OpenTSDB 2.0

HBaseCon
OpenTSDB 2.0
Distributed, Scalable Time Series Database
Benoit Sigoure tsunanet@gmail.com
Chris Larsen clarsen@llnw.com
Who We Are
Benoit Sigoure
● Created OpenTSDB at StumbleUpon
● Software Engineer @ Arista Networks
Chris Larsen
● Release manager for OpenTSDB 2.0
● Operations Engineer @ Limelight Networks
What Is OpenTSDB?
● Open Source Time Series Database
● Store trillions of data points
● Sucks up all data and keeps going
● Never lose precision
● Scales using HBase
What good is it?
● Systems Monitoring & Measurement
○ Servers
○ Networks
● Sensor Data
○ The Internet of Things
○ SCADA
● Financial Data
● Scientific Experiment Results
Use Cases
OVH: #3 largest cloud/hosting provider
Monitor everything: networking, temperature, voltage,
application performance, resource utilization,
customer-facing metrics, etc.
● 35 servers, 100k writes/s, 25TB raw data
● 5-day moving window of HBase snapshots
● Redis cache on top for customer-facing data
Use Cases
Yahoo
Monitoring application performance and statistics
● 15 servers, 280k writes/s
● Increased UID size to 4 bytes instead of 3, allowing
for over 4 billion values
● Looking at using HBase Append requests to avoid
TSD compactions
Use Cases
Arista Networks: High performance networking
● Single-node HBase (no HDFS) + 2 TSDs (one for
writing, one for reading)
● 5K writes per second, 500G of data, piece of cake
to deploy/maintain
● Varnish for caching
Some Other Users
● Box: 23 servers, 90K wps, System, app network, business metrics
● Limelight Networks: 8 servers, 30k wps, 24TB of data
● Ticketmaster: 13 servers, 90K wps, ~40GB a day
What Are Time Series?
● Time Series: data points for an identity
over time
● Typical Identity:
○ Dotted string: web01.sys.cpu.user.0
● OpenTSDB Identity:
○ Metric: sys.cpu.user
○ Tags (name/value pairs):
host=web01 cpu=0
What Are Time Series?
Data Point:
● Metric + Tags
● + Value: 42
● + Timestamp: 1234567890
sys.cpu.user 1234567890 42 host=web01 cpu=0
^ a data point ^
How it Works
Writing Data
1) Open Telnet style socket, write:
put sys.cpu.user 1234567890 42 host=web01 cpu=0
2) ..or with 2.0, post JSON to:
http://<host>:<port>/api/put
3) .. or import big files with CLI
● No schema definition
● No RRD file creation
● Just write!
Querying Data
● Graph with the GUI
● CLI tools
● HTTP API
● Aggregate multiple series
● Simple query language
To average all CPUs on host:
start=1h-ago
avg sys.cpu.user host=web01
HBase Data Tables
● tsdb - Data point table. Massive
● tsdb-uid - Name to UID and UID to
name mappings
● tsdb-meta - Time series index and
meta-data (new in 2.0)
● tsdb-tree - Config and index for
heirarchical naming schema (new
in 2.0)
Lets see how OpenTSDB uses
HBase...
UID Table Schema
● Integer UIDs assigned to each value per type (metric,
tagk, tagv) in tsdb-uid table
● 64 bit integers in row x00 reflect last used UID
CF:Qualifier Row Key UID
id:metric sys.cpu.user 1
id:tagk host 1
id:tagv web01 1
id:tagk cpu 2
id:tagv 0 2
Improved UID Assignment
● Pre 1.2 Assignment:
○ Client acquires lock on row x00
○ uid = getRequest(UID type)
○ Increment uid
○ getRequest(name) confirm name hasn’t been assigned
○ putRequest(type, uid)
○ putRequest(reverse map)
○ putRequest(forward map)
○ Release lock
● Lock held for a long time
● Puts overwrite data
Improved UID Assignment
● 1.2 & 2.0 Assignment:
○ atomicIncrementRequest(UID type)
○ getRequest(name) confirm name hasn’t been assigned
○ compareAndSet(reverse map)
○ compareAndSet(forward map)
● 3 atomic operations on different rows
● Much better concurrency with multiple TSDs assigning
UIDs
● CAS calls fail on existing data, log the error
Data Table Schema
● Row key is a concatenation of UIDs and time:
○ metric + timestamp + tagk1 + tagv1… + tagkN + tagvN
● sys.cpu.user 1234567890 42 host=web01 cpu=0
x00x00x01x49x95xFBx70x00x00x01x00x00x01x00x00x02x00x00x02
● Timestamp normalized on 1 hour boundaries
● All data points for an hour are stored in one row
● Enables fast scans of all time series for a metric
● …or pass a row key regex filter for specific time series
with particular tags
Data Table Schema
1.x Column Qualifiers:
● Type: floating point or integer value
● Value Length: number of bytes the value is encoded on
● Delta: offset from row timestamp in seconds
● Compacted columns concatenate an hour of qualifiers
and values into a single column
[ 0b11111111, 0b1111 0111 ]
<----------------> ^<->
delta (seconds) type value length
Data Table Schema
OpenTSDB 2.x Schema Design Goals
● Must maintain backwards compatibility
● Support millisecond precision timestamps
● Support other objects, e.g. annotations, blobs
○ E.g. could store quality measurements for each data
point
● Store millisecond and other objects in the same row as
data points
○ Scoops up all relevant time series data in one scan
Data Table Schema
Millisecond Support:
● Need 3,599,999 possible time offsets instead of 3,600
● Solution: 4 byte qualifier instead of 2
● Prefixed with xF0 to differentiate from a 2 value
compacted column
● Can mix second and millisecond precision in one row
● Still concatenates into one compacted column
[ 0b11111101, 0b10111011, 0b10011111, 0b11 000111 ]
<--><--------------------------------> ^^^<->
msec precision delta (milliseconds) type value length
2 unused bits
Data Table Schema
Annotations and Other Objects
● Odd number of bytes in qualifier (3 or 5)
● Prefix IDs: x01 = annotation, x02 = blob
● Remainder is offset in seconds or milliseconds
● Unbounded length, not meant for compaction
{
"tsuid": "000001000001000001",
"description": "Server Maintenance",
"notes": "Upgrading the server, ignore these values, winter is coming",
"endTime": 1369159800,
"startTime": 1369159200
}
TSUID Index and Meta Table
● Time Series UID = data table row key without timestamp
E.g. sys.cpu.user host=web01 cpu=0
x00x00x01x00x00x01x00x00x01x00x00x02x00x00x02
● Use TSUID as the row key
○ Can use a row key regex filter to scan for metrics with a tag pair
or the tags associated with a metric
● Atomic Increment for each data point
○ ts_counter column: Track number of data points written
○ ts_meta column: Async callback chain to create meta object if
increment returns a 1
○ Potentially doubles RPC count
OpenTSDB Trees
● Provide a hierarchical
representation of time series
○ Useful for Graphite or
browsing the data store
● Flexible rule system processes
metrics and tags
● Out of band creation or
process in real-time with
TSUID increment callback
chaining
OpenTSDB Trees
Example Time Series:
myapp.bytes_sent dc=dal host=web01
myapp.bytes_received dc=dal host=web01
Example Ruleset:
Level Order Rule
Type
Field Regex
0 0 tagk dc
1 0 tagk host
2 0 metric (.*)..*
3 0 metric .*.(*.)
OpenTSDB Trees
Example Results:
Flattened Names:
dal.web01.myapp.bytes_sent
dal.web01.myapp.bytes_received
Tree View :
● dal
○ web01
■ myapp
● bytes_sent
● bytes_received
^ leaves ^
Tree Table Schema
Column Qualifiers:
● tree: JSON object with tree description
● rule:<level>:<order>: JSON object definition of a rule
belonging to a tree
● branch: JSON object linking to child branches and/or leaves
● leaf:<tsuid>: JSON object linking to a specific TSUID
● tree_collision:<tsuid>: Time series was already included in
tree
● tree_not_matched:<tsuid>: Time series did not appear in tree
Tree Table Schema
● Row Keys = Tree ID + Branch ID
● Branch ID = 4 byte hashes of branch hierarchy
E.g. dal.web01.myapp.bytes_sent
dal = 0001838F(hex)
web01 = 06BC4C55
myapp = 06387CF5
bytes_sent = leaf pointing to a TSUID
Key for branch on Tree #1 =
00010001838F06BC4C5506387CF5
Tree Table Schema
Row Key CF: “t” Keys truncated, 1B tree ID, 2 byte hashes
x01 “tree”: {“name”:”Test Tree”} “rule0:0”: {<rule>} “rule1:0”: {<rule>}
x01x83x8F “branch”: {“name”:”dal”, “branches”:[{ “name”:”web01”},{“name”:”web01”}]}
x01x83x8Fx4Cx55 “branch”: {“name”:”web01”, “branches”:[{ “name”:”myapp”}]}
x01x83x8Fx4Cx55x7Cx5
F
“branch”: {“name”:”myapp”,
“branches”:null}
“leaf:<tsuid1>”: {“name”:”
bytes_sent”}
“leaf:<tsuid2>”: {“name”:”
bytes_received”}
x01x83x8Fx4Dx00 “branch”: {“name”:”web02”, “branches”:[{ “name”:”myapp”}]}
x01x83x8Fx4Dx00x7Cx5
F
“branch”: {“name”:”myapp”,
“branches”:null}
“leaf:<tsuid3>”: {“name”:”
bytes_sent”}
“leaf:<tsuid4>”: {“name”:”
bytes_sent”}
Row Key Regex for branch “dal”: ^Qx01x83x8FE(?:.{2})$
Matches branch “web01” and “web02” only.
Time Series Naming Optimization
● Designed for fast aggregation:
○ Average CPU usage across hosts in web pool
○ Total bytes sent from all hosts running application
MySQL
● High cardinality increases query latency
● Aim to minimize rows scanned
● Determine where aggregation is useful
○ May not care about average CPU usage across
entire network.
Therefore shift web tag to the metric name
Time Series Naming Optimization
Example Time Series
● sys.cpu.user host=web01 pool=web
● sys.cpu.user host=db01 pool=db
● host = 1m total unique values, 1,000 in web and 50 in db
● pool = 20 unique values
Very high cardinality for “sys.cpu.user”
● Query 1) 30 day query for “sys.cpu.user pool=db” scans 720m
rows (24h * 30d * 1m hosts) but only returns 36k (24h * 30d * 50)
● Query 2) 30 day query for “sys.cpu.user host=db01 pool=db” still
scans 720m rows but returns 36
Time Series Naming Optimization
Solution: Move pool tag values into metric name
● web.sys.cpu.user host=web01
● db.sys.cpu.user host=db01
Much lower cardinality for “sys.cpu.user”
● Query 1) 30 day query for “db.sys.cpu.user” scans 36k rows (24h
* 30d * 50 hosts) and returns all 36k (24h * 30d * 50)
● Query 2) 30 day query for “db.sys.cpu.user host=db01” still scans
36k rows and returns 36
New for OpenTSDB 2.0
● RESTful HTTP API
● Plugin support for de/serialization
● Emitter plugin support for publishing
○ Use for WebSockets/display
updates
○ Stream Processing
● Non-interpolating aggregation
functions
New for OpenTSDB 2.0
Special rate and counter functions
● Suppress spikes
Raw Rate: Counter Reset = 1000
OpenTSDB Front-Ends
Metrilyx from TicketMaster https://github.com/Ticketmaster/metrilyx-2.0
OpenTSDB Front-Ends
Status Wolf from Box https://github.com/box/StatusWolf
New in AsyncHBase 1.5
● AsyncHBase is a fully asynchronous, multi-
threaded HBase client
● Now supports HBase 0.96 / 0.98
● Remains 2x faster than HTable in
PerformanceEvaluation
● Support for scanner filters, META prefetch,
“fail-fast” RPCs
The Future of OpenTSDB
The Future
● Parallel scanners to improve
queries
● Coprocessor support for query
improvements similar to Salesforce’
s Phoenix with SkipScans
● Time series searching, lookups
(which tags belong to which
series?)
The Future
● Duplicate timestamp handling
● Counter increment and blob storage support
● Rollups/pre-aggregations
● Greater query flexibility:
○ Aggregate metrics
○ Regex on tags
○ Scalar calculations
More Information
● Thank you to everyone who has helped test, debug and add to OpenTSDB
2.0!
● Contribute at github.com/OpenTSDB/opentsdb
● Website: opentsdb.net
● Documentation: opentsdb.net/docs/build/html
● Mailing List: groups.google.com/group/opentsdb
Images
● http://photos.jdhancock.com/photo/2013-06-04-212438-the-lonely-vacuum-of-space.html
● http://en.wikipedia.org/wiki/File:Semi-automated-external-monitor-defibrillator.jpg
● http://upload.wikimedia.org/wikipedia/commons/1/17/Dining_table_for_two.jpg
● http://upload.wikimedia.org/wikipedia/commons/9/92/Easy_button.JPG
● http://upload.wikimedia.org/wikipedia/commons/4/42/PostItNotePad.JPG
● http://openclipart.org/image/300px/svg_to_png/68557/green_leaf_icon.png
● http://nickapedia.com/2012/06/05/api-all-the-things-razor-api-wiki/
● http://lego.cuusoo.com/ideas/view/96
● http://upload.wikimedia.org/wikipedia/commons/3/35/KL_Cyrix_FasMath_CX83D87.jpg
● http://www.flickr.com/photos/smkybear/4624182536/
1 of 41

Recommended

Introduction to ELK by
Introduction to ELKIntroduction to ELK
Introduction to ELKHarshakumar Ummerpillai
1.7K views11 slides
Rails Performance by
Rails PerformanceRails Performance
Rails PerformanceWen-Tien Chang
9K views94 slides
MySQL Advanced Administrator 2021 - 네오클로바 by
MySQL Advanced Administrator 2021 - 네오클로바MySQL Advanced Administrator 2021 - 네오클로바
MySQL Advanced Administrator 2021 - 네오클로바NeoClova
580 views109 slides
PostGreSQL Performance Tuning by
PostGreSQL Performance TuningPostGreSQL Performance Tuning
PostGreSQL Performance TuningMaven Logix
600 views29 slides
Distributed Transaction in Microservice by
Distributed Transaction in MicroserviceDistributed Transaction in Microservice
Distributed Transaction in MicroserviceNghia Minh
24.4K views40 slides
Introduction to Redis by
Introduction to RedisIntroduction to Redis
Introduction to RedisDvir Volk
121K views24 slides

More Related Content

What's hot

Introduction to MongoDB by
Introduction to MongoDBIntroduction to MongoDB
Introduction to MongoDBMike Dirolf
38.4K views35 slides
HTTP Analytics for 6M requests per second using ClickHouse, by Alexander Boc... by
HTTP Analytics for 6M requests per second using ClickHouse, by  Alexander Boc...HTTP Analytics for 6M requests per second using ClickHouse, by  Alexander Boc...
HTTP Analytics for 6M requests per second using ClickHouse, by Alexander Boc...Altinity Ltd
3.5K views21 slides
All You Need is One - A ClickOnce Love Story - Secure360 2015 by
All You Need is One -  A ClickOnce Love Story - Secure360 2015All You Need is One -  A ClickOnce Love Story - Secure360 2015
All You Need is One - A ClickOnce Love Story - Secure360 2015NetSPI
2.5K views39 slides
TiDB Introduction by
TiDB IntroductionTiDB Introduction
TiDB IntroductionMorgan Tocker
1.8K views37 slides
redis 소개자료 - 네오클로바 by
redis 소개자료 - 네오클로바redis 소개자료 - 네오클로바
redis 소개자료 - 네오클로바NeoClova
220 views20 slides
Redis persistence in practice by
Redis persistence in practiceRedis persistence in practice
Redis persistence in practiceEugene Fidelin
30.3K views30 slides

What's hot(20)

Introduction to MongoDB by Mike Dirolf
Introduction to MongoDBIntroduction to MongoDB
Introduction to MongoDB
Mike Dirolf38.4K views
HTTP Analytics for 6M requests per second using ClickHouse, by Alexander Boc... by Altinity Ltd
HTTP Analytics for 6M requests per second using ClickHouse, by  Alexander Boc...HTTP Analytics for 6M requests per second using ClickHouse, by  Alexander Boc...
HTTP Analytics for 6M requests per second using ClickHouse, by Alexander Boc...
Altinity Ltd3.5K views
All You Need is One - A ClickOnce Love Story - Secure360 2015 by NetSPI
All You Need is One -  A ClickOnce Love Story - Secure360 2015All You Need is One -  A ClickOnce Love Story - Secure360 2015
All You Need is One - A ClickOnce Love Story - Secure360 2015
NetSPI2.5K views
redis 소개자료 - 네오클로바 by NeoClova
redis 소개자료 - 네오클로바redis 소개자료 - 네오클로바
redis 소개자료 - 네오클로바
NeoClova220 views
Redis persistence in practice by Eugene Fidelin
Redis persistence in practiceRedis persistence in practice
Redis persistence in practice
Eugene Fidelin30.3K views
[2018] MySQL 이중화 진화기 by NHN FORWARD
[2018] MySQL 이중화 진화기[2018] MySQL 이중화 진화기
[2018] MySQL 이중화 진화기
NHN FORWARD10.7K views
Kinh nghiệm triển khai Microservices tại Sapo.vn by Dotnet Open Group
Kinh nghiệm triển khai Microservices tại Sapo.vnKinh nghiệm triển khai Microservices tại Sapo.vn
Kinh nghiệm triển khai Microservices tại Sapo.vn
Dotnet Open Group6.8K views
Time Series Data with InfluxDB by Turi, Inc.
Time Series Data with InfluxDBTime Series Data with InfluxDB
Time Series Data with InfluxDB
Turi, Inc.6.3K views
Naver속도의, 속도에 의한, 속도를 위한 몽고DB (네이버 컨텐츠검색과 몽고DB) [Naver] by MongoDB
Naver속도의, 속도에 의한, 속도를 위한 몽고DB (네이버 컨텐츠검색과 몽고DB) [Naver]Naver속도의, 속도에 의한, 속도를 위한 몽고DB (네이버 컨텐츠검색과 몽고DB) [Naver]
Naver속도의, 속도에 의한, 속도를 위한 몽고DB (네이버 컨텐츠검색과 몽고DB) [Naver]
MongoDB5.4K views
Software architecture for high traffic website by Tung Nguyen Thanh
Software architecture for high traffic websiteSoftware architecture for high traffic website
Software architecture for high traffic website
Tung Nguyen Thanh9.2K views
Performance Optimization of Rails Applications by Serge Smetana
Performance Optimization of Rails ApplicationsPerformance Optimization of Rails Applications
Performance Optimization of Rails Applications
Serge Smetana8.8K views
Introduction to Storm by Chandler Huang
Introduction to Storm Introduction to Storm
Introduction to Storm
Chandler Huang20.1K views
MySQL GTID 시작하기 by I Goo Lee
MySQL GTID 시작하기MySQL GTID 시작하기
MySQL GTID 시작하기
I Goo Lee6.3K views
SQL vs. NoSQL Databases by Osama Jomaa
SQL vs. NoSQL DatabasesSQL vs. NoSQL Databases
SQL vs. NoSQL Databases
Osama Jomaa2.8K views
독특한회사 ZEPL 경험기 by Ahyoung Ryu
독특한회사 ZEPL 경험기독특한회사 ZEPL 경험기
독특한회사 ZEPL 경험기
Ahyoung Ryu2.1K views
Sql server performance tuning by ngupt28
Sql server performance tuningSql server performance tuning
Sql server performance tuning
ngupt282.2K views

Similar to OpenTSDB 2.0

HBaseCon 2015: OpenTSDB and AsyncHBase Update by
HBaseCon 2015: OpenTSDB and AsyncHBase UpdateHBaseCon 2015: OpenTSDB and AsyncHBase Update
HBaseCon 2015: OpenTSDB and AsyncHBase UpdateHBaseCon
7.7K views37 slides
Update on OpenTSDB and AsyncHBase by
Update on OpenTSDB and AsyncHBase Update on OpenTSDB and AsyncHBase
Update on OpenTSDB and AsyncHBase HBaseCon
803 views32 slides
Update on OpenTSDB and AsyncHBase by
Update on OpenTSDB and AsyncHBase Update on OpenTSDB and AsyncHBase
Update on OpenTSDB and AsyncHBase HBaseCon
2.6K views34 slides
Argus Production Monitoring at Salesforce by
Argus Production Monitoring at SalesforceArgus Production Monitoring at Salesforce
Argus Production Monitoring at SalesforceHBaseCon
3.2K views21 slides
Argus Production Monitoring at Salesforce by
Argus Production Monitoring at Salesforce Argus Production Monitoring at Salesforce
Argus Production Monitoring at Salesforce HBaseCon
404 views21 slides
Extending Spark for Qbeast's SQL Data Source​ with Paola Pardo and Cesare Cug... by
Extending Spark for Qbeast's SQL Data Source​ with Paola Pardo and Cesare Cug...Extending Spark for Qbeast's SQL Data Source​ with Paola Pardo and Cesare Cug...
Extending Spark for Qbeast's SQL Data Source​ with Paola Pardo and Cesare Cug...Qbeast
165 views72 slides

Similar to OpenTSDB 2.0(20)

HBaseCon 2015: OpenTSDB and AsyncHBase Update by HBaseCon
HBaseCon 2015: OpenTSDB and AsyncHBase UpdateHBaseCon 2015: OpenTSDB and AsyncHBase Update
HBaseCon 2015: OpenTSDB and AsyncHBase Update
HBaseCon7.7K views
Update on OpenTSDB and AsyncHBase by HBaseCon
Update on OpenTSDB and AsyncHBase Update on OpenTSDB and AsyncHBase
Update on OpenTSDB and AsyncHBase
HBaseCon803 views
Update on OpenTSDB and AsyncHBase by HBaseCon
Update on OpenTSDB and AsyncHBase Update on OpenTSDB and AsyncHBase
Update on OpenTSDB and AsyncHBase
HBaseCon2.6K views
Argus Production Monitoring at Salesforce by HBaseCon
Argus Production Monitoring at SalesforceArgus Production Monitoring at Salesforce
Argus Production Monitoring at Salesforce
HBaseCon3.2K views
Argus Production Monitoring at Salesforce by HBaseCon
Argus Production Monitoring at Salesforce Argus Production Monitoring at Salesforce
Argus Production Monitoring at Salesforce
HBaseCon404 views
Extending Spark for Qbeast's SQL Data Source​ with Paola Pardo and Cesare Cug... by Qbeast
Extending Spark for Qbeast's SQL Data Source​ with Paola Pardo and Cesare Cug...Extending Spark for Qbeast's SQL Data Source​ with Paola Pardo and Cesare Cug...
Extending Spark for Qbeast's SQL Data Source​ with Paola Pardo and Cesare Cug...
Qbeast165 views
OpenTSDB: HBaseCon2017 by HBaseCon
OpenTSDB: HBaseCon2017OpenTSDB: HBaseCon2017
OpenTSDB: HBaseCon2017
HBaseCon2K views
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ... by Flink Forward
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Flink Forward573 views
Lambda at Weather Scale - Cassandra Summit 2015 by Robbie Strickland
Lambda at Weather Scale - Cassandra Summit 2015Lambda at Weather Scale - Cassandra Summit 2015
Lambda at Weather Scale - Cassandra Summit 2015
Robbie Strickland7.6K views
Streaming Data from Cassandra into Kafka by Abrar Sheikh
Streaming Data from Cassandra into KafkaStreaming Data from Cassandra into Kafka
Streaming Data from Cassandra into Kafka
Abrar Sheikh888 views
Bravo Six, Going Realtime. Transitioning Activision Data Pipeline to Streamin... by HostedbyConfluent
Bravo Six, Going Realtime. Transitioning Activision Data Pipeline to Streamin...Bravo Six, Going Realtime. Transitioning Activision Data Pipeline to Streamin...
Bravo Six, Going Realtime. Transitioning Activision Data Pipeline to Streamin...
HostedbyConfluent1.1K views
Bravo Six, Going Realtime. Transitioning Activision Data Pipeline to Streaming by Yaroslav Tkachenko
Bravo Six, Going Realtime. Transitioning Activision Data Pipeline to StreamingBravo Six, Going Realtime. Transitioning Activision Data Pipeline to Streaming
Bravo Six, Going Realtime. Transitioning Activision Data Pipeline to Streaming
Yaroslav Tkachenko542 views
How Netflix Uses Amazon Kinesis Streams to Monitor and Optimize Large-scale N... by Amazon Web Services
How Netflix Uses Amazon Kinesis Streams to Monitor and Optimize Large-scale N...How Netflix Uses Amazon Kinesis Streams to Monitor and Optimize Large-scale N...
How Netflix Uses Amazon Kinesis Streams to Monitor and Optimize Large-scale N...
Amazon Web Services4.9K views
Parquet performance tuning: the missing guide by Ryan Blue
Parquet performance tuning: the missing guideParquet performance tuning: the missing guide
Parquet performance tuning: the missing guide
Ryan Blue40.5K views
RMLL 2013 - Synchronize OpenLDAP and Active Directory with LSC by Clément OUDOT
RMLL 2013 - Synchronize OpenLDAP and Active Directory with LSCRMLL 2013 - Synchronize OpenLDAP and Active Directory with LSC
RMLL 2013 - Synchronize OpenLDAP and Active Directory with LSC
Clément OUDOT2.9K views
Introducing TiDB [Delivered: 09/27/18 at NYC SQL Meetup] by Kevin Xu
Introducing TiDB [Delivered: 09/27/18 at NYC SQL Meetup]Introducing TiDB [Delivered: 09/27/18 at NYC SQL Meetup]
Introducing TiDB [Delivered: 09/27/18 at NYC SQL Meetup]
Kevin Xu241 views
Go Big or Go Home: Approaching Kafka Replication at Scale by HostedbyConfluent
Go Big or Go Home: Approaching Kafka Replication at ScaleGo Big or Go Home: Approaching Kafka Replication at Scale
Go Big or Go Home: Approaching Kafka Replication at Scale
Re-Engineering PostgreSQL as a Time-Series Database by All Things Open
Re-Engineering PostgreSQL as a Time-Series DatabaseRe-Engineering PostgreSQL as a Time-Series Database
Re-Engineering PostgreSQL as a Time-Series Database
All Things Open2.1K views
Sorry - How Bieber broke Google Cloud at Spotify by Neville Li
Sorry - How Bieber broke Google Cloud at SpotifySorry - How Bieber broke Google Cloud at Spotify
Sorry - How Bieber broke Google Cloud at Spotify
Neville Li3.2K views

More from HBaseCon

hbaseconasia2017: Building online HBase cluster of Zhihu based on Kubernetes by
hbaseconasia2017: Building online HBase cluster of Zhihu based on Kuberneteshbaseconasia2017: Building online HBase cluster of Zhihu based on Kubernetes
hbaseconasia2017: Building online HBase cluster of Zhihu based on KubernetesHBaseCon
3.9K views36 slides
hbaseconasia2017: HBase on Beam by
hbaseconasia2017: HBase on Beamhbaseconasia2017: HBase on Beam
hbaseconasia2017: HBase on BeamHBaseCon
1.3K views26 slides
hbaseconasia2017: HBase Disaster Recovery Solution at Huawei by
hbaseconasia2017: HBase Disaster Recovery Solution at Huaweihbaseconasia2017: HBase Disaster Recovery Solution at Huawei
hbaseconasia2017: HBase Disaster Recovery Solution at HuaweiHBaseCon
1.4K views21 slides
hbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinterest by
hbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinteresthbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinterest
hbaseconasia2017: Removable singularity: a story of HBase upgrade in PinterestHBaseCon
936 views42 slides
hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程 by
hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程
hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程HBaseCon
1.1K views21 slides
hbaseconasia2017: Apache HBase at Netease by
hbaseconasia2017: Apache HBase at Neteasehbaseconasia2017: Apache HBase at Netease
hbaseconasia2017: Apache HBase at NeteaseHBaseCon
754 views27 slides

More from HBaseCon(20)

hbaseconasia2017: Building online HBase cluster of Zhihu based on Kubernetes by HBaseCon
hbaseconasia2017: Building online HBase cluster of Zhihu based on Kuberneteshbaseconasia2017: Building online HBase cluster of Zhihu based on Kubernetes
hbaseconasia2017: Building online HBase cluster of Zhihu based on Kubernetes
HBaseCon3.9K views
hbaseconasia2017: HBase on Beam by HBaseCon
hbaseconasia2017: HBase on Beamhbaseconasia2017: HBase on Beam
hbaseconasia2017: HBase on Beam
HBaseCon1.3K views
hbaseconasia2017: HBase Disaster Recovery Solution at Huawei by HBaseCon
hbaseconasia2017: HBase Disaster Recovery Solution at Huaweihbaseconasia2017: HBase Disaster Recovery Solution at Huawei
hbaseconasia2017: HBase Disaster Recovery Solution at Huawei
HBaseCon1.4K views
hbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinterest by HBaseCon
hbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinteresthbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinterest
hbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinterest
HBaseCon936 views
hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程 by HBaseCon
hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程
hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程
HBaseCon1.1K views
hbaseconasia2017: Apache HBase at Netease by HBaseCon
hbaseconasia2017: Apache HBase at Neteasehbaseconasia2017: Apache HBase at Netease
hbaseconasia2017: Apache HBase at Netease
HBaseCon754 views
hbaseconasia2017: HBase在Hulu的使用和实践 by HBaseCon
hbaseconasia2017: HBase在Hulu的使用和实践hbaseconasia2017: HBase在Hulu的使用和实践
hbaseconasia2017: HBase在Hulu的使用和实践
HBaseCon878 views
hbaseconasia2017: 基于HBase的企业级大数据平台 by HBaseCon
hbaseconasia2017: 基于HBase的企业级大数据平台hbaseconasia2017: 基于HBase的企业级大数据平台
hbaseconasia2017: 基于HBase的企业级大数据平台
HBaseCon701 views
hbaseconasia2017: HBase at JD.com by HBaseCon
hbaseconasia2017: HBase at JD.comhbaseconasia2017: HBase at JD.com
hbaseconasia2017: HBase at JD.com
HBaseCon828 views
hbaseconasia2017: Large scale data near-line loading method and architecture by HBaseCon
hbaseconasia2017: Large scale data near-line loading method and architecturehbaseconasia2017: Large scale data near-line loading method and architecture
hbaseconasia2017: Large scale data near-line loading method and architecture
HBaseCon598 views
hbaseconasia2017: Ecosystems with HBase and CloudTable service at Huawei by HBaseCon
hbaseconasia2017: Ecosystems with HBase and CloudTable service at Huaweihbaseconasia2017: Ecosystems with HBase and CloudTable service at Huawei
hbaseconasia2017: Ecosystems with HBase and CloudTable service at Huawei
HBaseCon683 views
hbaseconasia2017: HBase Practice At XiaoMi by HBaseCon
hbaseconasia2017: HBase Practice At XiaoMihbaseconasia2017: HBase Practice At XiaoMi
hbaseconasia2017: HBase Practice At XiaoMi
HBaseCon1.8K views
hbaseconasia2017: hbase-2.0.0 by HBaseCon
hbaseconasia2017: hbase-2.0.0hbaseconasia2017: hbase-2.0.0
hbaseconasia2017: hbase-2.0.0
HBaseCon1.8K views
HBaseCon2017 Democratizing HBase by HBaseCon
HBaseCon2017 Democratizing HBaseHBaseCon2017 Democratizing HBase
HBaseCon2017 Democratizing HBase
HBaseCon897 views
HBaseCon2017 Removable singularity: a story of HBase upgrade in Pinterest by HBaseCon
HBaseCon2017 Removable singularity: a story of HBase upgrade in PinterestHBaseCon2017 Removable singularity: a story of HBase upgrade in Pinterest
HBaseCon2017 Removable singularity: a story of HBase upgrade in Pinterest
HBaseCon646 views
HBaseCon2017 Quanta: Quora's hierarchical counting system on HBase by HBaseCon
HBaseCon2017 Quanta: Quora's hierarchical counting system on HBaseHBaseCon2017 Quanta: Quora's hierarchical counting system on HBase
HBaseCon2017 Quanta: Quora's hierarchical counting system on HBase
HBaseCon608 views
HBaseCon2017 Transactions in HBase by HBaseCon
HBaseCon2017 Transactions in HBaseHBaseCon2017 Transactions in HBase
HBaseCon2017 Transactions in HBase
HBaseCon1.8K views
HBaseCon2017 Highly-Available HBase by HBaseCon
HBaseCon2017 Highly-Available HBaseHBaseCon2017 Highly-Available HBase
HBaseCon2017 Highly-Available HBase
HBaseCon1.1K views
HBaseCon2017 Apache HBase at Didi by HBaseCon
HBaseCon2017 Apache HBase at DidiHBaseCon2017 Apache HBase at Didi
HBaseCon2017 Apache HBase at Didi
HBaseCon996 views
HBaseCon2017 gohbase: Pure Go HBase Client by HBaseCon
HBaseCon2017 gohbase: Pure Go HBase ClientHBaseCon2017 gohbase: Pure Go HBase Client
HBaseCon2017 gohbase: Pure Go HBase Client
HBaseCon1.7K views

Recently uploaded

Winter '24 Release Chat.pdf by
Winter '24 Release Chat.pdfWinter '24 Release Chat.pdf
Winter '24 Release Chat.pdfmelbourneauuser
9 views20 slides
Keep by
KeepKeep
KeepGeniusee
73 views10 slides
2023-November-Schneider Electric-Meetup-BCN Admin Group.pptx by
2023-November-Schneider Electric-Meetup-BCN Admin Group.pptx2023-November-Schneider Electric-Meetup-BCN Admin Group.pptx
2023-November-Schneider Electric-Meetup-BCN Admin Group.pptxanimuscrm
13 views19 slides
WebAssembly by
WebAssemblyWebAssembly
WebAssemblyJens Siebert
33 views18 slides
Navigating container technology for enhanced security by Niklas Saari by
Navigating container technology for enhanced security by Niklas SaariNavigating container technology for enhanced security by Niklas Saari
Navigating container technology for enhanced security by Niklas SaariMetosin Oy
8 views34 slides
360 graden fabriek by
360 graden fabriek360 graden fabriek
360 graden fabriekinfo33492
24 views25 slides

Recently uploaded(20)

2023-November-Schneider Electric-Meetup-BCN Admin Group.pptx by animuscrm
2023-November-Schneider Electric-Meetup-BCN Admin Group.pptx2023-November-Schneider Electric-Meetup-BCN Admin Group.pptx
2023-November-Schneider Electric-Meetup-BCN Admin Group.pptx
animuscrm13 views
Navigating container technology for enhanced security by Niklas Saari by Metosin Oy
Navigating container technology for enhanced security by Niklas SaariNavigating container technology for enhanced security by Niklas Saari
Navigating container technology for enhanced security by Niklas Saari
Metosin Oy8 views
360 graden fabriek by info33492
360 graden fabriek360 graden fabriek
360 graden fabriek
info3349224 views
A first look at MariaDB 11.x features and ideas on how to use them by Federico Razzoli
A first look at MariaDB 11.x features and ideas on how to use themA first look at MariaDB 11.x features and ideas on how to use them
A first look at MariaDB 11.x features and ideas on how to use them
Federico Razzoli45 views
DSD-INT 2023 FloodAdapt - A decision-support tool for compound flood risk mit... by Deltares
DSD-INT 2023 FloodAdapt - A decision-support tool for compound flood risk mit...DSD-INT 2023 FloodAdapt - A decision-support tool for compound flood risk mit...
DSD-INT 2023 FloodAdapt - A decision-support tool for compound flood risk mit...
Deltares13 views
Cycleops - Automate deployments on top of bare metal.pptx by Thanassis Parathyras
Cycleops - Automate deployments on top of bare metal.pptxCycleops - Automate deployments on top of bare metal.pptx
Cycleops - Automate deployments on top of bare metal.pptx
Software testing company in India.pptx by SakshiPatel82
Software testing company in India.pptxSoftware testing company in India.pptx
Software testing company in India.pptx
SakshiPatel827 views
DSD-INT 2023 Wave-Current Interaction at Montrose Tidal Inlet System and Its ... by Deltares
DSD-INT 2023 Wave-Current Interaction at Montrose Tidal Inlet System and Its ...DSD-INT 2023 Wave-Current Interaction at Montrose Tidal Inlet System and Its ...
DSD-INT 2023 Wave-Current Interaction at Montrose Tidal Inlet System and Its ...
Deltares9 views
Headless JS UG Presentation.pptx by Jack Spektor
Headless JS UG Presentation.pptxHeadless JS UG Presentation.pptx
Headless JS UG Presentation.pptx
Jack Spektor7 views
SUGCON ANZ Presentation V2.1 Final.pptx by Jack Spektor
SUGCON ANZ Presentation V2.1 Final.pptxSUGCON ANZ Presentation V2.1 Final.pptx
SUGCON ANZ Presentation V2.1 Final.pptx
Jack Spektor22 views
Fleet Management Software in India by Fleetable
Fleet Management Software in India Fleet Management Software in India
Fleet Management Software in India
Fleetable11 views
DSD-INT 2023 Machine learning in hydraulic engineering - Exploring unseen fut... by Deltares
DSD-INT 2023 Machine learning in hydraulic engineering - Exploring unseen fut...DSD-INT 2023 Machine learning in hydraulic engineering - Exploring unseen fut...
DSD-INT 2023 Machine learning in hydraulic engineering - Exploring unseen fut...
Deltares6 views
What Can Employee Monitoring Software Do?​ by wAnywhere
What Can Employee Monitoring Software Do?​What Can Employee Monitoring Software Do?​
What Can Employee Monitoring Software Do?​
wAnywhere21 views

OpenTSDB 2.0

  • 1. OpenTSDB 2.0 Distributed, Scalable Time Series Database Benoit Sigoure tsunanet@gmail.com Chris Larsen clarsen@llnw.com
  • 2. Who We Are Benoit Sigoure ● Created OpenTSDB at StumbleUpon ● Software Engineer @ Arista Networks Chris Larsen ● Release manager for OpenTSDB 2.0 ● Operations Engineer @ Limelight Networks
  • 3. What Is OpenTSDB? ● Open Source Time Series Database ● Store trillions of data points ● Sucks up all data and keeps going ● Never lose precision ● Scales using HBase
  • 4. What good is it? ● Systems Monitoring & Measurement ○ Servers ○ Networks ● Sensor Data ○ The Internet of Things ○ SCADA ● Financial Data ● Scientific Experiment Results
  • 5. Use Cases OVH: #3 largest cloud/hosting provider Monitor everything: networking, temperature, voltage, application performance, resource utilization, customer-facing metrics, etc. ● 35 servers, 100k writes/s, 25TB raw data ● 5-day moving window of HBase snapshots ● Redis cache on top for customer-facing data
  • 6. Use Cases Yahoo Monitoring application performance and statistics ● 15 servers, 280k writes/s ● Increased UID size to 4 bytes instead of 3, allowing for over 4 billion values ● Looking at using HBase Append requests to avoid TSD compactions
  • 7. Use Cases Arista Networks: High performance networking ● Single-node HBase (no HDFS) + 2 TSDs (one for writing, one for reading) ● 5K writes per second, 500G of data, piece of cake to deploy/maintain ● Varnish for caching
  • 8. Some Other Users ● Box: 23 servers, 90K wps, System, app network, business metrics ● Limelight Networks: 8 servers, 30k wps, 24TB of data ● Ticketmaster: 13 servers, 90K wps, ~40GB a day
  • 9. What Are Time Series? ● Time Series: data points for an identity over time ● Typical Identity: ○ Dotted string: web01.sys.cpu.user.0 ● OpenTSDB Identity: ○ Metric: sys.cpu.user ○ Tags (name/value pairs): host=web01 cpu=0
  • 10. What Are Time Series? Data Point: ● Metric + Tags ● + Value: 42 ● + Timestamp: 1234567890 sys.cpu.user 1234567890 42 host=web01 cpu=0 ^ a data point ^
  • 12. Writing Data 1) Open Telnet style socket, write: put sys.cpu.user 1234567890 42 host=web01 cpu=0 2) ..or with 2.0, post JSON to: http://<host>:<port>/api/put 3) .. or import big files with CLI ● No schema definition ● No RRD file creation ● Just write!
  • 13. Querying Data ● Graph with the GUI ● CLI tools ● HTTP API ● Aggregate multiple series ● Simple query language To average all CPUs on host: start=1h-ago avg sys.cpu.user host=web01
  • 14. HBase Data Tables ● tsdb - Data point table. Massive ● tsdb-uid - Name to UID and UID to name mappings ● tsdb-meta - Time series index and meta-data (new in 2.0) ● tsdb-tree - Config and index for heirarchical naming schema (new in 2.0) Lets see how OpenTSDB uses HBase...
  • 15. UID Table Schema ● Integer UIDs assigned to each value per type (metric, tagk, tagv) in tsdb-uid table ● 64 bit integers in row x00 reflect last used UID CF:Qualifier Row Key UID id:metric sys.cpu.user 1 id:tagk host 1 id:tagv web01 1 id:tagk cpu 2 id:tagv 0 2
  • 16. Improved UID Assignment ● Pre 1.2 Assignment: ○ Client acquires lock on row x00 ○ uid = getRequest(UID type) ○ Increment uid ○ getRequest(name) confirm name hasn’t been assigned ○ putRequest(type, uid) ○ putRequest(reverse map) ○ putRequest(forward map) ○ Release lock ● Lock held for a long time ● Puts overwrite data
  • 17. Improved UID Assignment ● 1.2 & 2.0 Assignment: ○ atomicIncrementRequest(UID type) ○ getRequest(name) confirm name hasn’t been assigned ○ compareAndSet(reverse map) ○ compareAndSet(forward map) ● 3 atomic operations on different rows ● Much better concurrency with multiple TSDs assigning UIDs ● CAS calls fail on existing data, log the error
  • 18. Data Table Schema ● Row key is a concatenation of UIDs and time: ○ metric + timestamp + tagk1 + tagv1… + tagkN + tagvN ● sys.cpu.user 1234567890 42 host=web01 cpu=0 x00x00x01x49x95xFBx70x00x00x01x00x00x01x00x00x02x00x00x02 ● Timestamp normalized on 1 hour boundaries ● All data points for an hour are stored in one row ● Enables fast scans of all time series for a metric ● …or pass a row key regex filter for specific time series with particular tags
  • 19. Data Table Schema 1.x Column Qualifiers: ● Type: floating point or integer value ● Value Length: number of bytes the value is encoded on ● Delta: offset from row timestamp in seconds ● Compacted columns concatenate an hour of qualifiers and values into a single column [ 0b11111111, 0b1111 0111 ] <----------------> ^<-> delta (seconds) type value length
  • 20. Data Table Schema OpenTSDB 2.x Schema Design Goals ● Must maintain backwards compatibility ● Support millisecond precision timestamps ● Support other objects, e.g. annotations, blobs ○ E.g. could store quality measurements for each data point ● Store millisecond and other objects in the same row as data points ○ Scoops up all relevant time series data in one scan
  • 21. Data Table Schema Millisecond Support: ● Need 3,599,999 possible time offsets instead of 3,600 ● Solution: 4 byte qualifier instead of 2 ● Prefixed with xF0 to differentiate from a 2 value compacted column ● Can mix second and millisecond precision in one row ● Still concatenates into one compacted column [ 0b11111101, 0b10111011, 0b10011111, 0b11 000111 ] <--><--------------------------------> ^^^<-> msec precision delta (milliseconds) type value length 2 unused bits
  • 22. Data Table Schema Annotations and Other Objects ● Odd number of bytes in qualifier (3 or 5) ● Prefix IDs: x01 = annotation, x02 = blob ● Remainder is offset in seconds or milliseconds ● Unbounded length, not meant for compaction { "tsuid": "000001000001000001", "description": "Server Maintenance", "notes": "Upgrading the server, ignore these values, winter is coming", "endTime": 1369159800, "startTime": 1369159200 }
  • 23. TSUID Index and Meta Table ● Time Series UID = data table row key without timestamp E.g. sys.cpu.user host=web01 cpu=0 x00x00x01x00x00x01x00x00x01x00x00x02x00x00x02 ● Use TSUID as the row key ○ Can use a row key regex filter to scan for metrics with a tag pair or the tags associated with a metric ● Atomic Increment for each data point ○ ts_counter column: Track number of data points written ○ ts_meta column: Async callback chain to create meta object if increment returns a 1 ○ Potentially doubles RPC count
  • 24. OpenTSDB Trees ● Provide a hierarchical representation of time series ○ Useful for Graphite or browsing the data store ● Flexible rule system processes metrics and tags ● Out of band creation or process in real-time with TSUID increment callback chaining
  • 25. OpenTSDB Trees Example Time Series: myapp.bytes_sent dc=dal host=web01 myapp.bytes_received dc=dal host=web01 Example Ruleset: Level Order Rule Type Field Regex 0 0 tagk dc 1 0 tagk host 2 0 metric (.*)..* 3 0 metric .*.(*.)
  • 26. OpenTSDB Trees Example Results: Flattened Names: dal.web01.myapp.bytes_sent dal.web01.myapp.bytes_received Tree View : ● dal ○ web01 ■ myapp ● bytes_sent ● bytes_received ^ leaves ^
  • 27. Tree Table Schema Column Qualifiers: ● tree: JSON object with tree description ● rule:<level>:<order>: JSON object definition of a rule belonging to a tree ● branch: JSON object linking to child branches and/or leaves ● leaf:<tsuid>: JSON object linking to a specific TSUID ● tree_collision:<tsuid>: Time series was already included in tree ● tree_not_matched:<tsuid>: Time series did not appear in tree
  • 28. Tree Table Schema ● Row Keys = Tree ID + Branch ID ● Branch ID = 4 byte hashes of branch hierarchy E.g. dal.web01.myapp.bytes_sent dal = 0001838F(hex) web01 = 06BC4C55 myapp = 06387CF5 bytes_sent = leaf pointing to a TSUID Key for branch on Tree #1 = 00010001838F06BC4C5506387CF5
  • 29. Tree Table Schema Row Key CF: “t” Keys truncated, 1B tree ID, 2 byte hashes x01 “tree”: {“name”:”Test Tree”} “rule0:0”: {<rule>} “rule1:0”: {<rule>} x01x83x8F “branch”: {“name”:”dal”, “branches”:[{ “name”:”web01”},{“name”:”web01”}]} x01x83x8Fx4Cx55 “branch”: {“name”:”web01”, “branches”:[{ “name”:”myapp”}]} x01x83x8Fx4Cx55x7Cx5 F “branch”: {“name”:”myapp”, “branches”:null} “leaf:<tsuid1>”: {“name”:” bytes_sent”} “leaf:<tsuid2>”: {“name”:” bytes_received”} x01x83x8Fx4Dx00 “branch”: {“name”:”web02”, “branches”:[{ “name”:”myapp”}]} x01x83x8Fx4Dx00x7Cx5 F “branch”: {“name”:”myapp”, “branches”:null} “leaf:<tsuid3>”: {“name”:” bytes_sent”} “leaf:<tsuid4>”: {“name”:” bytes_sent”} Row Key Regex for branch “dal”: ^Qx01x83x8FE(?:.{2})$ Matches branch “web01” and “web02” only.
  • 30. Time Series Naming Optimization ● Designed for fast aggregation: ○ Average CPU usage across hosts in web pool ○ Total bytes sent from all hosts running application MySQL ● High cardinality increases query latency ● Aim to minimize rows scanned ● Determine where aggregation is useful ○ May not care about average CPU usage across entire network. Therefore shift web tag to the metric name
  • 31. Time Series Naming Optimization Example Time Series ● sys.cpu.user host=web01 pool=web ● sys.cpu.user host=db01 pool=db ● host = 1m total unique values, 1,000 in web and 50 in db ● pool = 20 unique values Very high cardinality for “sys.cpu.user” ● Query 1) 30 day query for “sys.cpu.user pool=db” scans 720m rows (24h * 30d * 1m hosts) but only returns 36k (24h * 30d * 50) ● Query 2) 30 day query for “sys.cpu.user host=db01 pool=db” still scans 720m rows but returns 36
  • 32. Time Series Naming Optimization Solution: Move pool tag values into metric name ● web.sys.cpu.user host=web01 ● db.sys.cpu.user host=db01 Much lower cardinality for “sys.cpu.user” ● Query 1) 30 day query for “db.sys.cpu.user” scans 36k rows (24h * 30d * 50 hosts) and returns all 36k (24h * 30d * 50) ● Query 2) 30 day query for “db.sys.cpu.user host=db01” still scans 36k rows and returns 36
  • 33. New for OpenTSDB 2.0 ● RESTful HTTP API ● Plugin support for de/serialization ● Emitter plugin support for publishing ○ Use for WebSockets/display updates ○ Stream Processing ● Non-interpolating aggregation functions
  • 34. New for OpenTSDB 2.0 Special rate and counter functions ● Suppress spikes Raw Rate: Counter Reset = 1000
  • 35. OpenTSDB Front-Ends Metrilyx from TicketMaster https://github.com/Ticketmaster/metrilyx-2.0
  • 36. OpenTSDB Front-Ends Status Wolf from Box https://github.com/box/StatusWolf
  • 37. New in AsyncHBase 1.5 ● AsyncHBase is a fully asynchronous, multi- threaded HBase client ● Now supports HBase 0.96 / 0.98 ● Remains 2x faster than HTable in PerformanceEvaluation ● Support for scanner filters, META prefetch, “fail-fast” RPCs
  • 38. The Future of OpenTSDB
  • 39. The Future ● Parallel scanners to improve queries ● Coprocessor support for query improvements similar to Salesforce’ s Phoenix with SkipScans ● Time series searching, lookups (which tags belong to which series?)
  • 40. The Future ● Duplicate timestamp handling ● Counter increment and blob storage support ● Rollups/pre-aggregations ● Greater query flexibility: ○ Aggregate metrics ○ Regex on tags ○ Scalar calculations
  • 41. More Information ● Thank you to everyone who has helped test, debug and add to OpenTSDB 2.0! ● Contribute at github.com/OpenTSDB/opentsdb ● Website: opentsdb.net ● Documentation: opentsdb.net/docs/build/html ● Mailing List: groups.google.com/group/opentsdb Images ● http://photos.jdhancock.com/photo/2013-06-04-212438-the-lonely-vacuum-of-space.html ● http://en.wikipedia.org/wiki/File:Semi-automated-external-monitor-defibrillator.jpg ● http://upload.wikimedia.org/wikipedia/commons/1/17/Dining_table_for_two.jpg ● http://upload.wikimedia.org/wikipedia/commons/9/92/Easy_button.JPG ● http://upload.wikimedia.org/wikipedia/commons/4/42/PostItNotePad.JPG ● http://openclipart.org/image/300px/svg_to_png/68557/green_leaf_icon.png ● http://nickapedia.com/2012/06/05/api-all-the-things-razor-api-wiki/ ● http://lego.cuusoo.com/ideas/view/96 ● http://upload.wikimedia.org/wikipedia/commons/3/35/KL_Cyrix_FasMath_CX83D87.jpg ● http://www.flickr.com/photos/smkybear/4624182536/