HBaseCon 2015: OpenTSDB and AsyncHBase Update

HBaseCon
OpenTSDB 2.x
Distributed, Scalable Time Series Database
Benoit Sigoure tsunanet@gmail.com
Chris Larsen clarsen@yahoo-inc.com
Who We Are
Benoit Sigoure
● Created OpenTSDB at StumbleUpon
● Software Engineer @ Arista Networks
Chris Larsen
● Release manager for OpenTSDB 2.x
● Software Engineer @ Yahoo
What Is OpenTSDB?
● Open Source Time Series Database
● Store trillions of data points
● Sucks up all data and keeps going
● Never lose precision
● Scales using HBase
What good is it?
● Systems Monitoring & Measurement
o Servers
o Networks
● Sensor Data
o The Internet of Things
o SCADA
● Financial Data
● Scientific Experiment Results
Use Cases
● > 100 Region Servers ~ 30TB
● 60 TSDs
● 600,000 writes per second
● Primary data store for operational data
● Telemetry from StatsD, Ostrich and derived
data from Storm
Use Cases
● Monitoring application performance and
statistics
● 50 region servers, 2.4M writes/s ~ 200TB
● Multi-tenant and Kerberos secure HBase
● ~200k writes per second per TSD
● Central monitoring for all Yahoo properties
● Over a billion time series served
Some Other Users
● Box: 23 servers, 90K wps, System, app network, business metrics
● Limelight Networks: 8 servers, 30k wps, 24TB of data
● Ticketmaster: 13 servers, 90K wps, ~40GB a day
What Are Time Series?
● Time Series: data points for an identity
over time
● Typical Identity:
o Dotted string: web01.sys.cpu.user.0
● OpenTSDB Identity:
o Metric: sys.cpu.user
o Tags (name/value pairs):
host=web01 cpu=0
What Are Time Series?
Data Point:
● Metric + Tags
● + Value: 42
● + Timestamp: 1234567890
sys.cpu.user 1234567890 42 host=web01 cpu=0
^ a data point ^
How it Works
Writing Data
1) Open Telnet style socket, write:
put sys.cpu.user 1234567890 42 host=web01 cpu=0
2) ..or, post JSON to:
http://<host>:<port>/api/put
3) .. or import big files with CLI
● No schema definition
● No RRD file creation
● Just write!
Querying Data
● Graph with the GUI
● CLI tools
● HTTP API
● Aggregate multiple series
● Simple query language
To average all CPUs on host:
start=1h-ago
avg sys.cpu.user
host=web01
HBase Data Tables
● tsdb - Data point table. Massive
● tsdb-uid - Name to UID and UID to
name mappings
● tsdb-meta - Time series index and
meta-data
● tsdb-tree - Config and index for
hierarchical naming schema
Data Table Schema
● Row key is a concatenation of UIDs and time:
o metric + timestamp + tagk1 + tagv1… + tagkN + tagvN
● sys.cpu.user 1234567890 42 host=web01 cpu=0
x00x00x01x49x95xFBx70x00x00x01x00x00x01x00x00x02x00x00x02
● Timestamp normalized on 1 hour boundaries
● All data points for an hour are stored in one row
● Enables fast scans of all time series for a metric
● …or pass a row key filter for specific time series with
particular tags
Salting
1 Metric
+
Tag Cardinality > 1 Million
+
1 Write per Series, per Second
=
1 Sad Region
Salting
● Hash on the metric and tags
● Modulo into one of 20 buckets
● Prepend bucket ID to key
● Writes now hit 20 regions/servers
sys.cpu.user 1234567890 host=web01
x00x00x00x01x49x95xFBx70x00x00x01x00x00x01
sys.cpu.user 1234567890 host=web02
x01x00x00x01x49x95xFBx70x00x00x01x00x00x02
Salting
● 1M writes per second
to 50K per second =
But wait, there’s more!
● Query with 20
asynchronous
scanners...
20 Happy Regions
Salting
Appends
● Row holds one hour of data
o 60 columns @ 1 minute resolution
o 3,600 columns @ 1 second resolution
o 3,600,000 columns @ millisecond resolution
● 3.6M columns + row key
+ timestamp = network overhead
Appends
● Qualifiers encode
○ offset from row base time
○ data type (float or integer)
○ value length (1 to 8 bytes)
● Timestamp = 4 bytes
● Row key >= 13 bytes to 55 bytes
● 1 serialized column >= 20 to 69 bytes
[ 0b00001111, 0b11000111 ]
<---------------->^<->
delta (seconds) type value length
Appends
Compact it into one column!
● Concatenate qualifiers
● Concatenate values
● 1 row key, 1 timestamp
● 1 row from 69K to 14K, 83% savings
Qualifier: [ 0b00000000, 0b00000000, ... 0b00000000, 0b00010000 ]
Value: [ 0b00000001, ... 0b00000002 ]
Key: [ x00x00x00x01x49x95xFBx70x00x00x01x00x00x01 ]
Timestamp: [ x49x95xFBx70 ]
Appends
After each hour TSDs iterate over rows written:
● Read row from HBase (via a Get)
● Compact in memory
● Write new column to HBase (via a Put)
● Delete all old columns (via a MultiAction)
Drawbacks:
● Network traversal
● HBase RPC queue
● Cache busting
Appends
Try HBase Appends
● Qualifier special prefix
● Concatenate offsets and values in value array
● Still one key, one timestamp, one column
Qualifier: [ 0b00000004 ]
Value: [ 0b00000000, 0b00000000, 0b00000001,
<-Offset/type/length-> <-value ->
...0b00000000, 0b00010000, 0b00000002 ]
Appends
Reduces RPC count and network traffic but
increases region server CPU usage
<-------- Appends -------><-------------- Puts ------------->
Storage Exception Plugin
What to do during...
● Region Splits
● Region Moves
● Server Crashes
● AsyncHBase queues retries
NSREs
● Requeue into message buss:
Kafka
● Spool on disk: RocksDB
Downsampling
● Previous timestamps based on
first value
● Now snap to proper modulo
buckets
● Fill missing values with NaN, Null
or zeros during emission
New for OpenTSDB 2.1
● Improved compaction code path
● Last value query
● Meta table based lookup filtering
● Read/write TSD modes
● Preload UIDs
● fsck utility update
● CORS support
New for OpenTSDB 2.2
● Salting
● Appends
● Random UID Assignment
● NaN, Null or Zero fill policy during
downsampling
● Fully async query path
● Query tracking and statistics
● Additional thread, JVM and AsyncHBase stats
OpenTSDB Community
Bosun - Monitoring system based on OpenTSDB from the
folks at Stack Exchange
OpenTSDB Community
Graphana - Kibana and elasticsearch based front-end for
OpenTSDB, Graphite and InfluxDB
AsyncHBase 1.7
● AsyncHBase is a fully asynchronous, multi-
threaded HBase client
● Supports HBase 0.90 to 1.0
● Remains 2x faster than HTable in
PerformanceEvaluation
● Support for scanner filters, META prefetch,
“fail-fast” RPCs
New for 1.7
● Secure RPC support
● Per region client statistics
● RPC timeouts
● Atomic AppendRequest
● Unit tests!
GoHBase
GoHBase
● Prototype for a new pure-Go HBase client
● Apache 2.0 License
● https://github.com/tsuna/gohbase
● Still early on but feel free to help
The Future of OpenTSDB
The Future
● New query language with
support for
o Complex filters
o Cross metric expressions
o Data manipulation / Analysis
● Distributed queries
● Quality/Confidence measures
More Information
Thank you to everyone who has helped test, debug and add to OpenTSDB
2.1 and 2.2 including, but not limited to:
John Tamblin, Jesse Chang, Rajesh Gopalakrishna Pillai, Siddartha Guthikonda, Sean Miller, Aveek Misra,
Ashwin Ramachandrain, Francis Liu, Slawek Ligus, Gabriel Avellaneda, Nick Whitehead
● Contribute at github.com/OpenTSDB/opentsdb
● Website: opentsdb.net
● Documentation: opentsdb.net/docs/build/html
● Mailing List: groups.google.com/group/opentsdb
Images
● http://photos.jdhancock.com/photo/2013-06-04-212438-the-lonely-vacuum-of-space.html
● http://en.wikipedia.org/wiki/File:Semi-automated-external-monitor-defibrillator.jpg
● http://upload.wikimedia.org/wikipedia/commons/1/17/Dining_table_for_two.jpg
● http://upload.wikimedia.org/wikipedia/commons/9/92/Easy_button.JPG
● http://pixabay.com/en/compression-archiver-compress-149782/
● https://openclipart.org/detail/201862/kerberos-icon
● http://lego.cuusoo.com/ideas/view/96
1 of 37

Recommended

Iocコンテナについて by
IocコンテナについてIocコンテナについて
IocコンテナについてAkio Terayama
8K views39 slides
Magnum IO GPUDirect Storage 最新情報 by
Magnum IO GPUDirect Storage 最新情報Magnum IO GPUDirect Storage 最新情報
Magnum IO GPUDirect Storage 最新情報NVIDIA Japan
1.3K views48 slides
今だからこそ知りたい Docker Compose/Swarm 入門 by
今だからこそ知りたい Docker Compose/Swarm 入門今だからこそ知りたい Docker Compose/Swarm 入門
今だからこそ知りたい Docker Compose/Swarm 入門Masahito Zembutsu
23.2K views95 slides
Dockerからcontainerdへの移行 by
Dockerからcontainerdへの移行Dockerからcontainerdへの移行
Dockerからcontainerdへの移行Akihiro Suda
7.5K views36 slides
分散システムの限界について知ろう by
分散システムの限界について知ろう分散システムの限界について知ろう
分散システムの限界について知ろうShingo Omura
33.7K views60 slides
Python 3.9からの新定番zoneinfoを使いこなそう by
Python 3.9からの新定番zoneinfoを使いこなそうPython 3.9からの新定番zoneinfoを使いこなそう
Python 3.9からの新定番zoneinfoを使いこなそうRyuji Tsutsui
6.9K views42 slides

More Related Content

What's hot

kubernetes初心者がKnative Lambda Runtime触ってみた(Kubernetes Novice Tokyo #13 発表資料) by
kubernetes初心者がKnative Lambda Runtime触ってみた(Kubernetes Novice Tokyo #13 発表資料)kubernetes初心者がKnative Lambda Runtime触ってみた(Kubernetes Novice Tokyo #13 発表資料)
kubernetes初心者がKnative Lambda Runtime触ってみた(Kubernetes Novice Tokyo #13 発表資料)NTT DATA Technology & Innovation
1.6K views37 slides
時系列予測にTransformerを使うのは有効か? by
時系列予測にTransformerを使うのは有効か?時系列予測にTransformerを使うのは有効か?
時系列予測にTransformerを使うのは有効か?Fumihiko Takahashi
6.8K views29 slides
EnrootとPyxisで快適コンテナ生活 by
EnrootとPyxisで快適コンテナ生活EnrootとPyxisで快適コンテナ生活
EnrootとPyxisで快適コンテナ生活Kuninobu SaSaki
883 views28 slides
Pythonによる黒魔術入門 by
Pythonによる黒魔術入門Pythonによる黒魔術入門
Pythonによる黒魔術入門大樹 小倉
44.4K views35 slides
モノタロウの1900万商品を検索する Elasticsearch構築運用事例(2022-10-26 第50回Elasticsearch 勉強会発表資料) by
モノタロウの1900万商品を検索する Elasticsearch構築運用事例(2022-10-26 第50回Elasticsearch 勉強会発表資料)モノタロウの1900万商品を検索する Elasticsearch構築運用事例(2022-10-26 第50回Elasticsearch 勉強会発表資料)
モノタロウの1900万商品を検索する Elasticsearch構築運用事例(2022-10-26 第50回Elasticsearch 勉強会発表資料)株式会社MonotaRO Tech Team
599 views36 slides
本当は恐ろしい分散システムの話 by
本当は恐ろしい分散システムの話本当は恐ろしい分散システムの話
本当は恐ろしい分散システムの話Kumazaki Hiroki
686.1K views70 slides

What's hot(20)

kubernetes初心者がKnative Lambda Runtime触ってみた(Kubernetes Novice Tokyo #13 発表資料) by NTT DATA Technology & Innovation
kubernetes初心者がKnative Lambda Runtime触ってみた(Kubernetes Novice Tokyo #13 発表資料)kubernetes初心者がKnative Lambda Runtime触ってみた(Kubernetes Novice Tokyo #13 発表資料)
kubernetes初心者がKnative Lambda Runtime触ってみた(Kubernetes Novice Tokyo #13 発表資料)
時系列予測にTransformerを使うのは有効か? by Fumihiko Takahashi
時系列予測にTransformerを使うのは有効か?時系列予測にTransformerを使うのは有効か?
時系列予測にTransformerを使うのは有効か?
Fumihiko Takahashi6.8K views
EnrootとPyxisで快適コンテナ生活 by Kuninobu SaSaki
EnrootとPyxisで快適コンテナ生活EnrootとPyxisで快適コンテナ生活
EnrootとPyxisで快適コンテナ生活
Kuninobu SaSaki883 views
Pythonによる黒魔術入門 by 大樹 小倉
Pythonによる黒魔術入門Pythonによる黒魔術入門
Pythonによる黒魔術入門
大樹 小倉44.4K views
モノタロウの1900万商品を検索する Elasticsearch構築運用事例(2022-10-26 第50回Elasticsearch 勉強会発表資料) by 株式会社MonotaRO Tech Team
モノタロウの1900万商品を検索する Elasticsearch構築運用事例(2022-10-26 第50回Elasticsearch 勉強会発表資料)モノタロウの1900万商品を検索する Elasticsearch構築運用事例(2022-10-26 第50回Elasticsearch 勉強会発表資料)
モノタロウの1900万商品を検索する Elasticsearch構築運用事例(2022-10-26 第50回Elasticsearch 勉強会発表資料)
本当は恐ろしい分散システムの話 by Kumazaki Hiroki
本当は恐ろしい分散システムの話本当は恐ろしい分散システムの話
本当は恐ろしい分散システムの話
Kumazaki Hiroki686.1K views
インフラCICDの勘所 by Toru Makabe
インフラCICDの勘所インフラCICDの勘所
インフラCICDの勘所
Toru Makabe14.4K views
XXE、SSRF、安全でないデシリアライゼーション入門 by Hiroshi Tokumaru
XXE、SSRF、安全でないデシリアライゼーション入門XXE、SSRF、安全でないデシリアライゼーション入門
XXE、SSRF、安全でないデシリアライゼーション入門
Hiroshi Tokumaru3.6K views
技術選択とアーキテクトの役割 by Toru Yamaguchi
技術選択とアーキテクトの役割技術選択とアーキテクトの役割
技術選択とアーキテクトの役割
Toru Yamaguchi42K views
20分でわかるgVisor入門 by Shuji Yamada
20分でわかるgVisor入門20分でわかるgVisor入門
20分でわかるgVisor入門
Shuji Yamada22.1K views
Dockerからcontainerdへの移行 by Kohei Tokunaga
Dockerからcontainerdへの移行Dockerからcontainerdへの移行
Dockerからcontainerdへの移行
Kohei Tokunaga16.6K views
超実践 Cloud Spanner 設計講座 by Samir Hammoudi
超実践 Cloud Spanner 設計講座超実践 Cloud Spanner 設計講座
超実践 Cloud Spanner 設計講座
Samir Hammoudi21.3K views
今Serverlessが面白いわけ by Yoichi Kawasaki
今Serverlessが面白いわけ今Serverlessが面白いわけ
今Serverlessが面白いわけ
Yoichi Kawasaki23.8K views
Dockerfile を書くためのベストプラクティス解説編 by Masahito Zembutsu
Dockerfile を書くためのベストプラクティス解説編Dockerfile を書くためのベストプラクティス解説編
Dockerfile を書くためのベストプラクティス解説編
Masahito Zembutsu84.4K views
JVMのGCアルゴリズムとチューニング by 佑哉 廣岡
JVMのGCアルゴリズムとチューニングJVMのGCアルゴリズムとチューニング
JVMのGCアルゴリズムとチューニング
佑哉 廣岡21.7K views
マイクロにしすぎた結果がこれだよ! by mosa siru
マイクロにしすぎた結果がこれだよ!マイクロにしすぎた結果がこれだよ!
マイクロにしすぎた結果がこれだよ!
mosa siru132.6K views
マルチテナントのアプリケーション実装〜実践編〜 by Yoshiki Nakagawa
マルチテナントのアプリケーション実装〜実践編〜マルチテナントのアプリケーション実装〜実践編〜
マルチテナントのアプリケーション実装〜実践編〜
Yoshiki Nakagawa4.2K views
そのRails Engine、 本当に必要ですか? by nixiesan
そのRails Engine、 本当に必要ですか?そのRails Engine、 本当に必要ですか?
そのRails Engine、 本当に必要ですか?
nixiesan3.5K views
これからLDAPを始めるなら 「389-ds」を使ってみよう by Nobuyuki Sasaki
これからLDAPを始めるなら 「389-ds」を使ってみようこれからLDAPを始めるなら 「389-ds」を使ってみよう
これからLDAPを始めるなら 「389-ds」を使ってみよう
Nobuyuki Sasaki4.2K views

Viewers also liked

OpenTSDB 2.0 by
OpenTSDB 2.0OpenTSDB 2.0
OpenTSDB 2.0HBaseCon
18.3K views41 slides
openTSDB - Metrics for a distributed world by
openTSDB - Metrics for a distributed worldopenTSDB - Metrics for a distributed world
openTSDB - Metrics for a distributed worldOliver Hankeln
9.7K views46 slides
Update on OpenTSDB and AsyncHBase by
Update on OpenTSDB and AsyncHBase Update on OpenTSDB and AsyncHBase
Update on OpenTSDB and AsyncHBase HBaseCon
2.6K views34 slides
Monitoring MySQL with OpenTSDB by
Monitoring MySQL with OpenTSDBMonitoring MySQL with OpenTSDB
Monitoring MySQL with OpenTSDBGeoffrey Anderson
16.6K views42 slides
opentsdb in a real enviroment by
opentsdb in a real enviromentopentsdb in a real enviroment
opentsdb in a real enviromentChen Robert
11.6K views8 slides
InfluxDB の概要 - sonots #tokyoinfluxdb by
InfluxDB の概要 - sonots #tokyoinfluxdbInfluxDB の概要 - sonots #tokyoinfluxdb
InfluxDB の概要 - sonots #tokyoinfluxdbNaotoshi Seo
41.5K views53 slides

Viewers also liked(20)

OpenTSDB 2.0 by HBaseCon
OpenTSDB 2.0OpenTSDB 2.0
OpenTSDB 2.0
HBaseCon18.3K views
openTSDB - Metrics for a distributed world by Oliver Hankeln
openTSDB - Metrics for a distributed worldopenTSDB - Metrics for a distributed world
openTSDB - Metrics for a distributed world
Oliver Hankeln9.7K views
Update on OpenTSDB and AsyncHBase by HBaseCon
Update on OpenTSDB and AsyncHBase Update on OpenTSDB and AsyncHBase
Update on OpenTSDB and AsyncHBase
HBaseCon2.6K views
opentsdb in a real enviroment by Chen Robert
opentsdb in a real enviromentopentsdb in a real enviroment
opentsdb in a real enviroment
Chen Robert11.6K views
InfluxDB の概要 - sonots #tokyoinfluxdb by Naotoshi Seo
InfluxDB の概要 - sonots #tokyoinfluxdbInfluxDB の概要 - sonots #tokyoinfluxdb
InfluxDB の概要 - sonots #tokyoinfluxdb
Naotoshi Seo41.5K views
HBaseCon 2013: OpenTSDB at Box by Cloudera, Inc.
HBaseCon 2013: OpenTSDB at BoxHBaseCon 2013: OpenTSDB at Box
HBaseCon 2013: OpenTSDB at Box
Cloudera, Inc.8.8K views
HBaseCon 2012 | Lessons learned from OpenTSDB - Benoit Sigoure, StumbleUpon by Cloudera, Inc.
HBaseCon 2012 | Lessons learned from OpenTSDB - Benoit Sigoure, StumbleUponHBaseCon 2012 | Lessons learned from OpenTSDB - Benoit Sigoure, StumbleUpon
HBaseCon 2012 | Lessons learned from OpenTSDB - Benoit Sigoure, StumbleUpon
Cloudera, Inc.13.1K views
Argus Production Monitoring at Salesforce by HBaseCon
Argus Production Monitoring at SalesforceArgus Production Monitoring at Salesforce
Argus Production Monitoring at Salesforce
HBaseCon3.2K views
Apache Phoenix: Use Cases and New Features by HBaseCon
Apache Phoenix: Use Cases and New FeaturesApache Phoenix: Use Cases and New Features
Apache Phoenix: Use Cases and New Features
HBaseCon4.7K views
[FR] Timeseries appliqué aux couches de bébé by OVHcloud
[FR] Timeseries appliqué aux couches de bébé[FR] Timeseries appliqué aux couches de bébé
[FR] Timeseries appliqué aux couches de bébé
OVHcloud1.5K views
NoSQL Application Development with JSON and MapR-DB by MapR Technologies
NoSQL Application Development with JSON and MapR-DBNoSQL Application Development with JSON and MapR-DB
NoSQL Application Development with JSON and MapR-DB
MapR Technologies1.2K views
MapR-DB – The First In-Hadoop Document Database by MapR Technologies
MapR-DB – The First In-Hadoop Document DatabaseMapR-DB – The First In-Hadoop Document Database
MapR-DB – The First In-Hadoop Document Database
MapR Technologies2.4K views
Update on OpenTSDB and AsyncHBase by HBaseCon
Update on OpenTSDB and AsyncHBase Update on OpenTSDB and AsyncHBase
Update on OpenTSDB and AsyncHBase
HBaseCon803 views
Prestoで実現するインタラクティブクエリ - dbtech showcase 2014 Tokyo by Treasure Data, Inc.
Prestoで実現するインタラクティブクエリ - dbtech showcase 2014 TokyoPrestoで実現するインタラクティブクエリ - dbtech showcase 2014 Tokyo
Prestoで実現するインタラクティブクエリ - dbtech showcase 2014 Tokyo
Treasure Data, Inc.11.7K views
Time Series Processing with Apache Spark by QAware GmbH
Time Series Processing with Apache SparkTime Series Processing with Apache Spark
Time Series Processing with Apache Spark
QAware GmbH6.9K views
MapR Streams and MapR Converged Data Platform by MapR Technologies
MapR Streams and MapR Converged Data PlatformMapR Streams and MapR Converged Data Platform
MapR Streams and MapR Converged Data Platform
MapR Technologies3.3K views

Similar to HBaseCon 2015: OpenTSDB and AsyncHBase Update

How Netflix Uses Amazon Kinesis Streams to Monitor and Optimize Large-scale N... by
How Netflix Uses Amazon Kinesis Streams to Monitor and Optimize Large-scale N...How Netflix Uses Amazon Kinesis Streams to Monitor and Optimize Large-scale N...
How Netflix Uses Amazon Kinesis Streams to Monitor and Optimize Large-scale N...Amazon Web Services
4.9K views78 slides
Argus Production Monitoring at Salesforce by
Argus Production Monitoring at Salesforce Argus Production Monitoring at Salesforce
Argus Production Monitoring at Salesforce HBaseCon
404 views21 slides
Logs @ OVHcloud by
Logs @ OVHcloudLogs @ OVHcloud
Logs @ OVHcloudOVHcloud
469 views64 slides
Application Monitoring using Open Source: VictoriaMetrics - ClickHouse by
Application Monitoring using Open Source: VictoriaMetrics - ClickHouseApplication Monitoring using Open Source: VictoriaMetrics - ClickHouse
Application Monitoring using Open Source: VictoriaMetrics - ClickHouseVictoriaMetrics
178 views48 slides
Application Monitoring using Open Source - VictoriaMetrics & Altinity ClickHo... by
Application Monitoring using Open Source - VictoriaMetrics & Altinity ClickHo...Application Monitoring using Open Source - VictoriaMetrics & Altinity ClickHo...
Application Monitoring using Open Source - VictoriaMetrics & Altinity ClickHo...Altinity Ltd
395 views48 slides
End to End Processing of 3.7 Million Telemetry Events per Second using Lambda... by
End to End Processing of 3.7 Million Telemetry Events per Second using Lambda...End to End Processing of 3.7 Million Telemetry Events per Second using Lambda...
End to End Processing of 3.7 Million Telemetry Events per Second using Lambda...DataWorks Summit/Hadoop Summit
3.1K views41 slides

Similar to HBaseCon 2015: OpenTSDB and AsyncHBase Update(20)

How Netflix Uses Amazon Kinesis Streams to Monitor and Optimize Large-scale N... by Amazon Web Services
How Netflix Uses Amazon Kinesis Streams to Monitor and Optimize Large-scale N...How Netflix Uses Amazon Kinesis Streams to Monitor and Optimize Large-scale N...
How Netflix Uses Amazon Kinesis Streams to Monitor and Optimize Large-scale N...
Amazon Web Services4.9K views
Argus Production Monitoring at Salesforce by HBaseCon
Argus Production Monitoring at Salesforce Argus Production Monitoring at Salesforce
Argus Production Monitoring at Salesforce
HBaseCon404 views
Logs @ OVHcloud by OVHcloud
Logs @ OVHcloudLogs @ OVHcloud
Logs @ OVHcloud
OVHcloud469 views
Application Monitoring using Open Source: VictoriaMetrics - ClickHouse by VictoriaMetrics
Application Monitoring using Open Source: VictoriaMetrics - ClickHouseApplication Monitoring using Open Source: VictoriaMetrics - ClickHouse
Application Monitoring using Open Source: VictoriaMetrics - ClickHouse
VictoriaMetrics178 views
Application Monitoring using Open Source - VictoriaMetrics & Altinity ClickHo... by Altinity Ltd
Application Monitoring using Open Source - VictoriaMetrics & Altinity ClickHo...Application Monitoring using Open Source - VictoriaMetrics & Altinity ClickHo...
Application Monitoring using Open Source - VictoriaMetrics & Altinity ClickHo...
Altinity Ltd395 views
OpenTSDB: HBaseCon2017 by HBaseCon
OpenTSDB: HBaseCon2017OpenTSDB: HBaseCon2017
OpenTSDB: HBaseCon2017
HBaseCon2K views
Mirko Damiani - An Embedded soft real time distributed system in Go by linuxlab_conf
Mirko Damiani - An Embedded soft real time distributed system in GoMirko Damiani - An Embedded soft real time distributed system in Go
Mirko Damiani - An Embedded soft real time distributed system in Go
linuxlab_conf225 views
MariaDB ColumnStore by MariaDB plc
MariaDB ColumnStoreMariaDB ColumnStore
MariaDB ColumnStore
MariaDB plc489 views
Linux HTTPS/TCP/IP Stack for the Fast and Secure Web by All Things Open
Linux HTTPS/TCP/IP Stack for the Fast and Secure WebLinux HTTPS/TCP/IP Stack for the Fast and Secure Web
Linux HTTPS/TCP/IP Stack for the Fast and Secure Web
All Things Open425 views
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ... by Flink Forward
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Flink Forward573 views
HBaseCon2017 gohbase: Pure Go HBase Client by HBaseCon
HBaseCon2017 gohbase: Pure Go HBase ClientHBaseCon2017 gohbase: Pure Go HBase Client
HBaseCon2017 gohbase: Pure Go HBase Client
HBaseCon1.7K views
Realtime Statistics based on Apache Storm and RocketMQ by Xin Wang
Realtime Statistics based on Apache Storm and RocketMQRealtime Statistics based on Apache Storm and RocketMQ
Realtime Statistics based on Apache Storm and RocketMQ
Xin Wang2K views
Tweaking perfomance on high-load projects_Думанский Дмитрий by GeeksLab Odessa
Tweaking perfomance on high-load projects_Думанский ДмитрийTweaking perfomance on high-load projects_Думанский Дмитрий
Tweaking perfomance on high-load projects_Думанский Дмитрий
GeeksLab Odessa10.6K views
FOSDEM 2019: M3, Prometheus and Graphite with metrics and monitoring in an in... by Rob Skillington
FOSDEM 2019: M3, Prometheus and Graphite with metrics and monitoring in an in...FOSDEM 2019: M3, Prometheus and Graphite with metrics and monitoring in an in...
FOSDEM 2019: M3, Prometheus and Graphite with metrics and monitoring in an in...
Rob Skillington979 views
Large volume data analysis on the Typesafe Reactive Platform - Big Data Scala... by Martin Zapletal
Large volume data analysis on the Typesafe Reactive Platform - Big Data Scala...Large volume data analysis on the Typesafe Reactive Platform - Big Data Scala...
Large volume data analysis on the Typesafe Reactive Platform - Big Data Scala...
Martin Zapletal1.3K views
Tempesta FW - Framework и Firewall для WAF и DDoS mitigation, Александр Крижа... by Ontico
Tempesta FW - Framework и Firewall для WAF и DDoS mitigation, Александр Крижа...Tempesta FW - Framework и Firewall для WAF и DDoS mitigation, Александр Крижа...
Tempesta FW - Framework и Firewall для WAF и DDoS mitigation, Александр Крижа...
Ontico1.9K views

More from HBaseCon

hbaseconasia2017: Building online HBase cluster of Zhihu based on Kubernetes by
hbaseconasia2017: Building online HBase cluster of Zhihu based on Kuberneteshbaseconasia2017: Building online HBase cluster of Zhihu based on Kubernetes
hbaseconasia2017: Building online HBase cluster of Zhihu based on KubernetesHBaseCon
3.9K views36 slides
hbaseconasia2017: HBase on Beam by
hbaseconasia2017: HBase on Beamhbaseconasia2017: HBase on Beam
hbaseconasia2017: HBase on BeamHBaseCon
1.3K views26 slides
hbaseconasia2017: HBase Disaster Recovery Solution at Huawei by
hbaseconasia2017: HBase Disaster Recovery Solution at Huaweihbaseconasia2017: HBase Disaster Recovery Solution at Huawei
hbaseconasia2017: HBase Disaster Recovery Solution at HuaweiHBaseCon
1.4K views21 slides
hbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinterest by
hbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinteresthbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinterest
hbaseconasia2017: Removable singularity: a story of HBase upgrade in PinterestHBaseCon
936 views42 slides
hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程 by
hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程
hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程HBaseCon
1.1K views21 slides
hbaseconasia2017: Apache HBase at Netease by
hbaseconasia2017: Apache HBase at Neteasehbaseconasia2017: Apache HBase at Netease
hbaseconasia2017: Apache HBase at NeteaseHBaseCon
754 views27 slides

More from HBaseCon(20)

hbaseconasia2017: Building online HBase cluster of Zhihu based on Kubernetes by HBaseCon
hbaseconasia2017: Building online HBase cluster of Zhihu based on Kuberneteshbaseconasia2017: Building online HBase cluster of Zhihu based on Kubernetes
hbaseconasia2017: Building online HBase cluster of Zhihu based on Kubernetes
HBaseCon3.9K views
hbaseconasia2017: HBase on Beam by HBaseCon
hbaseconasia2017: HBase on Beamhbaseconasia2017: HBase on Beam
hbaseconasia2017: HBase on Beam
HBaseCon1.3K views
hbaseconasia2017: HBase Disaster Recovery Solution at Huawei by HBaseCon
hbaseconasia2017: HBase Disaster Recovery Solution at Huaweihbaseconasia2017: HBase Disaster Recovery Solution at Huawei
hbaseconasia2017: HBase Disaster Recovery Solution at Huawei
HBaseCon1.4K views
hbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinterest by HBaseCon
hbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinteresthbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinterest
hbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinterest
HBaseCon936 views
hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程 by HBaseCon
hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程
hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程
HBaseCon1.1K views
hbaseconasia2017: Apache HBase at Netease by HBaseCon
hbaseconasia2017: Apache HBase at Neteasehbaseconasia2017: Apache HBase at Netease
hbaseconasia2017: Apache HBase at Netease
HBaseCon754 views
hbaseconasia2017: HBase在Hulu的使用和实践 by HBaseCon
hbaseconasia2017: HBase在Hulu的使用和实践hbaseconasia2017: HBase在Hulu的使用和实践
hbaseconasia2017: HBase在Hulu的使用和实践
HBaseCon878 views
hbaseconasia2017: 基于HBase的企业级大数据平台 by HBaseCon
hbaseconasia2017: 基于HBase的企业级大数据平台hbaseconasia2017: 基于HBase的企业级大数据平台
hbaseconasia2017: 基于HBase的企业级大数据平台
HBaseCon701 views
hbaseconasia2017: HBase at JD.com by HBaseCon
hbaseconasia2017: HBase at JD.comhbaseconasia2017: HBase at JD.com
hbaseconasia2017: HBase at JD.com
HBaseCon828 views
hbaseconasia2017: Large scale data near-line loading method and architecture by HBaseCon
hbaseconasia2017: Large scale data near-line loading method and architecturehbaseconasia2017: Large scale data near-line loading method and architecture
hbaseconasia2017: Large scale data near-line loading method and architecture
HBaseCon598 views
hbaseconasia2017: Ecosystems with HBase and CloudTable service at Huawei by HBaseCon
hbaseconasia2017: Ecosystems with HBase and CloudTable service at Huaweihbaseconasia2017: Ecosystems with HBase and CloudTable service at Huawei
hbaseconasia2017: Ecosystems with HBase and CloudTable service at Huawei
HBaseCon683 views
hbaseconasia2017: HBase Practice At XiaoMi by HBaseCon
hbaseconasia2017: HBase Practice At XiaoMihbaseconasia2017: HBase Practice At XiaoMi
hbaseconasia2017: HBase Practice At XiaoMi
HBaseCon1.8K views
hbaseconasia2017: hbase-2.0.0 by HBaseCon
hbaseconasia2017: hbase-2.0.0hbaseconasia2017: hbase-2.0.0
hbaseconasia2017: hbase-2.0.0
HBaseCon1.8K views
HBaseCon2017 Democratizing HBase by HBaseCon
HBaseCon2017 Democratizing HBaseHBaseCon2017 Democratizing HBase
HBaseCon2017 Democratizing HBase
HBaseCon897 views
HBaseCon2017 Removable singularity: a story of HBase upgrade in Pinterest by HBaseCon
HBaseCon2017 Removable singularity: a story of HBase upgrade in PinterestHBaseCon2017 Removable singularity: a story of HBase upgrade in Pinterest
HBaseCon2017 Removable singularity: a story of HBase upgrade in Pinterest
HBaseCon646 views
HBaseCon2017 Quanta: Quora's hierarchical counting system on HBase by HBaseCon
HBaseCon2017 Quanta: Quora's hierarchical counting system on HBaseHBaseCon2017 Quanta: Quora's hierarchical counting system on HBase
HBaseCon2017 Quanta: Quora's hierarchical counting system on HBase
HBaseCon608 views
HBaseCon2017 Transactions in HBase by HBaseCon
HBaseCon2017 Transactions in HBaseHBaseCon2017 Transactions in HBase
HBaseCon2017 Transactions in HBase
HBaseCon1.8K views
HBaseCon2017 Highly-Available HBase by HBaseCon
HBaseCon2017 Highly-Available HBaseHBaseCon2017 Highly-Available HBase
HBaseCon2017 Highly-Available HBase
HBaseCon1.1K views
HBaseCon2017 Apache HBase at Didi by HBaseCon
HBaseCon2017 Apache HBase at DidiHBaseCon2017 Apache HBase at Didi
HBaseCon2017 Apache HBase at Didi
HBaseCon996 views
HBaseCon2017 Improving HBase availability in a multi tenant environment by HBaseCon
HBaseCon2017 Improving HBase availability in a multi tenant environmentHBaseCon2017 Improving HBase availability in a multi tenant environment
HBaseCon2017 Improving HBase availability in a multi tenant environment
HBaseCon1.2K views

Recently uploaded

Agile 101 by
Agile 101Agile 101
Agile 101John Valentino
7 views20 slides
HarshithAkkapelli_Presentation.pdf by
HarshithAkkapelli_Presentation.pdfHarshithAkkapelli_Presentation.pdf
HarshithAkkapelli_Presentation.pdfharshithakkapelli
11 views16 slides
Copilot Prompting Toolkit_All Resources.pdf by
Copilot Prompting Toolkit_All Resources.pdfCopilot Prompting Toolkit_All Resources.pdf
Copilot Prompting Toolkit_All Resources.pdfRiccardo Zamana
8 views4 slides
DSD-INT 2023 Exploring flash flood hazard reduction in arid regions using a h... by
DSD-INT 2023 Exploring flash flood hazard reduction in arid regions using a h...DSD-INT 2023 Exploring flash flood hazard reduction in arid regions using a h...
DSD-INT 2023 Exploring flash flood hazard reduction in arid regions using a h...Deltares
5 views31 slides
SUGCON ANZ Presentation V2.1 Final.pptx by
SUGCON ANZ Presentation V2.1 Final.pptxSUGCON ANZ Presentation V2.1 Final.pptx
SUGCON ANZ Presentation V2.1 Final.pptxJack Spektor
22 views34 slides
2023-November-Schneider Electric-Meetup-BCN Admin Group.pptx by
2023-November-Schneider Electric-Meetup-BCN Admin Group.pptx2023-November-Schneider Electric-Meetup-BCN Admin Group.pptx
2023-November-Schneider Electric-Meetup-BCN Admin Group.pptxanimuscrm
14 views19 slides

Recently uploaded(20)

Copilot Prompting Toolkit_All Resources.pdf by Riccardo Zamana
Copilot Prompting Toolkit_All Resources.pdfCopilot Prompting Toolkit_All Resources.pdf
Copilot Prompting Toolkit_All Resources.pdf
Riccardo Zamana8 views
DSD-INT 2023 Exploring flash flood hazard reduction in arid regions using a h... by Deltares
DSD-INT 2023 Exploring flash flood hazard reduction in arid regions using a h...DSD-INT 2023 Exploring flash flood hazard reduction in arid regions using a h...
DSD-INT 2023 Exploring flash flood hazard reduction in arid regions using a h...
Deltares5 views
SUGCON ANZ Presentation V2.1 Final.pptx by Jack Spektor
SUGCON ANZ Presentation V2.1 Final.pptxSUGCON ANZ Presentation V2.1 Final.pptx
SUGCON ANZ Presentation V2.1 Final.pptx
Jack Spektor22 views
2023-November-Schneider Electric-Meetup-BCN Admin Group.pptx by animuscrm
2023-November-Schneider Electric-Meetup-BCN Admin Group.pptx2023-November-Schneider Electric-Meetup-BCN Admin Group.pptx
2023-November-Schneider Electric-Meetup-BCN Admin Group.pptx
animuscrm14 views
Software evolution understanding: Automatic extraction of software identifier... by Ra'Fat Al-Msie'deen
Software evolution understanding: Automatic extraction of software identifier...Software evolution understanding: Automatic extraction of software identifier...
Software evolution understanding: Automatic extraction of software identifier...
DSD-INT 2023 Wave-Current Interaction at Montrose Tidal Inlet System and Its ... by Deltares
DSD-INT 2023 Wave-Current Interaction at Montrose Tidal Inlet System and Its ...DSD-INT 2023 Wave-Current Interaction at Montrose Tidal Inlet System and Its ...
DSD-INT 2023 Wave-Current Interaction at Montrose Tidal Inlet System and Its ...
Deltares10 views
DSD-INT 2023 Delft3D FM Suite 2024.01 1D2D - Beta testing programme - Geertsema by Deltares
DSD-INT 2023 Delft3D FM Suite 2024.01 1D2D - Beta testing programme - GeertsemaDSD-INT 2023 Delft3D FM Suite 2024.01 1D2D - Beta testing programme - Geertsema
DSD-INT 2023 Delft3D FM Suite 2024.01 1D2D - Beta testing programme - Geertsema
Deltares17 views
DSD-INT 2023 Thermobaricity in 3D DCSM-FM - taking pressure into account in t... by Deltares
DSD-INT 2023 Thermobaricity in 3D DCSM-FM - taking pressure into account in t...DSD-INT 2023 Thermobaricity in 3D DCSM-FM - taking pressure into account in t...
DSD-INT 2023 Thermobaricity in 3D DCSM-FM - taking pressure into account in t...
Deltares9 views
.NET Developer Conference 2023 - .NET Microservices mit Dapr – zu viel Abstra... by Marc Müller
.NET Developer Conference 2023 - .NET Microservices mit Dapr – zu viel Abstra....NET Developer Conference 2023 - .NET Microservices mit Dapr – zu viel Abstra...
.NET Developer Conference 2023 - .NET Microservices mit Dapr – zu viel Abstra...
Marc Müller38 views
AI and Ml presentation .pptx by FayazAli87
AI and Ml presentation .pptxAI and Ml presentation .pptx
AI and Ml presentation .pptx
FayazAli8711 views
BushraDBR: An Automatic Approach to Retrieving Duplicate Bug Reports by Ra'Fat Al-Msie'deen
BushraDBR: An Automatic Approach to Retrieving Duplicate Bug ReportsBushraDBR: An Automatic Approach to Retrieving Duplicate Bug Reports
BushraDBR: An Automatic Approach to Retrieving Duplicate Bug Reports
360 graden fabriek by info33492
360 graden fabriek360 graden fabriek
360 graden fabriek
info3349237 views
Tridens DevOps by Tridens
Tridens DevOpsTridens DevOps
Tridens DevOps
Tridens9 views
A first look at MariaDB 11.x features and ideas on how to use them by Federico Razzoli
A first look at MariaDB 11.x features and ideas on how to use themA first look at MariaDB 11.x features and ideas on how to use them
A first look at MariaDB 11.x features and ideas on how to use them
Federico Razzoli45 views
Generic or specific? Making sensible software design decisions by Bert Jan Schrijver
Generic or specific? Making sensible software design decisionsGeneric or specific? Making sensible software design decisions
Generic or specific? Making sensible software design decisions

HBaseCon 2015: OpenTSDB and AsyncHBase Update

  • 1. OpenTSDB 2.x Distributed, Scalable Time Series Database Benoit Sigoure tsunanet@gmail.com Chris Larsen clarsen@yahoo-inc.com
  • 2. Who We Are Benoit Sigoure ● Created OpenTSDB at StumbleUpon ● Software Engineer @ Arista Networks Chris Larsen ● Release manager for OpenTSDB 2.x ● Software Engineer @ Yahoo
  • 3. What Is OpenTSDB? ● Open Source Time Series Database ● Store trillions of data points ● Sucks up all data and keeps going ● Never lose precision ● Scales using HBase
  • 4. What good is it? ● Systems Monitoring & Measurement o Servers o Networks ● Sensor Data o The Internet of Things o SCADA ● Financial Data ● Scientific Experiment Results
  • 5. Use Cases ● > 100 Region Servers ~ 30TB ● 60 TSDs ● 600,000 writes per second ● Primary data store for operational data ● Telemetry from StatsD, Ostrich and derived data from Storm
  • 6. Use Cases ● Monitoring application performance and statistics ● 50 region servers, 2.4M writes/s ~ 200TB ● Multi-tenant and Kerberos secure HBase ● ~200k writes per second per TSD ● Central monitoring for all Yahoo properties ● Over a billion time series served
  • 7. Some Other Users ● Box: 23 servers, 90K wps, System, app network, business metrics ● Limelight Networks: 8 servers, 30k wps, 24TB of data ● Ticketmaster: 13 servers, 90K wps, ~40GB a day
  • 8. What Are Time Series? ● Time Series: data points for an identity over time ● Typical Identity: o Dotted string: web01.sys.cpu.user.0 ● OpenTSDB Identity: o Metric: sys.cpu.user o Tags (name/value pairs): host=web01 cpu=0
  • 9. What Are Time Series? Data Point: ● Metric + Tags ● + Value: 42 ● + Timestamp: 1234567890 sys.cpu.user 1234567890 42 host=web01 cpu=0 ^ a data point ^
  • 11. Writing Data 1) Open Telnet style socket, write: put sys.cpu.user 1234567890 42 host=web01 cpu=0 2) ..or, post JSON to: http://<host>:<port>/api/put 3) .. or import big files with CLI ● No schema definition ● No RRD file creation ● Just write!
  • 12. Querying Data ● Graph with the GUI ● CLI tools ● HTTP API ● Aggregate multiple series ● Simple query language To average all CPUs on host: start=1h-ago avg sys.cpu.user host=web01
  • 13. HBase Data Tables ● tsdb - Data point table. Massive ● tsdb-uid - Name to UID and UID to name mappings ● tsdb-meta - Time series index and meta-data ● tsdb-tree - Config and index for hierarchical naming schema
  • 14. Data Table Schema ● Row key is a concatenation of UIDs and time: o metric + timestamp + tagk1 + tagv1… + tagkN + tagvN ● sys.cpu.user 1234567890 42 host=web01 cpu=0 x00x00x01x49x95xFBx70x00x00x01x00x00x01x00x00x02x00x00x02 ● Timestamp normalized on 1 hour boundaries ● All data points for an hour are stored in one row ● Enables fast scans of all time series for a metric ● …or pass a row key filter for specific time series with particular tags
  • 15. Salting 1 Metric + Tag Cardinality > 1 Million + 1 Write per Series, per Second = 1 Sad Region
  • 16. Salting ● Hash on the metric and tags ● Modulo into one of 20 buckets ● Prepend bucket ID to key ● Writes now hit 20 regions/servers sys.cpu.user 1234567890 host=web01 x00x00x00x01x49x95xFBx70x00x00x01x00x00x01 sys.cpu.user 1234567890 host=web02 x01x00x00x01x49x95xFBx70x00x00x01x00x00x02
  • 17. Salting ● 1M writes per second to 50K per second = But wait, there’s more! ● Query with 20 asynchronous scanners... 20 Happy Regions
  • 19. Appends ● Row holds one hour of data o 60 columns @ 1 minute resolution o 3,600 columns @ 1 second resolution o 3,600,000 columns @ millisecond resolution ● 3.6M columns + row key + timestamp = network overhead
  • 20. Appends ● Qualifiers encode ○ offset from row base time ○ data type (float or integer) ○ value length (1 to 8 bytes) ● Timestamp = 4 bytes ● Row key >= 13 bytes to 55 bytes ● 1 serialized column >= 20 to 69 bytes [ 0b00001111, 0b11000111 ] <---------------->^<-> delta (seconds) type value length
  • 21. Appends Compact it into one column! ● Concatenate qualifiers ● Concatenate values ● 1 row key, 1 timestamp ● 1 row from 69K to 14K, 83% savings Qualifier: [ 0b00000000, 0b00000000, ... 0b00000000, 0b00010000 ] Value: [ 0b00000001, ... 0b00000002 ] Key: [ x00x00x00x01x49x95xFBx70x00x00x01x00x00x01 ] Timestamp: [ x49x95xFBx70 ]
  • 22. Appends After each hour TSDs iterate over rows written: ● Read row from HBase (via a Get) ● Compact in memory ● Write new column to HBase (via a Put) ● Delete all old columns (via a MultiAction) Drawbacks: ● Network traversal ● HBase RPC queue ● Cache busting
  • 23. Appends Try HBase Appends ● Qualifier special prefix ● Concatenate offsets and values in value array ● Still one key, one timestamp, one column Qualifier: [ 0b00000004 ] Value: [ 0b00000000, 0b00000000, 0b00000001, <-Offset/type/length-> <-value -> ...0b00000000, 0b00010000, 0b00000002 ]
  • 24. Appends Reduces RPC count and network traffic but increases region server CPU usage <-------- Appends -------><-------------- Puts ------------->
  • 25. Storage Exception Plugin What to do during... ● Region Splits ● Region Moves ● Server Crashes ● AsyncHBase queues retries NSREs ● Requeue into message buss: Kafka ● Spool on disk: RocksDB
  • 26. Downsampling ● Previous timestamps based on first value ● Now snap to proper modulo buckets ● Fill missing values with NaN, Null or zeros during emission
  • 27. New for OpenTSDB 2.1 ● Improved compaction code path ● Last value query ● Meta table based lookup filtering ● Read/write TSD modes ● Preload UIDs ● fsck utility update ● CORS support
  • 28. New for OpenTSDB 2.2 ● Salting ● Appends ● Random UID Assignment ● NaN, Null or Zero fill policy during downsampling ● Fully async query path ● Query tracking and statistics ● Additional thread, JVM and AsyncHBase stats
  • 29. OpenTSDB Community Bosun - Monitoring system based on OpenTSDB from the folks at Stack Exchange
  • 30. OpenTSDB Community Graphana - Kibana and elasticsearch based front-end for OpenTSDB, Graphite and InfluxDB
  • 31. AsyncHBase 1.7 ● AsyncHBase is a fully asynchronous, multi- threaded HBase client ● Supports HBase 0.90 to 1.0 ● Remains 2x faster than HTable in PerformanceEvaluation ● Support for scanner filters, META prefetch, “fail-fast” RPCs
  • 32. New for 1.7 ● Secure RPC support ● Per region client statistics ● RPC timeouts ● Atomic AppendRequest ● Unit tests!
  • 34. GoHBase ● Prototype for a new pure-Go HBase client ● Apache 2.0 License ● https://github.com/tsuna/gohbase ● Still early on but feel free to help
  • 35. The Future of OpenTSDB
  • 36. The Future ● New query language with support for o Complex filters o Cross metric expressions o Data manipulation / Analysis ● Distributed queries ● Quality/Confidence measures
  • 37. More Information Thank you to everyone who has helped test, debug and add to OpenTSDB 2.1 and 2.2 including, but not limited to: John Tamblin, Jesse Chang, Rajesh Gopalakrishna Pillai, Siddartha Guthikonda, Sean Miller, Aveek Misra, Ashwin Ramachandrain, Francis Liu, Slawek Ligus, Gabriel Avellaneda, Nick Whitehead ● Contribute at github.com/OpenTSDB/opentsdb ● Website: opentsdb.net ● Documentation: opentsdb.net/docs/build/html ● Mailing List: groups.google.com/group/opentsdb Images ● http://photos.jdhancock.com/photo/2013-06-04-212438-the-lonely-vacuum-of-space.html ● http://en.wikipedia.org/wiki/File:Semi-automated-external-monitor-defibrillator.jpg ● http://upload.wikimedia.org/wikipedia/commons/1/17/Dining_table_for_two.jpg ● http://upload.wikimedia.org/wikipedia/commons/9/92/Easy_button.JPG ● http://pixabay.com/en/compression-archiver-compress-149782/ ● https://openclipart.org/detail/201862/kerberos-icon ● http://lego.cuusoo.com/ideas/view/96