/region reassignment without end users noticing • Read Only mode - writes are stopped at the application layer • Ability to switch to replica under duress
  • 24. Current HBase Fleet • 15 clusters • ~100 tables • ~250TB in HDFS • ~250 RegionServers • Busiest clusters: 100,000+ qps, 1000 regions
  • 25. HBase Fleet, continued • All in EC2 😳 • Nothing in VPC, yet • Each cluster lives within an AZ • 1 durable cluster doing cross-AZ HBase-level replication • 1 cluster running Stargate (it works, but we’re not in love with it)
  • 26. HBase History at Flipboard Oldest current production instances launched in 2011
  • 27. (This cluster is going away soon 😀)
  • 28. HBase Version Distribution • 0.90: dwindling, thankfully • 0.94: Moved to Snappy; Stargate cluster for RSS storage; Python writers, Go readers • 0.96: First CDH5/Java 7/Ubuntu Precise clusters; magazines live in one of these • 0.98: pre-calculated user homefeeds, more • 1.0, 1.1: Soon…
  • 29. Which instance types? • Started off with m1.xlarges for the 1.6TB of ephemeral (spinning) disk; when we started using HBase, AWS didn’t have SSDs • Moved to hi1.4xlarges (16 cores, 60GB RAM, 2x1TB local SSD) • Moved to i2s (next-gen SSD instances, made for databases) as soon as AWS let us launch them! • ❤ i2s; some 2x, some 4x
  • 30. AWS tips • Use instance storage, not EBS • Rely on HDFS to keep your bits replicated instead of using EBS • Cross-AZ latency is minimal, but traffic is expensive! • Push HDFS snapshots to S3 (we trigger this from Jenkins) • If you jack up your network-related timeouts to handle AWS’ network flakiness, your MTTR rises, so be careful… • Upgrade often, you’ll get more sleep!
  • 31. Clients • Java, Scala- AsyncHBase, which we love. Added column filtering for wide rows. • Python + Go: protobufs over HTTP via Stargate, which works • We use HAProxy everywhere, so we use that to load balance requests to Stargate servers
  • 32. What’s next for HBase at Flipboard? • Moar HBase • 1.0, now that CDH has it in 5.4.0; 1.1 when CDH gets it, hopefully soon… • Region replicas (HBASE-10070) will help with use cases that can tolerate timeline consistency; 1.1 will have many improvements here • Compaction throttling! (HBASE-8329) • Java 8 + G1, Ubuntu Trusty, 3.13 kernel • EC2 placement groups + VPC enhanced networking, once we’re in (no charge for these) • HTrace (we use a little Zipkin, would love to get more HBase visibility) • Multitenancy improvements in Apache HBase will help us put more customers on a cluster
  • 33. Wish List $ HydraBase! (HBASE-12259) Async client in Apache HBase so it keeps pace (HBASE-12684 is a start!) Native Go client for 0.96+
  • 34. Thanks! • Matt Blair (@mb on Flipboard, @mattyblair on Twitter) • Jason Culverhouse (@jsonculverhouse on both) • Sang Chi (@sangchi on Flipboard, @sandbreaker on Twitter)