Advertisement
Advertisement

More Related Content

Slideshows for you(20)

Similar to Stateful Distributed Stream Processing(20)

Advertisement

Recently uploaded(20)

Stateful Distributed Stream Processing

  1. Stateful distributed stream processing Gyula Fóra gyfora@apache.org @GyulaFora
  2. This talk § Stateful processing by example § Definition and challenges § State in current open-source systems § State in Apache Flink § Closing 2Apache  Flink  Meetup  @  MapR2015-­‐‑08-­‐‑27
  3. Stateful processing by example § Window aggregations • Total number of customers in the last 10 minutes • State: Current aggregate § Machine learning • Fitting trends to the evolving stream • State: Model 3Apache  Flink  Meetup  @  MapR2015-­‐‑08-­‐‑27
  4. Stateful processing by example § Pattern recognition • Detect suspicious financial activity • State: Matched prefix § Stream-stream joins • Match ad views and impressions • State: Elements in the window 4Apache  Flink  Meetup  @  MapR2015-­‐‑08-­‐‑27
  5. Stateful operators § All these examples use a common processing pattern § Stateful operator (in essence): 𝒇:   𝒊𝒏, 𝒔𝒕𝒂𝒕𝒆 ⟶ 𝒐𝒖𝒕, 𝒔𝒕𝒂𝒕𝒆. § State hangs around and can be read and modified as the stream evolves § Goal: Get as close as possible while maintaining scalability and fault-tolerance 5Apache  Flink  Meetup  @  MapR2015-­‐‑08-­‐‑27
  6. State-of-the-art systems § Most systems allow developers to implement stateful programs § Trick is to limit the scope of 𝒇 (state access) while maintaining expressivity § Issues to tackle: • Expressivity • Exactly-once semantics • Scalability to large inputs • Scalability to large states 6Apache  Flink  Meetup  @  MapR2015-­‐‑08-­‐‑27
  7. § States available only in Trident API § Dedicated operators for state updates and queries § State access methods • stateQuery(…) • partitionPersist(…) • persistentAggregate(…) § It’s very difficult to implement transactional states Exactly-­‐‑once  guarantee 7Apache  Flink  Meetup  @  MapR2015-­‐‑08-­‐‑27
  8. Storm Word Count 8Apache  Flink  Meetup  @  MapR2015-­‐‑08-­‐‑27
  9. § Stateless runtime by design • No continuous operators • UDFs are assumed to be stateless § State can be generated as a stream of RDDs: updateStateByKey(…) 𝒇:   𝑺𝒆𝒒[𝒊𝒏 𝒌], 𝒔𝒕𝒂𝒕𝒆 𝒌 ⟶ 𝒔𝒕𝒂𝒕𝒆. 𝒌 § 𝒇 is scoped to a specific key § Exactly-once semantics 9Apache  Flink  Meetup  @  MapR2015-­‐‑08-­‐‑27
  10. val stateDstream = wordDstream.updateStateByKey[Int]( newUpdateFunc, new HashPartitioner(ssc.sparkContext.defaultParallelism), true, initialRDD) val updateFunc = (values: Seq[Int], state: Option[Int]) => { val currentCount = values.sum val previousCount = state.getOrElse(0) Some(currentCount + previousCount) } Spark Streaming Word Count 10Apache  Flink  Meetup  @  MapR2015-­‐‑08-­‐‑27
  11. § Stateful dataflow operators (Any task can hold state) § State changes are stored as a log by Kafka § Custom storage engines can be plugged in to the log § 𝒇 is scoped to a specific task § At-least-once processing semantics 11Apache  Flink  Meetup  @  MapR2015-­‐‑08-­‐‑27
  12. Samza Word Count public class WordCounter implements StreamTask, InitableTask { //Some omitted details… private KeyValueStore<String, Integer> store; public void process(IncomingMessageEnvelope envelope, MessageCollector collector, TaskCoordinator coordinator) { //Get the current count String word = (String) envelope.getKey(); Integer count = store.get(word); if (count == null) count = 0; //Increment, store and send count += 1; store.put(word, count); collector.send( new OutgoingMessageEnvelope(OUTPUT_STREAM, word ,count)); } } 12Apache  Flink  Meetup  @  MapR2015-­‐‑08-­‐‑27
  13. What can we say so far? § Trident + Consistent state accessible from outside – Only works well with idempotent states – States are not part of the operators § Spark + Integrates well with the system guarantees – Limited expressivity – Immutability increases update complexity § Samza + Efficient log based state updates + States are well integrated with the operators – Lack of exactly-once semantics – State access is not fully transparent 13Apache  Flink  Meetup  @  MapR2015-­‐‑08-­‐‑27
  14. § Take what’s good, make it work + add some more § Clean and powerful abstractions • Local (Task) state • Partitioned (Key) state § Proper API integration • Java: OperatorState interface • Scala: mapWithState, flatMapWithState… § Exactly-once semantics by checkpointing 14Apache  Flink  Meetup  @  MapR2015-­‐‑08-­‐‑27
  15. Flink Word Count words.keyBy(x => x).mapWithState { (word, count: Option[Int]) => { val newCount = count.getOrElse(0) + 1 val output = (word, newCount) (output, Some(newCount)) } } 15Apache  Flink  Meetup  @  MapR2015-­‐‑08-­‐‑27
  16. Local State § Task scoped state access § Can be used to implement custom access patterns § Typical usage: • Source operators (offset) • Machine learning models • Use cyclic flows to simulate global state access 16Apache  Flink  Meetup  @  MapR2015-­‐‑08-­‐‑27
  17. Local State Example (Java) public class MySource extends RichParallelSourceFunction { // Omitted details private OperatorState<Long> offset; @Override public void run(SourceContext ctx) { Object checkpointLock = ctx.getCheckpointLock(); isRunning = true; while (isRunning) { synchronized (checkpointLock) { offset.update(offset.value() + 1); // ctx.collect(next); } } } } 17Apache  Flink  Meetup  @  MapR2015-­‐‑08-­‐‑27
  18. Partitioned State § Key scoped state access § Highly scalable § Allows for incremental backup/restore § Typical usage: • Any per-key operation • Grouped aggregations • Window buffers 18Apache  Flink  Meetup  @  MapR2015-­‐‑08-­‐‑27
  19. Partitioned State Example (Scala) // Compute the current average of each city's temperature temps.keyBy("city").mapWithState { (in: Temp, state: Option[(Double, Long)]) => { val current = state.getOrElse((0.0, 0L)) val updated = (current._1 + in.temp, current._2 + 1) val avg = Temp(in.city, updated._1 / updated._2) (avg, Some(updated)) } } case class Temp(city: String, temp: Double) 19Apache  Flink  Meetup  @  MapR2015-­‐‑08-­‐‑27
  20. Exactly-once semantics § Based on consistent global snapshots § Algorithm designed for stateful dataflows 20Apache  Flink  Meetup  @  MapR2015-­‐‑08-­‐‑27 Detailed  mechanism
  21. Exactly-once semantics § Low runtime overhead § Checkpointing logic is separated from application logic 21Apache  Flink  Meetup  @  MapR2015-­‐‑08-­‐‑27 Blogpost  on  streaming  fault-­‐‑tolerance
  22. Summary § State is essential to many applications § Fault-tolerant streaming state is a hard problem § There is a trade-off between expressivity vs scalability/fault-tolerance § Flink tries to hit the sweet spot with… • Providing very flexible abstractions • Keeping good scalability and exactly-once semantics 22Apache  Flink  Meetup  @  MapR2015-­‐‑08-­‐‑27
  23. Thank you!
Advertisement