C2C{Network  Study visit Fablab Leuven – July 13, 2010   Additive production technology and sustainability: challenges and...
context:  Plan C <ul><li>Flemish Transition Network Sustainable Materials Management </li></ul>strategic visions 2030 clos...
context:  Plan C knowledge/control material flows extended materials responsibility reverse logistics design for cycle bio...
Material wasting production mining production  use phase  End-of-Life resources waste
production <ul><li>e.g. aerospace industry </li></ul><ul><ul><li>classical machining </li></ul></ul><ul><ul><ul><li>buy to...
what is additive manufacturing? (3D printing, rapid manufacturing) <ul><li>polymers </li></ul><ul><ul><li>Stereolithograph...
Materials used <ul><li>General: High density polyethylene (HDPE), low density polyethylene (LDPE), polypropylene (PP), unp...
Materials used <ul><li>Can the materials cycle be closed? </li></ul><ul><ul><li>process waste can be recycled </li></ul></...
Materials used <ul><li>Can the materials cycle be closed? </li></ul><ul><ul><li>process waste can be recycled </li></ul></...
Strenghts of additive production <ul><li>material effectiveness </li></ul><ul><li>use of biobased and recycled materials –...
source:  ATKINS rapport, Loughborough University, 2007
Strenghts of additive production <ul><li>material effectiveness </li></ul><ul><li>use of biobased and recycled materials –...
Strenghts of additive production <ul><li>material effectiveness </li></ul><ul><li>use of biobased and recycled materials –...
Strengths of additive production <ul><li>material effectiveness </li></ul><ul><li>use of biobased and recycled materials –...
Weaknesses of additive production <ul><li>Energy consumption </li></ul><ul><li>Technological drawbacks </li></ul><ul><ul><...
Weaknesses of additive production <ul><li>Energy consumption </li></ul><ul><li>Technological drawbacks </li></ul><ul><li>C...
Weaknesses of additive production <ul><li>Energy consumption </li></ul><ul><li>Technological drawbacks </li></ul><ul><li>C...
Weaknesses of additive production <ul><li>Energy consumption </li></ul><ul><li>Technological drawbacks </li></ul><ul><li>C...
www.additivemanufacturing.be
A system innovation approach
To conclude <ul><li>material effectiveness </li></ul><ul><li>use of biobased and recycled materials – underway </li></ul><...
To Conclude <ul><li>Additive manufacturing bears the opportunity to be a truly supportive technology for C2C, BUT also to ...
Prof. Dr. ir. Karel Van Acker K.U.Leuven Research & Development c/o department MTM Kasteelpark Arenberg 44 BE-3001 Leuven ...
realisations @KULeuven Quality control by industrial X-ray CT Production of metal components by SLM
Upcoming SlideShare
Loading in …5
×

C2 cn fablab_karel

676 views

Published on

Presentation FabLab practice during the expert seminar in Leuven, July 13th 2010.

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
676
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
41
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • Reducing the weight of a long range aircraft by 100kg results in a 1.3 MtCO 2 eq saving over the lifetime of the aircraft, the equivalent of saving $2.5 million worth of fuel
  • Reducing the weight of a long range aircraft by 100kg results in a 1.3 MtCO 2 eq saving over the lifetime of the aircraft, the equivalent of saving $2.5 million worth of fuel
  • Reducing the weight of a long range aircraft by 100kg results in a 1.3 MtCO 2 eq saving over the lifetime of the aircraft, the equivalent of saving $2.5 million worth of fuel
  • restricted world - recognizeboundaries
  • restricted world - recognizeboundaries
  • restricted world - recognizeboundaries
  • C2 cn fablab_karel

    1. 1. C2C{Network Study visit Fablab Leuven – July 13, 2010 Additive production technology and sustainability: challenges and opportunities Prof. Karel Van Acker, K.U.Leuven Materials Research Centre
    2. 2. context: Plan C <ul><li>Flemish Transition Network Sustainable Materials Management </li></ul>strategic visions 2030 closing the circle tailor-made materials service economy conscious society green plastics phase 1 phase 3 phase 2 learning & upscaling <ul><li>Long term vision as framework for short term actions </li></ul><ul><li>Room for high risk experiments in niche sectors </li></ul><ul><li>System innovation approach </li></ul><ul><li>Active role of all relevant actors </li></ul>visionary leitbild 20xx 2009 experiments
    3. 3. context: Plan C knowledge/control material flows extended materials responsibility reverse logistics design for cycle biomimetic materials biobased materials 2030 smaller transparant material cycles 2008 uncontrollable, obscure, global material flows 1:1 production 1000:1 production revalue local production neighbourhood labs bottom-up production just-in-need production modular production closed material loops technosphere biosphere
    4. 4. Material wasting production mining production use phase End-of-Life resources waste
    5. 5. production <ul><li>e.g. aerospace industry </li></ul><ul><ul><li>classical machining </li></ul></ul><ul><ul><ul><li>buy to fly ratio up to 15:1 </li></ul></ul></ul><ul><ul><ul><li>cooling lubircants (Germany: 75 ktonnes/yr) </li></ul></ul></ul><ul><ul><li>casting </li></ul></ul><ul><ul><ul><li>energy consumption of holding molten materials </li></ul></ul></ul><ul><ul><ul><li>tooling </li></ul></ul></ul><ul><ul><li>molding </li></ul></ul><ul><ul><ul><li>tooling </li></ul></ul></ul><ul><ul><ul><li>cooling and mold release components </li></ul></ul></ul><ul><ul><ul><li>design restrictions </li></ul></ul></ul>
    6. 6. what is additive manufacturing? (3D printing, rapid manufacturing) <ul><li>polymers </li></ul><ul><ul><li>Stereolithography (e.g. photopolymers) </li></ul></ul><ul><ul><li>Selective Laser Sintering (e.g. nylon powder) </li></ul></ul><ul><ul><li>Fused Deposition Modelling (e.g. extrusion of ABS) </li></ul></ul><ul><li>metals/ceramics </li></ul><ul><ul><li>Selective laser sintering/melting </li></ul></ul><ul><ul><li>3D fibre deposition </li></ul></ul>
    7. 7. Materials used <ul><li>General: High density polyethylene (HDPE), low density polyethylene (LDPE), polypropylene (PP), unplasticised polyvinylchloride (UPVC), ABS, polylactic acid (PLA) and polycapralactone (PCL) steel, titanium, aluminium, … </li></ul><ul><li>Can the materials cycle be closed? </li></ul>
    8. 8. Materials used <ul><li>Can the materials cycle be closed? </li></ul><ul><ul><li>process waste can be recycled </li></ul></ul><ul><ul><li>use of bio-based materials </li></ul></ul><ul><ul><ul><li>PLA </li></ul></ul></ul><ul><ul><ul><li>starch </li></ul></ul></ul><ul><ul><ul><li>sugar, clay </li></ul></ul></ul>
    9. 9. Materials used <ul><li>Can the materials cycle be closed? </li></ul><ul><ul><li>process waste can be recycled </li></ul></ul><ul><ul><li>use of bio-based materials </li></ul></ul><ul><ul><ul><li>PLA </li></ul></ul></ul><ul><ul><ul><li>starch </li></ul></ul></ul><ul><ul><ul><li>sugar, clay </li></ul></ul></ul><ul><ul><li>use of recycled materials </li></ul></ul><ul><ul><ul><li>glass </li></ul></ul></ul>
    10. 10. Strenghts of additive production <ul><li>material effectiveness </li></ul><ul><li>use of biobased and recycled materials – underway </li></ul><ul><li>waste/emission minimisation during production </li></ul>
    11. 11. source: ATKINS rapport, Loughborough University, 2007
    12. 12. Strenghts of additive production <ul><li>material effectiveness </li></ul><ul><li>use of biobased and recycled materials – underway </li></ul><ul><li>waste/emission minimisation during production </li></ul><ul><li>freedom of design </li></ul><ul><ul><li>further reduction of material need + very complex geometries possible </li></ul></ul><ul><ul><li>make use phase efficient e.g. complex lightweight constructions </li></ul></ul>
    13. 13. Strenghts of additive production <ul><li>material effectiveness </li></ul><ul><li>use of biobased and recycled materials – underway </li></ul><ul><li>waste/emission minimisation during production </li></ul><ul><li>freedom of design </li></ul><ul><li>repair of components </li></ul><ul><ul><li>transport of bytes instead of materials reduce logistical requirements by shortening the supply chain and minimising the need for waste material disposal or recycling; </li></ul></ul>
    14. 14. Strengths of additive production <ul><li>material effectiveness </li></ul><ul><li>use of biobased and recycled materials – underway </li></ul><ul><li>waste/emission minimisation during production </li></ul><ul><li>freedom of design </li></ul><ul><li>repair of components </li></ul><ul><ul><li>transport of bytes instead of materials </li></ul></ul><ul><ul><li>economic </li></ul></ul><ul><ul><li>stock can be reduced to low value raw material </li></ul></ul><ul><ul><li>local production, since labour cost is not decisive </li></ul></ul><ul><li>social </li></ul><ul><ul><li>personalised products – more added value ?? </li></ul></ul><ul><ul><li>you can make almost everything yourself  Fablab </li></ul></ul>
    15. 15. Weaknesses of additive production <ul><li>Energy consumption </li></ul><ul><li>Technological drawbacks </li></ul><ul><ul><li>slowness </li></ul></ul><ul><ul><li>poor surface precision </li></ul></ul><ul><ul><li>cost </li></ul></ul>
    16. 16. Weaknesses of additive production <ul><li>Energy consumption </li></ul><ul><li>Technological drawbacks </li></ul><ul><li>Closing the loop </li></ul><ul><ul><li>there is a huge potential to use this technology for C2C, however still a lot of research has to be done </li></ul></ul>
    17. 17. Weaknesses of additive production <ul><li>Energy consumption </li></ul><ul><li>Technological drawbacks </li></ul><ul><li>Closing the loop </li></ul><ul><li>Potential rebound effect 3D printing = gadget printing? </li></ul>
    18. 18. Weaknesses of additive production <ul><li>Energy consumption </li></ul><ul><li>Technological drawbacks </li></ul><ul><li>Closing the loop </li></ul><ul><li>Potential rebound effect 3D printing = gadget printing? </li></ul><ul><li>Need for new business models </li></ul>
    19. 19. www.additivemanufacturing.be
    20. 20. A system innovation approach
    21. 21. To conclude <ul><li>material effectiveness </li></ul><ul><li>use of biobased and recycled materials – underway </li></ul><ul><li>waste/emission minimisation during production </li></ul><ul><li>freedom of design </li></ul><ul><li>repair of components </li></ul><ul><ul><li>transport of bytes instead of materials </li></ul></ul><ul><ul><li>economic </li></ul></ul><ul><ul><li>stock can be reduced to low value raw material </li></ul></ul><ul><ul><li>local production, since labour cost is not decisive </li></ul></ul><ul><li>social </li></ul><ul><ul><li>personalised products – more added value ?? </li></ul></ul><ul><ul><li>you can make almost everything yourself  Fablab </li></ul></ul><ul><li>Energy consumption </li></ul><ul><li>Technological drawbacks </li></ul><ul><li>Closing the loop </li></ul><ul><li>Potential rebound effect 3D printing = gadget printing? </li></ul><ul><li>Need for new business models </li></ul>
    22. 22. To Conclude <ul><li>Additive manufacturing bears the opportunity to be a truly supportive technology for C2C, BUT also to be a new source of unsustainable production </li></ul><ul><li>The transition of production technologies towards this (and other kinds of) personalised production is ongoing </li></ul><ul><li>How will we make this transition growing into a sustainable direction? </li></ul>
    23. 23. Prof. Dr. ir. Karel Van Acker K.U.Leuven Research & Development c/o department MTM Kasteelpark Arenberg 44 BE-3001 Leuven tel. +32 16 321271 e-mail: [email_address] Prof. Dr. ir. Ignaas Verpoest chairman Leuven MRC department MTM Kasteelpark Arenberg 44 BE-3001 Leuven +32 16 321306 [email_address] contact: www.leuvenmrc.be
    24. 24. realisations @KULeuven Quality control by industrial X-ray CT Production of metal components by SLM

    ×