Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Solar GreenhousesBarbara Bellows, updated by K. AdamNCAT Agriculture SpecialistsPublished 2008© NCATIP142AbstractThis reso...
All greenhouses collect solar energy. Solar greenhouses are designed not only to collect solar energy during sunnydays but...
floor heating systems         insulation materials         ventilation methodsIn books or articles on passive solar heatin...
Back to topSolar Greenhouse DesignsAttached solar greenhouses are lean-to structures that form a room jutting out from a h...
For milder winters, southern U.S. latitudes, and year-round use where less heat storage is                                ...
Solar path at 40° north latitude (2)Slope of Glazing MaterialIn addition to north-south orientation, greenhouse glazing sh...
account for their expansion and contraction with hot and cold weather.(7) As a general rule, a solar greenhouseshould have...
Polyethylene—corrugated high density             Laminated Acrylic/Polyester film—doubleLight transmission*: 70-75%       ...
• Provides good performance for 7-10 yearsDisadvantages:• Can be expensive                                                ...
Brick or concrete-filled cinder block walls at the back (north side) of the greenhouse can also provide heat storage.Howev...
Trombe wall.  Photo: Australian Center for Renewable EnergyWater walls are a variation of the Trombe wall. Instead of a ma...
fatty acids (21, 22)They absorb and store heat when they change from solid to liquid phase, and then release this heat whe...
calculate the number of feet of four-inch tubing you will need by dividing the square feet of greenhouse floor area bytwo....
Back to topInsulationWall and Floor InsulationGood insulation helps to retain the solar energy absorbed by thermal mass ma...
Bubble greenhouse design.On greenhouse floors, brick, masonry, or flagstone serves as a good heat sink. However, they can ...
The Walipini greenhouse, a traditional underground greenhouse   from Bolivia.(36)Glazing is what allows light and heat int...
Solar greenhouse with solar curtains, water wall, and water heat storage  on the north wall.(2)Back to topVentilationA bui...
Solar chimneys are passive solar collectors attached to                                                              the h...
References  1.   Illinois Solar Energy Association. 2002. Solar Greenhouse. ISEA Fact Sheet #9. Accessed at:       www.ill...
13. Smith, Shane. 2000. Greenhouse Gardeners Companion: Growing Food and Flowers in Your Greenhouse or    Sunspace. Fulcru...
28. Butler, Nancy J. 1985. A Home Greenhouse—Dream or Nightmare? Weed Em and Reap; Feb.-March. MSU        Cooperative Exte...
Kansas State University Recommended High Tunnel Resources. Ted Carey. 2008.         K State Plans for 4-season hoophouses ...
Craft, Mark A. (Editor). 1983. Winter Greens: Solar Greenhouses for Cold Climates.Firefly Books. Scarborough, Ont. 262 p. ...
Fuller, R.J. 1992. Solar Greenhouses for the Home Gardener. Victorian Dept. of Food and Agriculture, Melbourne,Australia. ...
Strickler, Darryl J. 1983. Solarspaces : How (and Why) to Add a Greenhouse, Sunspace, or Solarium to Your Home.Van Nostran...
Covers every aspect of designing and constructing a home greenhouse. Eight chapters discuss the following topics:greenhous...
Phase-Change Materials         General Greenhouse Information         Greenhouse Technical and Trade Publications         ...
Manchester, NH 03103603-668-8186Sundance SupplyProvides information on greenhouse design and installation. Sells materials...
Solar ChimneysAnon. 1986. Solar chimney for low-cost desert cooling. Popular Science. May. p. 16B-17C.Abrams, Don. 1984. T...
Greenhouse GrowerMeister Publishing Company37733 Euclid Ave.Willoughby, OH 44094216-942-2000GM Pro (formerly Greenhouse Ma...
Boulder, CO 80301303-443-3130Publishes Solar Today magazine and an annual membership directory; $70 annual membership fee....
Energy-10. A software package for solar energy design. Available from Solar Building Industries Council.www.sbicouncil.org...
Această listă de resursă discută despre principiile de bază ale proiectaresolare cu efect de seră, precum şi opţiuni difer...
plantelor împotriva frigului. Serele solare activă utilizaţi suplimentare de energie pentru a muta solare de aer încălzits...
materiale de absorbție căldură          schimb de căldură prin "faza-schimbare" sau "materiale de stocare căldură latentă"...
Tancuri serele solare sunt suficient de mare pentru producția comercială de culturi, legume sau plante aromatice.Există do...
dislocate. Izolare a peretelui cu efect de seră este important pentru minimizarea pierderii de căldură. Sisteme deabsorbți...
Panta Material pentru geamurileÎn plus faţă de orientare nord-sud, cu efect de seră geamuri trebuie să fie corect înclinat...
• Necesită numeroase sprijină                      • Dificil pentru a instala, necesită definirea precisă• Clar sticlă dif...
• Nu rezistente la focImpactul modificate acrilic — strat dublu Fibra întărite de plastic (FRP)Lumina transmiterea *: 85% ...
Aveţi nevoie pentru a înţelege patru numere în selectarea geamuri pentru serele solare. Două numere descrie randamentul te...
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Solar heet greenhuouse
Upcoming SlideShare
Loading in …5
×

Solar heet greenhuouse

2,705 views

Published on

Published in: Business, Technology
  • Be the first to comment

  • Be the first to like this

Solar heet greenhuouse

  1. 1. Solar GreenhousesBarbara Bellows, updated by K. AdamNCAT Agriculture SpecialistsPublished 2008© NCATIP142AbstractThis resource list discusses basic principles of solar greenhouse design, aswell as different construction material options. Books, articles and Websites, and computer software relevant to solar greenhouse design are allprovided in a resource list.Table of Contents Kansas City Center for Urban Agriculture. Introduction Photo: NCAT Basic Principles of Solar Greenhouse Design Solar Greenhouse Designs Solar Heat Absorption Solar Heat Storage Insulation Ventilation Putting It All Together References Resources o Books o Articles, Fact Sheets, and Web Sites o Computer SoftwareIntroductionSince 2000, U.S. greenhouse growers have increasingly adopted high tunnels as the preferred solar greenhousetechnology. Rigid frames and glazing are still common in parts of Europe, and in the climate-controlled operations inMexico and the Caribbean that produce acres of winter crops for North American markets. (For more on climate-controlled technology, see Linda Calvin and Roberta Cook. 2005. "Greenhouse tomatoes change the dynamics of theNorth American fresh tomato industry." AmberWaves. April. Vol. 3, No. 2.).
  2. 2. All greenhouses collect solar energy. Solar greenhouses are designed not only to collect solar energy during sunnydays but also to store heat for use at night or during periods when it is cloudy. They can either stand alone or beattached to houses or barns. A solar greenhouse may be an underground pit, a shed-type structure, or a hoophouse.Large-scale producers use free-standing solar greenhouses, while attached structures are primarily used by home-scale growers.Passive solar greenhouses are often good choices for small growers because they are a cost-efficient way for farmersto extend the growing season. In colder climates or in areas with long periods of cloudy weather, solar heating mayneed to be supplemented with a gas or electric heating system to protect plants against extreme cold. Active solargreenhouses use supplemental energy to move solar heated air or water from storage or collection areas to otherregions of the greenhouse. Use of solar electric (photovoltaic) heating systems for greenhouses is not cost-effectiveunless you are producing high-value crops.Hazards due to increased weather turbulence: Hail Tornados High straight-line winds Build-up of snow, iceThe majority of the books and articles about old-style solar greenhouses were published in the 1970s and 1980s.Since then, much of this material has gone out of print, and some of the publishers are no longer in business. Whilecontact information for companies and organizations listed in these publications is probably out of date, some of thetechnical information contained in them is still relevant.The newest form of solar greenhouse, widely adopted by U.S. producers, is high tunnels. The term glazing, as usedin this publication, includes reference to polyethylene coverings for hoop houses.Out-of-print publications often can be found in used bookstores, libraries, and through the inter-library loan program.Some publications are also available on the Internet. Bibliofind is an excellent, searchable Web site where many usedand out-of-print books can be located.As you plan to construct or remodel a solar greenhouse, do not limit your research to books and articles thatspecifically discuss "solar greenhouses." Since all greenhouses collect solar energy and need to moderatetemperature fluctuations for optimal plant growth, much of the information on "standard" greenhouse managementis just as relevant to solar greenhouses. Likewise, much information on passive solar heating for homes is alsopertinent to passive solar heating for greenhouses. As you look through books and articles on general greenhousedesign and construction, you will find information relevant to solar greenhouses in chapters or under topic headingsthat discuss: energy conservation glazing materials
  3. 3. floor heating systems insulation materials ventilation methodsIn books or articles on passive solar heating in homes or other buildings, you can find useful information on solargreenhouses by looking for chapters or topic headings that examine: solar orientation heat absorption materials heat exchange through "phase-change" or "latent heat storage materials"This updated resource list includes listings of books, articles, and Web sites that focus specifically on solargreenhouses, as well as on the topics listed above.Related ATTRA Publications Season Extension Techniques for Market Gardeners Organic Greenhouse Vegetable Production Greenhouse and Hydroponic Vegetable Production Resources on the Internet Potting Mixes for Certified Organic Production Integrated Pest Management for Greenhouse Crops Herbs: Organic Greenhouse Production Plug and Transplant Production for Organic Systems Compost Heated Greenhouses Root Zone Heating for Greenhouse CropsBack to topBasic Principles of Solar Greenhouse DesignSolar greenhouses differ from conventional greenhouses in the following four ways.(1) Solar greenhouses: have glazing oriented to receive maximum solar heat during the winter. use heat storing materials to retain solar heat. have large amounts of insulation where there is little or no direct sunlight. use glazing material and glazing installation methods that minimize heat loss. rely primarily on natural ventilation for summer cooling.Understanding these basic principles of solar greenhouse design will assist you in designing, constructing, andmaintaining an energy-efficient structure. You can also use these concepts to help you search for additionalinformation, either on the "Web," within journals, or in books at bookstores and libraries.
  4. 4. Back to topSolar Greenhouse DesignsAttached solar greenhouses are lean-to structures that form a room jutting out from a house or barn. Thesestructures provide space for transplants, herbs, or limited quantities of food plants. These structures typically have apassive solar design.Freestanding solar greenhouses are large enough for the commercial production of ornamentals, vegetables, orherbs. There are two primary designs for freestanding solar greenhouses: the shed type and the hoophouse. A shed-type solar greenhouse is oriented to have its long axis running from east to west. The south-facing wall is glazed tocollect the optimum amount of solar energy, while the north-facing wall is well-insulated to prevent heat loss. Thisorientation is in contrast to that of a conventional greenhouse, which has its roof running north-south to allow foruniform light distribution on all sides of the plants. To reduce the effects of poor light distribution in an east-westoriented greenhouse, the north wall is covered or painted with reflective material.(2)Freestanding shed-type solar greenhouses(2) For cold winters, northern latitudes, and year-round use: • steep north roof pitched to the highest summer sun angle for maximum year-round light reflection onto plants; • vertical north wall for stashing heat storage. • 40-60° sloped south roof glazing. • vertical kneewall high enough to accommodate planting beds and snow sliding off roof. • end walls partially glazed for added light. • The Brace Institute design continues the north roof slope down to the ground (eliminating the north wall), allowing for more planting area in ground, but no heat storage against the north wall. For cold winters, middle U.S. latitudes, and year-round use (similar to the design popularized by Domestic Technology Institute, see Resources for plans and address): • 45-60° north roof slope. • vertical north wall for stacking heat storage. • 45° south roof glazing. • vertical kneewall. • part of end walls glazed for additional light.
  5. 5. For milder winters, southern U.S. latitudes, and year-round use where less heat storage is needed: • 45-70° north roof slope—roof slope steeper and north wall shorter if less space is needed for stacking heat storage. • roof can extend down to ground, eliminating back kneewall if no storage is use. • 20-40° south roof glazing. • front kneewall as high as is needed for access to beds in front. • most of end walls glazed for additional light.Freestanding hoophouses are rounded, symmetrical structures. Unlike the shed-type solar greenhouses, these do nothave an insulated north side. Solarization of these structures involves practices that enhance the absorption anddistribution of the solar heat entering them. This typically involves the collection of solar heat in the soil beneath thefloor, in a process called earth thermal storage (ETS), as well as in other storage materials such as water or rocks.Insulation of the greenhouse wall is important for minimizing heat loss. Heat absorption systems and insulationmethods are discussed in detail in the following sections.Back to topSolar Heat AbsorptionThe two most critical factors affecting the amount of solar heat a greenhouse is able to absorb are: The position or location of the greenhouse in relation to the sun The type of glazing material usedSolar OrientationSince the suns energy is strongest on the southern side of a building, glazing for solar greenhouses should ideallyface true south. However, if trees, mountains, or other buildings block the path of the sun when the greenhouse is ina true south orientation, an orientation within 15° to 20° of true south will provide about 90% of the solar capture ofa true south orientation. The latitude of your location and the location of potential obstructions may also require thatyou adjust the orientation of your greenhouse slightly from true south to obtain optimal solar energy gain.(2) Somegrowers recommend orienting the greenhouse somewhat to the southeast to get the best solar gain in the spring,especially if the greenhouse is used primarily to grow transplants.(3) To determine the proper orientation for solarbuildings in your area, visit the sun chart program at the University of Oregon Solar Radiation Monitoring LaboratoryWeb page. You need to know your latitude, longitude, and time zone to use this program.
  6. 6. Solar path at 40° north latitude (2)Slope of Glazing MaterialIn addition to north-south orientation, greenhouse glazing should be properly sloped to absorb the greatest amountof the suns heat. A good rule of thumb is to add 10° or 15° to the site latitude to get the proper angle. For example,if you are in northern California or central Illinois at latitude 40° north, the glazing should be sloped at a 50° to 55°angle (40° + 10° or 15°).(4)GlazingGlazing materials used in solar greenhouses should allow the greatest amount of solar energy to enter into thegreenhouse while minimizing energy loss. In addition, good plant growth requires that glazing materials allow anatural spectrum of photosynthetically active radiation (PAR) to enter. Rough-surface glass, double-layer rigid plastic,and fiberglass diffuse light, while clear glass transmits direct light. Although plants grow well with both direct anddiffuse light, direct light through glazing subdivided by structural supports causes more shadows and uneven plantgrowth. Diffuse light passing through glazing evens out the shadows caused by structural supports, resulting in moreeven plant growth.(5, 6)Many new greenhouse glazing materials have emerged in recent decades. Plastics now are the dominant type ofglazing used in greenhouses, with the weatherability of these materials being enhanced by ultraviolet radiationdegradation inhibitors, infrared radiation (IR) absorbency, anti-condensation drip surfaces, and unique radiationtransmission properties.(7)The method used for mounting the glazing material affects the amount of heat loss.(8) For example, cracks or holescaused by the mounting will allow heat to escape, while differences in the width of the air space between the twoglazes will affect heat retention. Installation and framing for some glazing materials, such as acrylics, need to
  7. 7. account for their expansion and contraction with hot and cold weather.(7) As a general rule, a solar greenhouseshould have approximately 0.75 to 1.5 square feet of glazing for each square foot of floor space.(1)Table 1. Glazing CharacteristicsGlass—single layer Factory sealed double glassLight transmission*: 85-90% Light transmission*: 70-75%R-value**: 0.9 R-value**: double layer 1.5-2.0, low-e 2.5Advantages: Advantages:• Lifespan indefinite if not broken • Lifespan indefinite if not broken• Tempered glass is stronger and requires • Can be used in areas with freezingfewer support bars temperaturesDisadvantages: Disadvantages:• Fragile, easily broken • Heavy• May not withstand weight of snow • Clear glass does not diffuse light• Requires numerous supports • Difficult to install, requires precise framing• Clear glass does not diffuse lightPolyethylene—single layer Polyethylene—double layerLight transmission*: 80-90% - new material Light transmission*: 60-80%R-value**: single film 0.87 R-value** double films: 5ml film 1.5, 6ml film 1.7Advantages:• IR films have treatment to reduce heat loss Advantages:• No-drop films are treated to resist • Heat loss significantly reduced when a blowercondensation is used to provide an air space between the two• Treatment with ethyl vinyl acetate results in layersresistance to cracking in the cold and tearing • IR films have treatment to reduce heat loss• Easy to install, precise framing not required • No-drop films are treated to resist• Lowest cost glazing material condensation • Treatment with ethyl vinyl acetate results inDisadvantages: resistance to cracking in the cold to tearing• Easily torn • Easy to install, precise framing not required• Cannot see through • Lowest-cost glazing material• UV-resistant polyethylene lasts only 1-2years Disadvantages:• Light transmission decreases over time • Easily torn• Expand and sag in warm weather, then shrink • Cannot see throughin cold weather • UV-resistant polyethylene lasts only 1-2 years • Light transmission decreases over time • Expand and sag in warm weather, then shrink in cold weather
  8. 8. Polyethylene—corrugated high density Laminated Acrylic/Polyester film—doubleLight transmission*: 70-75% layerR-value**: 2.5-3.0 Light transmission*: 87% R-value**: 180%Advantages:• Mildew, chemical, and water resistant Advantages:• Does not yellow • Combines weatherability of acrylic with high service temperature of polyesterDisadvantages: • Can last 10 years or moren/a Disadvantages: • Arcrylic glazings expand and contract considerably; framing needs to allow for this change in size • Not fire-resistantImpact modified acrylic—double layer Fiber reinforced plastic (FRP)Light transmission*: 85% Light transmission*: 85-90% - new material R-value**: single layer 0.83Advantages:• Not degraded or discolored by UV light Advantages:• High impact strength, good for locations with • The translucent nature of this material diffuseshail and distributes light evenly • Tedlar-treated panels are resistant to weather,Disadvantages: sunlight, and acids• Arcrylic glazings expand and contract • Can last 5 to 20 yearsconsiderably; framing needs to allow for thischange in size Disadvantages:• Not fire resistant • Light transmission decreases over time • Poor weather-resistance • Most flammable of the rigid glazing materials • Insulation ability does not cause snow to meltPolycarbonate—double wall rigid plastic Polycarbonate film—triple and quad wallLight transmission*: 83% rigid plasticR-value**: 6mm 1.6, 8mm 1.7 Light transmission*: 75% R-value** triple walls: 8mm 2.0-2.1, 16mm 2.5Advantages: R-value** quad wall: 6mm 1.8, 8 mm 2.1• Most fire-resistant of plastic glazingmaterials Advantages:• UV-resistant • Most fire-resistant of plastic glazing materials• Very strong • UV-resistant• Lightweight • Very strong• Easy to cut and install • Lightweight• Provides good performance for 7-10 years • Easy to cut and install
  9. 9. • Provides good performance for 7-10 yearsDisadvantages:• Can be expensive Disadvantages:• Not clear, translucent • Can be expensive • Not clear, translucentSources: (2, 6, 7, 13, 14)* note that framing decreases the amount of light that can pass through and be available as solarenergy** R-Value is a common measure of insulation (hr°Fsq.ft/BTU)You need to understand four numbers when selecting glazing for solar greenhouses. Two numbers describe the heat efficiency ofthe glazing, and the other two numbers are important for productive plant growth. Many glazing materials include a NationalFenestration Rating Council sticker that lists the following factors:• The SHGC or solar heat gain coefficient is a measure of the amount of sunlight that passes through a glazing material. Anumber of 0.60 or higher is desired.• The U-factor is a measure of heat that is lost to the outside through a glazing material. A number of 0.35 BTU/hr-ft2-F or less isdesired.• VT or visible transmittance refers to the amount of visible light that enters through a glazing material. A number of 0.70 orgreater is desired.• PAR or photosynthetically active radiation is the amount of sunlight in the wavelengths critical for photosynthesis and healthyplant growth. PAR wavelength range is 400-700 nanometers (a measure of wavelength).Note: When choosing glazing, look at the total visual transmittance, not PAR transmittance, to see whether the material allowsthe spectrum of light necessary for healthy plant growth.In addition to energy efficiency and light transmission, you should consider the following when choosing glazing materials foryour greenhouse:• Lifespan• Resistance to damage from hail and rocks• Ability to support snowload• Resistance to condensation• Sheet size and distance required between supports• Fire-resistance• Ease of installation(Based on 6, 9, 10, 11, 12, 13, 14)Back to topSolar Heat StorageFor solar greenhouses to remain warm during cool nights or on cloudy days, solar heat that enters on sunny daysmust be stored within the greenhouse for later use. The most common method for storing solar energy is to placerocks, concrete, or water in direct line with the sunlight to absorb its heat.(1)
  10. 10. Brick or concrete-filled cinder block walls at the back (north side) of the greenhouse can also provide heat storage.However, only the outer four inches of thickness of this storage material effectively absorbs heat. Medium to dark-colored ceramic tile flooring can also provide some heat storage.(15) Walls not used for heat absorption should belight colored or reflective to direct heat and light back into the greenhouse and to provide a more even distribution oflight for the plants.Storage MaterialsThe amount of heat storage material required depends on your location. If you live in southern or mid-latitudelocations, you will need at least 2 gallons of water or 80 pounds of rocks to store the heat transmitted through eachsquare foot of glazing.(16) If you live in the northern states, you will need 5 gallons or more of water to absorb theheat that enters through each square foot of glazing.(1) Approximately three square feet of four-inch thick brick orcinder block wall is required for each square foot of south-facing glass.(15)The amount of heat-storage material required also depends on whether you intend to use your solar greenhouse forextending the growing season, or whether you want to grow plants in it year-round. For season extension in coldclimates, you will need 2 ½ gallons of water per square foot of glazing, or about half of what you would need foryear-round production.(2)If you use water as heat-storage material, ordinary 55-gallon drums painted a dark, non-reflective color work well.Smaller containers, such as milk jugs or glass bottles, are more effective than 55-gallon drums in providing heatstorage in areas that are frequently cloudy. The smaller container has a higher ratio of surface area, resulting inmore rapid absorption of heat when the sun does shine.(14) Unfortunately, plastic containers degrade after two orthree years in direct sunlight. Clear glass containers provide the advantages of capturing heat better than dark metalcontainers and not degrading, but they can be easily broken.(17)Trombe walls are an innovative method for heat absorption and storage. These are low walls placed inside thegreenhouse near the south-facing windows. They absorb heat on the front (south-facing) side of the wall and thenradiate this heat into the greenhouse through the back (north-facing) side of the wall. A Trombe wall consists of an8- to 16-inch thick masonry wall coated with a dark, heat-absorbing material and faced with a single or double layerof glass placed from 3/4" to 6" away from the masonry wall to create a small airspace. Solar heat passes through theglass and is absorbed by the dark surface. This heat is stored in the wall, where it is conducted slowly inwardthrough the masonry. If you apply a sheet of metal foil or other reflective surface to the outer face of the wall, youcan increase solar heat absorption by 30-60% (depending on your climate) while decreasing the potential for heatloss through outward radiation.(10, 18)
  11. 11. Trombe wall. Photo: Australian Center for Renewable EnergyWater walls are a variation of the Trombe wall. Instead of a masonry wall, water-filled containers are placed in linewith the suns rays between the glazing and the greenhouse working space. The water can be in hard, plastic tubesor other sturdy containers, and the top of the wall can serve as a bench. The Solviva solar greenhouse water wallconsists of two 2x4 stud walls, with the studs placed two feet on center. A one-foot spacer connects the two walls.Plastic-covered horse fence wire was then fastened to each stud wall, and heavy-duty, dark-colored plastic waterbags were inserted into the space between the two walls. The stud walls were positioned vertically in line with thesuns rays prior to the bags being filled with water.(19) Both the Solviva and Three Sisters Farm Web pages providedesigns for constructing solar greenhouses using water walls.You can use rocks instead of water for heat storage. The rocks should be ½ to 1½ inches in diameter to providehigh surface area for heat absorption.(5) They can be piled in wire-mesh cages to keep them contained. Since rockshave a much lower BTU storage value than water (35 BTU/sq.ft/°F for rocks versus 63 for water) (13), you will needthree times the volume of rocks to provide the same amount of heat storage. Rocks also have more resistance to airflow than water, resulting in less efficient heat transfer.(20)Whichever material you choose to use for heat storage, it should be placed where it will collect and absorb the mostheat, while losing the least heat to the surrounding air. Do not place the thermal mass so that it touches any exteriorwalls or glazing, since this will quickly draw the heat away.Phase-changeInstead of water or rocks for heat storage, you can use phase-change materials. While phase-change materials areusually more expensive than conventional materials, they are 5 to 14 times more effective at storing heat than wateror rocks. Thus, they are useful when space is limited. Phase-change materials include: disodium phosphate dodecahydrate sodium thiosulfate pentahydrate paraffin Glaubers salt (sodium sulphate dcahydrate) calcium chloride hexahydrate and
  12. 12. fatty acids (21, 22)They absorb and store heat when they change from solid to liquid phase, and then release this heat when theychange back into a solid phase.(5) Calcium chloride hexahydrate has a heat storing capacity 10 times that ofwater.(23) These materials are usually contained in sealed tubes, with several tubes required to provide sufficientheat storage. Because of the ability of phase-change materials to absorb high quantities of heat, they also are usefulin moderating greenhouse temperatures in the summer.Most of the research on the use of phase-change materials for greenhouses has been conducted in Europe, Israel,Japan, and Australia. In Israel, phase-change materials were incorporated into greenhouse glazing, which increasedheat capture and retention, but reduced the transparency of the glazing on cloudy days when the phase changematerial did not become liquid.(24) At the time of publication, two companies were identified—one in the U.S. andanother in Australia—that sell underfloor heating systems using phase-change materials.(25, 26) Phase-changedrywall, currently under research, incorporates phase-change materials inside common wallboard to increase its heatstorage capacity and could replace heavier, more expensive, conventional thermal masses used in passive-solarspace heating.(27) See the reference section for a listing of publications and Web sites that provide additionalinformation about phase change materials.For more information, see the Phase Change Thermal Energy Storage Web site provides a detailed discussion of thistechnology.For many homeowners, building an attached solar greenhouse is very appealing. They believe that they can extend their gardensgrowing season while reducing their home heating bills. Unfortunately, there is a contradiction between the use of a greenhouseto grow plants and the use of it as a solar collector for heating the house.(9, 28)• To provide heat for a home, a solar collector needs to be able to collect heat in excess of what plants can tolerate.• Much of the heat that enters into a greenhouse is used for evaporating water from the soil and from plant leaves, resulting inlittle storage of heat for home use.• A home heat collector should be sealed to minimize the amount of heat loss. Greenhouses, however, require some ventilation tomaintain adequate levels of carbon dioxide for plant respiration and to prevent moisture build-up that favors plant diseases.Bioshelters provide an exception to this rule. In bioshelters, the food-producing greenhouse is not an "add-on" to the house but isan integral part of the living space. Bioshelters often integrate fish or small animals with vegetable production to completenutrient cycles. Biological control measures and plant diversity are used to manage pests in a way that is safe for people and petsin the living quarters. First pioneered by The New Alchemy Institute of East Falmouth, Massachusetts, in the 1970s, Solviva andthe Three Sisters Farm carry on the bioshelter tradition.Active SolarAn active method for solar heating greenhouses uses subterranean heating or earth thermal storage solar heating. Thismethod involves forcing solar-heated air, water, or phase-change materials through pipes buried in the floor. If youuse hot air for subsurface heating, inexpensive flexible drainage or sewage piping about 10 centimeters (4 inches) indiameter can be used for the piping. Although more expensive, corrugated drainage tubing provides more effectiveheating than smooth tubing, since it allows for greater interaction between the heat in the tube and the ground. Thesurface area of the piping should be equal to the surface area of the floor of the greenhouse. You can roughly
  13. 13. calculate the number of feet of four-inch tubing you will need by dividing the square feet of greenhouse floor area bytwo. Once installed, these pipes should be covered with a porous flooring material that allows for water to enter intothe soil around them, since moist soil conducts heat more effectively than dry soil. The system works by drawing hotair collected in the peak of the roof down through pipes and into the buried tubing. The hot air in the tubes warmsthe soil during the day. At night, cool air from the greenhouse is pumped through the same tubing, causing the warmsoil to heat this air, which then heats the greenhouse.(29, 30) For more information on this design, see SolarGreenhouses for Commercial Growers (29), or visit the Web page of Going Concerns Unlimited, a solar energycompany in Colorado.Root-zone thermal heating with water is normally used in conjunction with gas-fired water heaters. This system canbe readily adapted to solar and works well with both floor or bench heat. Bench-top heating with root-zone thermaltubing is widely practiced in modern greenhouse production and can be installed easily. A permanent floor heatingsystem consists of a series of parallel PVC pipes embedded on 12" to 16" centers in porous concrete, gravel, or sand.Water is heated in an external solar water heater then pumped into the greenhouse and circulated through the pipes,warming the greenhouse floor. Containerized plants sitting directly on the greenhouse floor receive root-zone heat.Additional information on root zone heating can be found in the ATTRA publication Root Zone Heating for GreenhouseCrops.The Solviva greenhouse uses a variation of active solar heating. The system in this greenhouse relies on heatabsorption by a coil of black polybutylene pipe set inside the peak of the greenhouse. The pipe coil lays on a blackbackground and is exposed to the sun through the glazing. A pump moves water from a water tank, located on thefloor of the greenhouse, to the coiled pipe, and back to the tank. Water heated within the coils is capable of heatingthe water in the tank from 55°F to 100°F on a sunny day. The heat contained in the water tank helps keep thegreenhouse warm at night.(19)Greenhouse management practices also can affect heat storage. For example, a full greenhouse stores heatbetter than an empty one. However, almost half of the solar energy is used to evaporate water from leaf and soilsurfaces and cannot be stored for future use.(5, 31) Solar heat can be complemented with heat from compost asdescribed in the ATTRA publication Compost Heated Greenhouses. Besides adding some heat to the greenhouse,increased carbon dioxide in the greenhouse atmosphere, coming from the decomposition activities of themicroorganisms in the compost, can increase the efficiency of plant production.While solar greenhouses can extend your growing season by providing relatively warm conditions, you should carefully selectthe types of plants that you intend to grow, unless you are willing to provide backup heating and lighting.Vegetables and herbs that are suitable for production in a winter solar greenhouse include:Cool temperature tolerant: Basil, celery, dill, fennel, kale, leaf lettuce, marjoram, mustard greens, oregano, parsley, spinach,Swiss chard, turnips, cabbage, collards, garlic, green onions, and leeks.Require warmer temperatures: Cherry tomatoes, large tomatoes, cucumbers (European type), broccoli, edible pod peas,eggplant, and peppers.(Based on 28)
  14. 14. Back to topInsulationWall and Floor InsulationGood insulation helps to retain the solar energy absorbed by thermal mass materials. Keeping heat in requires you toinsulate all areas of the greenhouse that are not glazed or used for heat absorption. Seal doors and vents withweather stripping. Install glazing snugly within casements. Polyurethane foams, polystyrene foams, and fiberglassbatts are all good insulating materials. But these materials need to be kept dry to function effectively. A vapor barrierof heavy-duty polyethylene film placed between the greenhouse walls and the insulation will keep your greenhousewell insulated.(1) Unglazed areas should be insulated to specifications of your region. For example, R-19 insulation isspecified for greenhouses in Illinois (1) and in Missouri (24), while R-21 is recommended for walls in NewMexico.(10) The ZIP-Code Insulation Program Web site provides a free calculator for finding recommended insulationR-values for houses based on your zip code.Richard Nelson of SOLAROOF developed an innovative way to insulate greenhouse walls in a hoophouse-stylegreenhouse. This system involves constructing a greenhouse with a double layer of plastic sheeting as glazing.Bubble machines (such as are used to create bubbles at parties) are installed in the peak of the greenhouse betweenthe two layers of plastic. At least two generators should be installed, at either end of the greenhouse. During thewinter, the bubble machines face north and blow bubbles into space between two sheets of plastic on the north sideof the greenhouse to provide R-20 or higher insulation for northern winters. During the summer, the bubblemachines can be turned to face south to provide shading against high heat.(33)
  15. 15. Bubble greenhouse design.On greenhouse floors, brick, masonry, or flagstone serves as a good heat sink. However, they can quickly lose heatto the ground if there is not an insulating barrier between the flooring and the soil. To protect against heat loss,insulate footings and the foundation with 1- to 2-inch sheets of rigid insulation or with a 4-inch-wide trench filled withpumice stone that extends to the bottom of the footings. You also can insulate flooring with four inches of pumicerock. Besides insulating the floor, this method also allows water to drain through. (16)External InsulationYou also can insulate your greenhouse by burying part of the base in the ground or building it into the side of asouth-facing hill.(5) Straw bales or similar insulating material also can be placed along the unglazed outside walls toreduce heat loss from the greenhouse.(34) Underground or bermed greenhouses provide excellent insulation againstboth cold winter weather and the heat of summer. They also provide good protection against windy conditions.(35)Potential problems with an underground greenhouse are wet conditions from the water table seeping through the soilon the floor and the entry of surface water through gaps in the walls at the ground level. To minimize the risk ofwater rising through the floor, build the underground greenhouse in an area where the bottom is at least five feetabove the water table. To prevent water from entering the greenhouse from the outside, dig drainage ditches aroundthe greenhouse to direct water away from the walls. Also, seal the walls with waterproof material such as plastic or afine clay. An excellent description of how to build a simple pit greenhouse is provided at the Web page for theBenson Institute, a division of the College of Biology and Agriculture at Brigham Young University (BYU). ThisInstitute has a campus in Bolivia where students built an underground greenhouse based on local, traditionalpractices.(36)
  16. 16. The Walipini greenhouse, a traditional underground greenhouse from Bolivia.(36)Glazing is what allows light and heat into a solar greenhouse. It can also be the greatest area for heat loss. Asmentioned previously, increasing the insulating value of glazing often decreases the amount of sunlight entering thegreenhouse. When selecting glazing for your greenhouse, look for materials that provide both good light transmissionand insulating value. For example, polyethylene films referred to as "IR films" or "thermal films" have an additive thathelps reduce heat loss.(37) Double or triple glazing provides better insulation than single glazing. Some greenhousegrowers apply an extra layer of glazing—usually a type of film—to the interior of their greenhouses in winter toprovide an extra degree of insulation. Adding a single or double layer of polyethylene film over a glass house canreduce heat loss by as much as 50%.(38) By using two layers of polyethylene film in plastic-film greenhouses with asmall fan blowing air between them to provide an insulating air layer, heat losses can be reduced by 40% or more,as compared to a single layer of plastic.(39)Greenhouse curtains limit the amount of heat lost through greenhouse glazing during the night and on cloudydays. By installing greenhouse insulation sheets made from two-inch thick bats of polystyrene, you can reduce byalmost 90% the heat that would otherwise be lost through the glazing. For a small greenhouse where labor is not alarge constraint, you can manually install the polystyrene sheets at night and remove them in the morning. Magneticclips or Velcro fasteners will facilitate the installation.(1) Alternatively, you can install thermal blankets made ofpolyethylene film, foam-backed fiberglass, or foil-faced polyethylene bubble material. These blankets are supportedon wire tracks and can be raised or lowered using pulleys. While greenhouse curtains composed of thermal blanketsare usually opened and closed manually, a few manufactures have motorized roll-up systems that store the blanketnear the greenhouse peak.(5)
  17. 17. Solar greenhouse with solar curtains, water wall, and water heat storage on the north wall.(2)Back to topVentilationA building designed to collect heat when temperatures are cold also needs to be able to vent heat whentemperatures are warm. Air exchange also is critical in providing plants with adequate levels of carbon dioxide andcontrolling humidity. Because of the concentrated air use by plants, greenhouses require approximately two airexchanges per minute (in contrast to the one-half air exchange per minute recommended for homes). To determinethe flow requirements for your greenhouse, multiply the volume of the greenhouse by two to get cubic feet of airexchange per minute, which is the rate used in determining the capacity of commercial evaporative coolers.Roof-ridge and sidewall vents provide natural ventilation. The sidewall vents allow cool air to flow into the sides ofthe greenhouse, while ridge vents allow the rising hot air to escape. Some wind is necessary for this type ofventilation system to function effectively. On still, windless days, fans are necessary to move air through thegreenhouse. The area of the venting should be equal to between 1/5 to 1/6 of the greenhouse floor area.(1)
  18. 18. Solar chimneys are passive solar collectors attached to the highest point on the greenhouse and are combined with vents or openings on either end of the greenhouse. The chimney has an inlet that draws warm air from inside the greenhouse and an outlet that discharges it to the outdoors. To enhance solar gain inside the chimney and increase airflow, the inner surface of the chimney stack is glazed or painted black. A ventilator turbine added to the top of the chimney provides an additional force to pull warm air up from inside the greenhouse.(40) Thermal storage materials are effective in keeping a greenhouse cool in summer as well as keeping it warm in winter. Since these materials absorb heat during theA solar chimney. (2) day, less heat radiates within the greenhouse when thesun is shining. When the sun goes down, heat released from the thermal storage materials can be vented out of thegreenhouse.(2)Removing external shading can also decrease heat build-up within the greenhouse. Shading provided by maturetrees is not recommended. Older books on solar greenhouse design (e.g., 2) argue that deciduous trees can provideshade in the summer but allow for plenty of sunlight to enter through the glazing in the winter after the leaves aregone. However, more recent literature notes that a mature, well-formed deciduous tree will screen more than 40%of the winter sunlight passing through its branches, even when it has no leaves.(31)Active solar cooling systems include solar air-conditioning units and photovoltaics set up to run standard evaporativecooling pads. Both are more complex and expensive to equip than passive systems.Putting It All TogetherDesigning and building a solar greenhouse can be an exciting and rewarding project. Feel free to rely on the olderliterature to provide you with basic siting, design, and construction guidelines. However, incorporating new glazing,heat storage, and insulating materials into your design can greatly enhance the efficiency of your structure. Severalconsulting companies can provide you with blueprints and design assistance, often at a reasonable cost. See theResources section for names and contact information for these companies. Of course, you need to weigh the costs ofthese new technologies against the value of your greenhouse-grown crops. As you become familiar with theprinciples of passive solar design, you may want to experiment with ways of harnessing the power of the sun withinyour greenhouse to produce better plants throughout the year.Back to top
  19. 19. References 1. Illinois Solar Energy Association. 2002. Solar Greenhouse. ISEA Fact Sheet #9. Accessed at: www.illinoissolar.org/ 2. Alward, Ron, and Andy Shapiro. 1981. Low-Cost Passive Solar Greenhouses. National Center for Appropriate Technology, Butte, MT. 173 p. 3. White, Joe. 1991. Growing it in a Sunpit. The Natural Farmer. Winter. p. 14. 4. Thomas, Stephen G., John R. McBride, James E. Masker, and Keith Kemble. 1984. Solar Greenhouses and Sunspaces: Lessons Learned. National Center for Appropriate Technology. Butte, MT. 36 p. 5. Bartok, Jr., John W. 2000. Greenhouses for Homeowners and Gardeners. NRAES-137. Cornell University, Ithaca, NY. 214 p. 6. Giacomelli, Gene A. 1999. Greenhouse coversing systems—User considerations. Cook College. Rutgers University. Accessed at: http://AESOP.RUTGERS.EDU/~ccea/publications.html 7. Giacomelli, Gene A. 1999. Greenhouse glazings: Alternatives under the sun. Department of Bioresource Engineering. Cook College. Rutgers University. Accessed at: http://AESOP.RUTGERS.EDU/~ccea/publications.html 8. Bartok, Jr., John W. 2001. Energy Conservation for Commercial Greenhouses. NRAES-3. Cornell University, Ithaca, NY. 84 p. 9. BTS. 2001. Passive Solar Design. Technology Fact Sheet. U.S. Department of Energy. Office of Building Technology, State and Community Programs. Accessed at: apps1.eere.energy.gov/buildings/publications/pdfs/building_america/29236.pdf [PDF/232K] 10. Luce, Ben. 2001. Passive Solar Design Guidelines for Northern New Mexico. New Mexico Solar Energy Association. Accessed at: www.nmsea.org/Curriculum/Courses/Passive_Solar_Design/Guidelines/Guidelines.htm 11. NREL. 2001. Passive Solar Design for the Home. Energy Efficiency and Renewable Energy Clearinghouse. National Renewable Energy Laboratory. U.S. Department of Energy. Accessed at: www.nrel.gov/docs/fy01osti/27954.pdf [PDF/216K] 12. BTS. 2001. Passive Solar Design. Technology Fact Sheet. U.S. Department of Energy. Office of Building Technology, State and Community Programs. Accessed at: www.nrel.gov/docs/fy01osti/29236.pdf [PDF/232K]
  20. 20. 13. Smith, Shane. 2000. Greenhouse Gardeners Companion: Growing Food and Flowers in Your Greenhouse or Sunspace. Fulcrum Publishers. 2nd edition. 544 pages. Excerpts accessed at: www.greenhousegarden.com/energy.htm14. Nuess, Mike. 1997. Designing and building a solar greenhouse or sunspace. Washington State University Energy Program.15. Williams, Sue E., Kenneth P. Larson, and Mildred K. Autrey. 1999. Sunspaces and Solar Porches. The Energy Event. Oklahoma State Cooperative Extension Service. A hard copy can be purchased via the following website www.osuums.com/ASPFiles/inventfind.asp?s=.16. Anon. n.d. Solar Greenhouse Plans and Information. Sun Country Greenhouse Company. Accessed at: www.hobby-greenhouse.com/FreeSolar.html17. North Carolina Solar Center. 2000. Do It Yourself Solar Applications: For Water and Space Heating. North Carolina Solar Center. Energy Division North Carolina Department of Commerce. Accessed at: www.ncsc.ncsu.edu/information_resources/factsheets/23lowcst.pdf [PDF/713K]18. NREL. 1999. Building a Better Trombe Wall. National Renewable Energy Laboratory.19. Edey, Anna. 1998. Solviva: How to Grow $500,000 on One Acre and Peace on Earth. Trailblazer Press, Vineyard Haven, MA. 225 p.20. Pin, Nick. 1995. Solar closets in a nutshell. Listserv message. Archived at: www.ibiblio.org/london/renewable-energy/solar/Nick.Pine/msg00026.html21. Solar Technologies. Accessed at: www.alaskasun.org/pdf/SolarTechnologies.pdf (PDF/328K]22. Gates, Jonathan. 2000. Phase Change Material Research. Accessed at: http://freespace.virgin.net/m.eckert/index.htm23. Baird, Stuart, and Douglas Hayhoe. 1983. Passive Solar Energy. Energy Fact Sheet.24. Korin, E., A. Roy, D. Wolf, D. Pasternak, and E. Rappaport. 1987. A novel passive solar greenhouse based on phase-change materials. International Journal of Solar Energy. Volume 5. p. 201-212.25. PCM Thermal Solutions. Underfloor heating. Accessed at: www.pcm-solutions.com/under_app.html26. TEAP Energy. 2002. PCM Energy Efficiency.27. EREC. n. d. Phase Change Drywall. EREC Reference Briefs. U.S. Department of Energy. Office of Energy Efficiency and Renewable Energy. (document no longer available on web)
  21. 21. 28. Butler, Nancy J. 1985. A Home Greenhouse—Dream or Nightmare? Weed Em and Reap; Feb.-March. MSU Cooperative Extension Service. Accessed at: www.hobby-greenhouse.com/UMreport.htm 29. Monk, G.J., D.H. Thomas, J.M. Molnar, and L.M. Staley. 1987. Solar Greenhouses for Commercial Growers. Publication 1816. Agriculture Canada. Ottawa, Canada. 30. Puri, V.M., and C.A. Suritz. 1985. Feasibility of subsurface latent heat storage for plant root zone and greenhouse heating. American Society of Agricultural Engineers (Microfiche collection) 20 p. 31. NREL. 1994. Sunspace Basics. Energy Efficiency and Renewable Energy Clearinghouse. National Renewable Energy Laboratory. U.S. Department of Energy. Accessed at: www1.eere.energy.gov/office_eere/pdfs/solar_fs.pdf [PDF/220K] 32. Thomas, Andrew L., and Richard J. Crawford, Jr. 2001. Performance of an Energy-efficient, Solar-heated Greenhouse in Southwest Missouri. Missiouri Agricultural Experiment Station. Missouri University College of Agriculture, Food, and Natural Resources. 33. Nelson, Richard. Sola Roof Garden. Accessed at: http://solaroof.org/wiki/SolaRoof/SolaRoofGarden/ 34. Cruickshank, John. 2002. Solar Heated Greenhouses with SHCS. Growing Concerns. Accessed at: www.sunnyjohn.com/indexpages/shcs_greenhouses.htm 35. Geery, Daniel. 1982. Solar Greenhouses: Underground. TAB Books, Inc. Blue Ridge Summit, PA. 400 p. 36. Benson Institute. n.d.. The Pankar-huyu and Building a Pankar-huyu. Accessed at: http://benson.byu.edu/Publication/BI/Lessons/volume22/pankar.html and http://benson.byu.edu/Publication/BI/Lessons/volume22/building.html 37. Anon. 2002. Greenhouse Glazing. Horticultural Engineering, Rutgers Cooperative Extension, Volume 17, No. 1. Accessed at: www.rosesinc.org/ICFG/Join_ICFG/2002-03/Greenhouse_Glazing.asp 38. Aldrich, Robert A., and John W. Bartok, Jr. 1989. Greenhouse Engineering. NRAES-33. Northeast Regional Agricultural Engineering Service, Cornell University. 203 p. 39. Hunt, John N. 1988. Saving energy—North Carolina style. Greenhouse Grower. March. 40. Gilman, Steve. 1991. Solar ventilation at Ruckytucks Farm. The Natural Farmer. Winter. p. 15.Back to topResources
  22. 22. Kansas State University Recommended High Tunnel Resources. Ted Carey. 2008. K State Plans for 4-season hoophouses www.hightunnels.org Note: www.hightunnels.org has links to suppliers and multiple sources of information-including the high tunnels listserv, Penn State Web site, and construction designs. The hightunnel listserv allows participants to ask questions of all members of the list. Complete archives are stored on-line. Blomgren, T., and T. Frisch. 2007. High Tunnels: Using low-cost technology to increase yields, improve quality and extend the season. University of Vermont Center for Sustainable Agriculture. www.uvm.edu/sustainableagriculture/hightunnels.html Coleman, Eliot. 1998. The Winter Harvest Manual. Order from: Four Season Farm, 609 Weir Cover Road, Harborside, ME. $15.00. Growing for Market. [n.d.] Hoophouse handbook. Fairplain Publications, Lawrence, KS. Order from: Fairplain, P.O. Box 3747, Lawrence, KS 66046. www.growingformarket.com; 800-307-8949. Much of the content reprinted from Growing for Market. Heidenreich, C. et al. 2007. High Tunnel Raspberries and Blackberries. Cornell University. www.fruit.cornell.edu/Berries/bramblepdf/hightunnelsrasp.pdf Jett, Lewis. High Tunnel Tomato Production. University of Missouri Extension. Pub. MI70. Jett, L. High Tunnels Melon and Watermelon Production. University of Missouri Extension. Pub. M173. Lamont et al. 2004. Production of Vegetables, Strawberries and Cut Flowers Using Plasticulture. NRAES-133. Ithaca, NY. Penn State High Tunnel Production Manual. 2004. www.plasticulture.org/publications/tunnel.pdf. $31.00. Wiediger, Paul and Alison. [n.d.] Walking to Spring. Order from: Au Naturel Farm, 3298 Fairview Church Road, Smiths Grove, KY 42171. $18.50.Books Solar Greenhouses Energy Conservation in Greenhouses Passive Solar Home DesignNote: Many of the books listed below are out of print. You may be able to locate these books at a public library or ina good used bookstore. Bibliofind is an excellent, searchable Web site where many used and out-of-print books canbe located.Solar GreenhousesAnon. 1980. A Solar Adapted Greenhouse Manual and Design. Miller-Solsearch, Charlottetown, PEI, Canada.Anon. 1979. The Canadian Solar Home Design Manual. Overview,Wolfville, Nova Scotia. 71 p.Babcock, Joan, et al. 1981. A Place in the Sun: A Guide to Building an Affordable Solar Greenhouse. R.J.K. Solar,Gillette, NJ. 28 p.
  23. 23. Craft, Mark A. (Editor). 1983. Winter Greens: Solar Greenhouses for Cold Climates.Firefly Books. Scarborough, Ont. 262 p. (Out of Print).Clegg, Peter. 1978. The Complete Greenhouse Book: Building and Using Greenhouses from Cold-Frames to SolarStructures. Storey Books. Pownal, VT. 280 p. (Out of print).Conserver Society Products Cooperative. 1979. Solar Greenhouse Workbook.Conserver Society Cooperative, Ottawa, Canada. 43 p.DeKorne, James B. 1992. The Hydroponic Hot House: Low-Cost, High Yield Greenhouse Gardening. BreakoutProductions, Incorporated 178 p.An illustrated guide to alternative-energy greenhouse gardening. It includes directions for building several differentgreenhouses.Edey, Anna. 1998. Solviva: How to Grow $500,000 on One Acre and Peace on Earth. Trailblazer Press, VineyardHaven, MA. 225 p.One of few recent books written on solar greenhouses. Available for $35 from:SolvivaRFD 1 Box 582Vineyard Haven, MA 02568508-693-3341508-693-2228 FAXsolviva@vineyard.netEllwood, Charles C. How to Build and Operate Your Greenhouse: Growing Methods, Hydroponics, Nutrient Formulas,Plans, Costs, Heating and Cooling, Introduction to Solar heating. H.P. Books. Tucson, AZ. 144 p. (Out of print).Freeman, Mark. 1997. Building Your Own Greenhouse. Stackpole Books,Mechanicsburg, PA. 208 p.A guide to designing and constructing cold frames, free-standing greenhouses, and attached to the house solargreenhouses. Available for $18.95 from:Stackpole Books5067 Ritter Rd.Mechanicsburg, PA 17055800-732-3669Fontanetta, John. 1979. Passive Solar Dome Greenhouse Book. Storey Books.Pownal, VT. (Out of print).
  24. 24. Fuller, R.J. 1992. Solar Greenhouses for the Home Gardener. Victorian Dept. of Food and Agriculture, Melbourne,Australia. 27 p.Geery, Daniel. 1982. Solar Greenhouses: Underground. TAB Books, Blue Ridge Summit, PA. 400 p.Focuses on earth-sheltered solar greenhouse structures. Good information on design, function, construction, andoperation of greenhouses. Many useful tables and charts. (Out of print).Hayes, John (ed.). 1979. Proceedings from the Conference on Energy-Conserving, Solar-Heated Greenhouses. Heldin Plymouth, MA, April, 1979. New England Solar Energy Association, Brattleboro, VT. 328 p.Head, William. 1984. Fish Farming in Your Solar Greenhouse. Amity Foundation, Eugene, OR. 50 p. (Out of print).Magee, Tim. 1979. A Solar Greenhouse Guide for the Pacific Northwest.Ecotope, Seattle, WA. 91 p.Available for $6 from:Ecotope2812 E. MadisonSeattle, WA 98112206-322-3753Mazria, Edward. 1979. The Passive Solar Energy Book. Rodale Press, Emmaus, PA. 435 p. (Out of print, but usuallyavailable from used book sellers).McCullagh, James C. (ed.) 1978. The Solar Greenhouse Book. Rodale Press, Emmaus, PA. 328 p.Comprehensive overview of small attached, pit, and free-standing solar greenhouses. Out of print, but usuallyavailable from used booksellers.Monk, G.J., D.H. Thomas, J.M. Molnar, and L.M. Staley. 1987. Solar Greenhouses for Commercial Growers.Publication 1816. Agriculture Canada, Ottawa, Canada. 48 p.Nearing, Helen, and Scott Nearing. 1977. Building and Using Our Sun-Heated Greenhouse: Grow Vegetables All Year-Round. Storey Books, Pownal, VT. 148 p. (Out of print).Shapiro, Andrew. 1985. The Homeowners Complete Handbook for Add-On Solar Greenhouses and Sunspaces.Rodale Press, Emmaus, PA. 355 p.Updates and expands on material in The Solar Greenhouse Book (see above). (Out of print).Smith, Shane. 1982. The Bountiful Solar Greenhouse. John Muir Publications. Santa Fe, NM. 221 p. (Out of print).Stone, Greg. 1997. Building a Solar-Heated Pit Greenhouse. Storey Communications,Pownal, VT. 32 p. (Out of print).
  25. 25. Strickler, Darryl J. 1983. Solarspaces : How (and Why) to Add a Greenhouse, Sunspace, or Solarium to Your Home.Van Nostrand Reinhold Co., New York, NY. 154 p. (Out of print).Taylor, Ted M. 1999. Secrets to a Successful Greenhouse and Business : A Complete Guide to Starting and OperatingA High-Profit Organic or Hydroponic Business That Benefits the Environment. GreenEarth Publishing, Melbourne, FL.280 p.Includes solar greenhouse design plans as well as greenhouse operation and business development information.Ordering information available at: www.greenhouse.netThomas, Stephen G., John R. McBride, James E. Masker, and Keith Kemble. 1984. Solar Greenhouses and Sunspaces:Lessons Learned. National Center for Appropriate Technology. Butte, MT. 36 p. (Out of print).Williams, T. Jeff, Susan Lang, and Larry Hodgson. 1991. Greenhouses: Planning, Installing and Using Greenhouses.Ortho Books, San Ramon, CA. 112 p.Yanda, William F. 1976. An Attached Solar Greenhouse. Lightning Tree Press, Boulder, CO. 18 p. (Out of print).Yanda, William F., and Rick Fisher. 1980. The Food and Heat Producing Solar Greenhouse: Design, Construction, andOperation. John Muir Publishing, Santa Fe, NM. 208 p.(Out of print).Energy Conservation in GreenhousesAldrich, Robert A., and John W. Bartok, Jr. 1989. Greenhouse Engineering. NRAES-33. Cornell University, Ithaca, NY.203 p.Provides a comprehensive treatment of the design and construction of medium- to large-scale greenhouses, withover 60 tables and 100 diagrams. $30.Bartok, Jr., John W. 2001. Energy Conservation for Commercial Greenhouses. NRAES-3. Cornell University, Ithaca,NY. 84 p.Reviews the merits and limitations of current energy-conservation strategies for commercial greenhouses. Topicscovered include principles of heat loss, site selection and modification, construction materials, insulation, fuels andheating, ventilation and cooling, space utilization, utilities, strategies for reducing trucking costs, and managing forefficiency.Bartok, Jr., John W. 2000. Greenhouses for Homeowners and Gardeners. NRAES-137. Cornell University, Ithaca, NY.214 p.
  26. 26. Covers every aspect of designing and constructing a home greenhouse. Eight chapters discuss the following topics:greenhouse basics, selecting a greenhouse, greenhouse planning, framing materials and glazing, greenhouse layoutsand equipment, the greenhouse environment, window greenhouses and growth chambers, and garden structures.The three books listed above are available from:Natural Resource, Agriculture, and Engineering Service (NREAS)152 Riley-Robb HallIthaca, New York 14853-5701607-255-7654607-254-8770 FAXNRAES@cornell.eduBond, T.E., J.F. Thompson, and Ray F. Hasek. 1985. Reducing Energy Costs in California Greenhouses. Leaflet21411. Cooperative Extension University of California. 24 p.Passive Solar Home DesignAnderson, Bruce, and Malcolm Wells. 1981. Passive Solar Energy: The Home-owners Guide to Natural Heating andCooling. Brick House Pub. Co. 197 p.Crosbie, Michael J. (ed.) 1998. The Passive Solar Design and Construction Handbook.John Wiley and Sons Ltd., New York. 291 p.Creech, Dennis B. 1988. Homeowners Guide to Energy Efficient and Passive Solar Homes. DIANE Publishing Co.Kachadorian, James. 1997. The Passive Solar House: Using Solar Design to Heat and Cool Your Home. Chelsea GreenPublishing Co. White River Junction, VT $25.Available from The Solar Energy Organization Web page.Levy, M. Emanuel, Deane Evans, and Cynthia Gardstein. 1983. The passive solar construction handbook: featuringhundreds of construction details and notes, materials specifications, and design rules of thumb. Rodale Press,Emmaus, PA. 328 p.Back to topArticles, Fact Sheets, and Web Sites Solar Greenhouse Designs and Consultation Greenhouse Glazing Greenhouse Curtains Solar Chimneys
  27. 27. Phase-Change Materials General Greenhouse Information Greenhouse Technical and Trade Publications Solar Energy Organizations: National Solar Energy Organizations: StateSolar Greenhouse Designs and ConsultationThe Bioshelter at Three Sisters FarmThe bioshelter includes a solar greenhouse, poultry housing, potting room, seed and tool storage, an equipmentstorage "barn," a kitchen for packing produce, compost bins, a reference library and living spaces. A full report of thebioshelter design costs $8.00. Three Sisters Permaculture Design also offers consultation on solar greenhouse design,construction and management.The Green GreenhouseAn excellent site, funded partially by the Northeast SARE, provides detailed design blueprints, materials list,construction suggestions, and performance information for a solar greenhouse.Growing Concerns, Unlimited. Solar GreenhousesProvides design and construction consulting services for building solar greenhouses and homes. Specializes insubterranean solar heat systems.Hobby Greenhouse AssociationSells a Directory of Manufacturers: Hobby Greenhouses, Solariums, Sunrooms, and Window Greenhouses for $2.50.Has links to many greenhouse manufacturers Web pages. A one-year membership to the association costs $15 andincludes a subscription to Hobby Greenhouse, a quarterly magazine, and Hobby Greenhouse News, a quarterlynewsletter.Hobby Greenhouse Association8 Glen TerraceBedford, MA 01730-2048781-275-0377Passive Solar GreenhouseProvides consulting services and passive solar greenhouse plans that have passed building codes for New Mexico.Blueprints include lists of materials and where to purchase them.Solar Components CorporationSolar greenhouse kits as well as blueprints and materials for "build-your-own" solar greenhouses.Solar Components Corporation121 Valley Street
  28. 28. Manchester, NH 03103603-668-8186Sundance SupplyProvides information on greenhouse design and installation. Sells materials needed for constructing and maintaininggreenhouses.Sunglo Solar Greenhouses214 21st Street SEAuburn, WA 98002800-647-0606Free catalog of greenhouse kits available.Greenhouse GlazingGiacomelli, Gene A. 1999. Greenhouse coversing systems - User considerations. Greenhouse glazings: Alternativesunder the sun. Cook College. Rutgers University.http://AESOP.RUTGERS.EDU/~ccea/publications.htmlGiacomelli, G.A., and W.J. Roberts. 1993. Greenhouse covering systems. HortTechnology. Volume 3, no. 1. p. 50-58.Roberts, W.J. 1989. Greenhouse glazing. In: K.V. Garzoli (ed.) Energy Conservation and Solar Energy Utilization inHorticultural Engineering. Acta horticulturae. Volume 257. p. 161-168. Ordering information at:www.actahort.org/books/257/index.htmMeyer, J. 1985. Greenhouse Construction and Covering Materials. ISHS Acta Horticulturae 170. Ordering informationat: www.actahort.org/books/170/Efficient Windows CollaborativeNational Festration Council. 2002Greenhouse CurtainsNational Greenhouse Manufactures Association. Helpful Hints: Internal and External Greenhouse Curtain Systems[PDF/125K]Agri-tech. Energy CurtainFAQs—Internal & External Greenhouse Curtain Systems. Griffin Greenhouse and Nursery SupplyNational Greenhouse Manufacturers Association
  29. 29. Solar ChimneysAnon. 1986. Solar chimney for low-cost desert cooling. Popular Science. May. p. 16B-17C.Abrams, Don. 1984. The latest on solar chimneys. Rodales New Shelter. August. p. 10-11.Abrams, Donald W. 1986. Low-Energy Cooling: A Guide to the Practical Application of Passive Cooling and CoolingEnergy Conservation Measures. Van Nostrand Reinhold Co., New York, NY. p. 126-131, 150-161.Burton, John, and Jeff Reiss. 1981. Project: A solar chimney. p. 623-627. In: Joe Carter (ed.) Solarizing Your PresentHome. Rodale Press, Emmaus, PA.Cunningham, W.A., and T.L. Thompson. 1988. Passive greenhouse cooling.Greenhouse Grower. April. p. 19-20.Phase-change MaterialsVerner, Carl. 1997. Phase Change Thermal Energy Storage.http://freespace.virgin.net/m.eckert/carl_veners_dissertation.htmGeneral Greenhouse InformationAbraham, Doc and Katy. 1993. What to look for in a greenhouse. Consumers Research. January. p. 31-35.Good introduction to greenhouses in general.Dickerson, Lizzy. 1992. The stone-built, bermed greenhouse. Maine Organic Farmer & Gardener. May-June. p. 16-17.Hofstetter, Bob. 1989. Tunnels of plenty. The New Farm. November-December. p. 36-39.Hofstetter, Bob. 1990. The New Farms greenhouse guide. The New Farm. September-October. p. 32-36.von Zabeltitz, Christian. 1990. Greenhouse construction in function of better climate control. Acta Horticulturae Vol.263. p. 357-366Greenhouse Technical and Trade PublicationsActa HorticulturaeJournal of the International Society for Horticultural ScienceISHS SecretariatP.O. Box 5003001 Leuven 1, Belgium
  30. 30. Greenhouse GrowerMeister Publishing Company37733 Euclid Ave.Willoughby, OH 44094216-942-2000GM Pro (formerly Greenhouse Manager)Branch-Smith Publishing120 St. Louis Ave.Fort Worth, TX 76101800-433-5612817-882-4121 FAXwww.greenbeam.comNM Pro (formerly Nursery Manager)Branch-Smith Publishing120 St. Louis Ave.Fort Worth, TX 76101800-433-5612817-882-4121 FAXwww.greenbeam.comGrowerTalksBall Publishing335 N. River StreetPO Box 9Batavia, IL 60510-0009 USA630-208-9080630-208-9350 FAXGreenhouse Product NewsScranton Gillette Communications, Inc.380 E. Northwest Hwy.Des Plaines, IL 60016-2282708-290-6622Solar Energy Organizations: NationalAmerican Solar Energy Society2400 Central Ave., G-1
  31. 31. Boulder, CO 80301303-443-3130Publishes Solar Today magazine and an annual membership directory; $70 annual membership fee.National Renewable Energy Laboratory. Energy Efficiency and Renewable Energy. U.S. Department of Energy.Passive Solar Heating, Cooling and Daylighting.www.eere.energy.gov/de/cs_passive_solar.htmlFact sheets include:Passive Solar Design for the HomeU.S. Department of Energy. Office of Building /Technology, State and Community Programs. Publications.Fact sheets include:Passive Solar DesignThe Solar Energy Research FacilityRenewable Energy Policy Project and Center for Renewable Energy and Sustainable TechnologyLinks to national, state, and international solar energy associations.Database of State Incentives for Renewable Energy (DSIRE)Links to state, local, utility, and selected federal incentives that promote renewable energy.Solar Energy Organizations: StateIllinois Solar Energy AssociationIndiana: Midwest Renewable Energy AssociationNew Mexico Solar Energy AssociationNorth Carolina Solar CenterOther sources of solar greenhouse factsheets have, in the past, included Oklahoma State Cooperative ExtensionService, the Solar Energy Association of Oregon, the Texas State Energy Conservation Office, and the Texas SolarEnergy Society. The best way to find current information on such organizations is by doing a Web search.Back to topComputer SoftwareEREC. n. d. Computer Software for Solar Energy Analysis and System Design. EREC Reference Briefs. U.S.Department of Energy. Office of Energy Efficiency and Renewable Energy.www.eere.energy.gov/buildings/tools_directory/software.cfm/ID=88/
  32. 32. Energy-10. A software package for solar energy design. Available from Solar Building Industries Council.www.sbicouncil.org/store/index.phpSUN_CHART™. A computer software that calculates and screen plots both cylindrical and polar suncharts for anydesired latitude. Available from:Optical Physics TechnologiesP.O. Box 11276Tucson, AZ 85734Acknowledgements: ATTRA agricultural specialists Janet Bachmann, Mike Morris, and Steve Diver providedexcellent reviews of this document. Steves many files on solar greenhouses were extremely useful in identifying thebreadth of solar greenhouse designs.Solar GreenhousesBy Barbara Bellows, updated by K. AdamNCAT Agriculture SpecialistsMary Ann Thom, HTML Production© NCATIP142Back to topThis page was last updated on: February 25, 2011Serele solareBarbara Bellows, actualizate de către K. AdamSpecialişti în agricultură NCATPublicat 2008© NCATIP142Abstract
  33. 33. Această listă de resursă discută despre principiile de bază ale proiectaresolare cu efect de seră, precum şi opţiuni diferite de construcție demateriale. Cărţi, articole şi site-uri Web şi programe de calculatorrelevante pentru proiectare de seră solare sunt furnizate într-o listă deresursă.Cuprins Kansas City Center pentru agricultură urbane. Foto: NCAT Introducerea Principiile de bază ale solare cu efect de seră Design Solare cu efect de seră Designs Solare de absorbție de energie termică Solare de stocare de căldură Izolare Ventilație Pune-O împreună Referinţe Resurse o Cărţi o Articole, fișele şi site-uri Web o Programe de calculatorIntroducereaÎncepând cu 2000, U.S. cu efect de seră cultivatorilor au din ce în ce adoptat tuneluri de mare ca tehnologie cu efectde seră solare preferată. Rame rigide și geamurile sunt încă comune în regiuni ale Europei și controlate de climaoperaţiunile în Mexic şi Caraibe care produc de acri de culturilor de iarnă pentru piețele din America de Nord. (Pentrumai multe pe tehnologia de climat controlat, consultaţi Linda Calvin și Roberta Cook. 2005. "Tomate de serăSchimbarea dinamica a industriei din America de Nord de tomate proaspete." AmberWaves. Aprilie. Vol. 3, nr. 2.).Toate sere colecta energia solară. Serele solare sunt concepute pentru a colecta energia solară în timpul zile insoritedar, de asemenea, pentru a stoca energie termică pentru folosirea pe timp de noapte sau în timpul perioadelor cândeste tulbure. Acestea fie poate sta singur sau se anexează case sau hambare. O seră solare pot fi o groapă subteran,o structură de tip de magazie sau un hoophouse. Producătorii pe scară largă folosesc nefixată solare sere, în timp ceataşat structurile sunt în primul rând folosite de cultivatori de scară de acasă.Pasivă solare sere sunt adesea bune alegeri pentru cultivatorii mici, deoarece acestea sunt un cost-eficient modpentru agricultorii să extindă sezonului de creştere. În rece climate sau în zonele cu perioade lungi de vreme tulbure,încălzire solare pot trebuie să fie completate cu un gaz sau un sistem de încălzire electrică necesară protejarea
  34. 34. plantelor împotriva frigului. Serele solare activă utilizaţi suplimentare de energie pentru a muta solare de aer încălzitsau apă din zonele de depozitare sau colectarea alte regiuni de seră. Utilizarea solare electrice (fotovoltaice) sistemepentru serele de încălzire nu este rentabilă decât dacă sunt producătoare de culturi de mare valoare.Riscuri datorate turbulenţe crescut de vreme: Grindină Tornados Vânturile puternice liniară Acumulării de zăpadă, gheaţăMajoritate de cărţi şi articole despre sere solare stil vechi au fost publicate în anii 1970 și 1980. De atunci, mare partedin acest material a plecat din imprimare şi unele dintre editorii nu mai sunt în afaceri. În timp ce informaţii decontact pentru companii si organizatii enumerate în aceste publicaţii este probabil neactualizat, unele dintre informațiitehnice conţinute în ele este încă relevante.Cele mai noi forma de seră solare, adoptat pe scară largă de către producătorii de U.S., este mare de tuneluri.Termenul pentru geamurile, astfel cum este utilizat în prezenta publicație, include trimitere la Îmbrăcămințile depolietilenă pentru caselor cercui.Adesea publicaţii afară de imprimare poate fi găsit în librăriile utilizate, biblioteci, şi prin programul de inter-library deîmprumut. Unele publicaţii sunt de asemenea disponibile pe Internet. Bibliofind este un excelent, căutabil site Webunde multe folosite şi cărţi afară de imprimare poate fi localizată.După cum aveţi de gând să construiască sau remodela o seră solare, nu limita dumneavoastră de cercetare de cărţi şiarticole care în mod specific discuta "solare sere." Deoarece toate sere colecta energia solară și necesitatea de amoderată fluctuațiilor de temperatură pentru creșterea plantei optimă, mult de informații asupra gestionării de seră"standard" este doar de relevante pentru sere solare. De asemenea, mai multe informaţii despre pasivă solareîncălzire pentru casele este de asemenea pertinente pentru încălzire solare pasive pentru sere. Aşa cum te uiţi princărţi şi articole despre generale cu efect de seră proiectarea și construcția, veţi găsi informaţii relevante pentru seresolare în capitolele sau sub titlurile de subiect care discuta: conservarea energiei materialele pentru sticla sisteme de încălzire podea materiale izolante metode de ventilațieÎn cărți sau articole pe pasivă solare încălzire în casele sau alte clădiri, puteţi găsi informaţii utile pe sere solare princăutarea de capitole sau titlurile de subiect care examinează: orientarea solare
  35. 35. materiale de absorbție căldură schimb de căldură prin "faza-schimbare" sau "materiale de stocare căldură latentă"Această listă de resursă actualizat include listări de cărţi, articole şi site-uri Web care se concentrează în specialasupra solare sere, precum şi pe subiecte enumerate mai sus.Conexe ATTRA publicaţii Sezonul extinderea tehnici pentru piața gradinari Productia ecologica de legume cu efect de seră Cu efect de seră şi resursele de producţie vegetală Hydroponic pe Internet Potting adaos pentru productia ecologica de certificate Management integrat al daunatorilor pentru culturile cu efect de seră Plante: Productia ecologica, cu efect de seră Conectaţi productia de rasaduri pentru sistemul ecologic Compost de încălzit sere Zona de rădăcină de încălzire pentru culturile cu efect de serăBack to topPrincipiile de bază ale solare cu efect de seră DesignSerele solare diferă de sere convenţionale în următoarele patru moduri.(1) Solar sere: au geamuri orientate spre primi căldură solare maximă în timpul iernii. Utilizaţi căldură depozitarea materialelor pentru a reține căldura solară. au cantităţi mari de izolare în cazul în care există foarte puţin sau nu lumina solară directă. Utilizaţi material geamurile şi metode de instalare geamurile care minimiza pierderea de căldură. se bazează în principal pe ventilație naturală de vara de răcire.Înţelegerea aceste principii de bază ale seră solare proiect vă va asista în proiectarea, construcţia şi întreţinerea ostructură eficiente energetic. De asemenea, puteţi utiliza aceste concepte care vă ajută să căutaţi informaţiisuplimentare, fie de pe "Web," în jurnale sau în cărţi la librăriile şi biblioteci.Back to topSolare cu efect de seră DesignsAtaşat sere solare sunt lean-to structuri care formează o cameră jutting de la o casă sau hambar. Aceste structurispațiu pentru transplanturile, ierburi sau cantități limitate de hrană. Aceste structuri de obicei au un design pasivăsolare.
  36. 36. Tancuri serele solare sunt suficient de mare pentru producția comercială de culturi, legume sau plante aromatice.Există două primar desene sau modele pentru serele solare tancuri: tipul de magazie și hoophouse. Un tip demagazie solare seră este orientată spre are axa lungă să fie difuzate de la est la vest. Peretele de Sud-confruntă estelustruit să colecteze valoarea optimă a energiei solare, în timp ce wall nord-cu care se confruntă este well-insulatedpentru a preveni pierderea de căldură. Această orientare este în contrast cu o seră convenţionale, care are săuacoperiş execută Nord-Sud pentru a permite distribuția luminii uniforme pe toate laturile de plante. Pentru a reduceefectele săraci distribuția luminii într-o seră orientate spre est-vest, peretele nord este acoperit sau pictat cureflectorizant.(2)Tancuri magazie de tip solare sere(2) Pentru ierni reci, latitudinile medii ale emisferei nordice, și utilizarea tot parcursul anului: • Nord de abrupt acoperiş avânt la unghiul de soarele de vară cea mai mare de reflecţie de lumină întregul maximă pe plante; • Zidul de Nord verticale pentru stashing de căldură de stocare. • 40-60 ° înclinat acoperiş Sud geam. • verticală kneewall suficient de mare pentru a se potrivi plantare paturi si zapada alunece de pe acoperiş. • sfârşitul pereți parțial lustruit pentru lumina adăugată. • Acoladă Institutul de proiectare continuă Nord acoperiş pantă în jos la sol (eliminarea zidul de Nord), care să permită mai multe zona plantare în pământ, dar nici un depozit de căldură de perete de Nord. Pentru ierni reci, Mijlociu latitudini U.S. şi year-round utilizaţi (similar cu proiectarea popularizat de Institutul de tehnologie interne, consultaţi resurse pentru planurile şi adresa): • 45-60 ° Nord acoperiş panta. • Zidul de Nord verticală pentru depozitarea suprapunere de căldură. • 45 ° Sud acoperiş geam. • verticală kneewall. • parte din ziduri de sfârşitul lustruit pentru lumina suplimentare. Iernile sunt atenuate, sudul U.S. latitudini și utilizarea tot parcursul anului, în care mai puţin de căldură de stocare este necesar: • 45-70 ° Nord acoperiş panta — acoperiş panta steeper și zidul de Nord mai scurte, mai puţin spaţiu este necesară pentru stivuirea termice de stocare. • acoperiş poate extinde în jos la pământ, eliminarea kneewall înapoi în cazul în care depozitarea nu este utilizarea. • 20-40 ° Sud acoperiş geam. • față kneewall fel de mare ca este nevoie de acces la paturi in fata. • majoritatea sfârşitul pereţi lustruit pentru lumina suplimentare.Hoophouses tancuri sunt structuri simetrice, rotunjite. Spre deosebire de tipul de magazie solare sere, acestea nu auo partea de Nord izolate. Solarizare aceste structuri implică practici care îmbunătăţesc absorbție și distribuție aenergiei termice solare introducerea ei. Acest lucru implică de obicei colecţie de căldură solare în sol sub podea, într-un proces numit pământ termice stocare (ETS), precum și în alte materiale de stocare, cum ar fi apă sau roci
  37. 37. dislocate. Izolare a peretelui cu efect de seră este important pentru minimizarea pierderii de căldură. Sisteme deabsorbție de căldură și metodele de izolare sunt discutate în detaliu în următoarele secţiuni.Back to topSolare de absorbție de energie termicăDoi factori cele mai critice care afectează cantitatea de căldură solare o seră este capabil să absoarbă sunt: Poziţia sau locaţia cu efect de seră în raport cu soarele Tipul de geam materialul utilizatOrientarea solareDeoarece energie de la soare este mai puternică pe latura de Sud a unei clădiri, geamuri pentru serele solare ideal artrebui să se confruntă Sud adevărat. Cu toate acestea, în cazul în care copaci, Munţii sau alte clădiri bloca caleasoarelui atunci când seră este într-o orientare Sud adevărat, o orientare în termen de 15 ° la 20 ° de Sud adevărat vaoferi aproximativ 90% din captură solare de o orientare Sud adevărat. Latitudine de locaţia și locația potenţialeobstacole pot solicita, de asemenea, că vă ajusta orientarea dumneavoastră cu efect de seră uşor la south adevăratpentru a obţine câştig optimă de energie solară.(2) Cultivatorii de unele recomanda orientare de seră oarecum lasud-est pentru a obţine cel mai bun câştig solare în primăvara, mai ales dacă seră este utilizată în principal săcrească transplanturi.(3) Pentru a determina orientarea corectă pentru clădiri solare în zona dumneavoastră, viziteazăprogramul de diagramă soare la laboratorul de monitorizare Universitatea din Oregon solare radiații pagina Web.Trebuie să ştiţi dumneavoastră latitudine, longitudine şi fusul orar pentru a utiliza acest program. Calea solare la 40 ° latitudine nordică (2)
  38. 38. Panta Material pentru geamurileÎn plus faţă de orientare nord-sud, cu efect de seră geamuri trebuie să fie corect înclinat să absoarbă cea mai marecantitate de căldură de la soare. Un bun empiric este pentru a adăuga 10 ° sau 15 ° latitudine site-ul pentru a obţineunghiul de buna. De exemplu, dacă sunteţi în California de Nord sau Illinois centrală la 40 ° Nord latitudine, geamultrebuie să fie înclinat la unui 50 ° de unghiul de 55 ° (40 ° + 10 ° sau 15 °).(4)GeamuriMaterialele folosite în sere solare geamurile ar trebui să permită cea mai mare cantitate de energie solară să intre înde seră, în timp ce minimizarea pierderii de energie. În plus, creșterea plantei bun presupune că materialele pentrugeamurile permite un spectru naturale de radiaţii photosynthetically activă (PAR) pentru a intra. Stare brută-suprafață sticlă, dublu strat rigide din material plastic şi fiberglass lumină difuză, în timp ce clar sticlă transmitelumina directă. Deşi plantele cresc bine cu lumină directă şi difuze, lumină direct prin geamurile subdivizate dupăsprijină structurale cauze mai multe umbre şi creșterii plantelor inegala. Lumină difuză care trece prin geamurileevens afară umbre cauzate de susţine structurale, care rezultă în mai multe chiar creșterii plantelor.(5, 6)Multe noi cu efect de seră materialele pentru geamurile au apărut în ultimele decenii. Materiale plastice acum suntdominante tip de geam utilizate în sere, cu weatherability aceste materiale fiind îmbunătăţită prin radiaţii ultravioletedegradare inhibitori, radiații infraroşu (IR) de atenuare a șocurilor, picurare anti-condensation suprafețelor și radiațiaunic transmiterea proprietăţi.(7)Metoda utilizată pentru montarea material geamurile afectează suma de pierdere a căldurii.(8), De exemplu,crăpături sau găuri cauzate de montare va permite căldură să scape, în timp ce diferențele de lățimea spațiului aerianîntre două smalțuri va afecta retenţie de căldură. Instalare şi schelet pentru anumite materiale de geamuri, cum ar fiacrylics, trebuie să țină seama de extinderea și contracția cu cald si rece vremea lor.(7) Ca regulă generală, o serăsolare ar trebui să aibă de aproximativ 0,75 la 1,5 metri pătraţi de geamuri pentru fiecare pătrat picior de podeaspaţiu.(1)Tabelul 1. Caracteristicile de geamuriSticlă — singur strat Fabrică sigilate sticlă dublăLumina transmiterea *: 85-90% Lumina transmiterea *: 70-75%Bolizi **: 0.9 Bolizi **: dublu strat 1.5-2.0, low-e 2.5Avantajele: Avantajele:• Durată nedeterminată dacă nu rupt • Durată nedeterminată dacă nu rupt• Temperat sticlă este mai puternic şi • Pot fi utilizate în zonele cu temperaturilor denecesită mai puţine suport baruri înghețDezavantaje: Dezavantaje:• Fragile, uşor rupt • Grele• Nu poate rezista la greutatea de zăpadă • Clar sticlă difuze lumină
  39. 39. • Necesită numeroase sprijină • Dificil pentru a instala, necesită definirea precisă• Clar sticlă difuze luminăPolietilenă — singur strat Polietilenă — strat dubluLumina transmiterea *: 80-90%-material Lumina transmiterea *: 60-80%nou Bolizi ** dublu filme: 5 ml filmul 1.5, 6 ml filmulBolizi **: singur filmul 0.87 1.7Avantajele: Avantajele:• IR filme au tratament pentru a reduce • Pierderea de căldură redusă semnificativ atuncipierderea de căldură când se utilizează un ventilator pentru a oferi un• Nu picătură filme sunt tratate pentru a spaţiu aerian între două straturirezista condensare • IR filme au tratament pentru a reduce pierderea• Tratament cu acetat de vinil etil rezultate în de căldurărezistența la cracare la rece şi de rupere • Nu picătură filme sunt tratate pentru a rezista• Uşor de instalat, precise nu judicioase condensarenecesare • Tratament cu acetat de vinil etil rezultate în• Material geamurile de costul mai mic rezistența la cracare la rece la rupere • Uşor de instalat, precise nu judicioase necesareDezavantaje: • Cel mai mic cost material de geamuri• Uşor rupt• Nu poate vedea prin Dezavantaje:• Polietilenă rezistentă la UV dureaza numai • Uşor rupt1-2 ani • Nu poate vedea prin• Scade de transmisie a luminii în timp • Polietilenă rezistentă la UV dureaza numai 1-2• Extinderea şi sag în vremea calda, apoi animicşora în vreme rece • Scade de transmisie a luminii în timp • Extinderea şi sag în vremea calda, apoi micşora în vreme recePolietilenă — cartonului ondulat Stratificată acrilic/poliester filmul — stratdensitate mare dubluLumina transmiterea *: 70-75% Lumina transmiterea *: 87%Bolizi **: 2.5-3.0 Bolizi **: 180 %Avantajele: Avantajele:• Mucegai, chimice și rezistente la apă • Combină weatherability de acrilic cu• Nu galben temperaturi ridicate ale serviciilor de poliester • Poate dura 10 ani sau mai multDezavantaje:n/a Dezavantaje: • Arcrylic sticlă extinde şi contract considerabil; încadrare are nevoie pentru a permite această schimbare în mărimea
  40. 40. • Nu rezistente la focImpactul modificate acrilic — strat dublu Fibra întărite de plastic (FRP)Lumina transmiterea *: 85% Lumina transmiterea *: 85-90%-material nou Bolizi **: singur strat 0.83Avantajele:• Nu degradate sau decolorate în lumină UV Avantajele:• Forţa de impact ridicat, bun pentru locaţii • Natura translucide acest material diffuses şicu grindină distribuie uniform lumină • Tratate de Tedlar panouri sunt rezistente laDezavantaje: vremea, lumina soarelui şi acizi• Arcrylic sticlă extinde şi contract • Puteţi ultimii 5-20 aniconsiderabil; încadrare are nevoie pentru apermite această schimbare în mărimea Dezavantaje:• Rezistente nu la foc • Scade de transmisie a luminii în timp • Rezistenţă săraci de la vremea • Cel mai inflamabile materialele vitrajelor rigide • Abilitatea de izolare nu produce zăpadă pentru a topiPolicarbonat — dublu perete rigide din Policarbonat filmul — triplu şi quad peretematerial plastic rigide din material plasticLumina transmiterea *: 83% Lumina transmiterea *: 75%Bolizi **: 6 mm 1.6, 1.7 de 8 mm Bolizi ** triplu pereţi: 8 mm 2.0-2.1, 16 mm 2.5 Bolizi ** quad perete: 6 mm 1.8, 8 mm 2.1Avantajele:• Cele mai rezistente la foc de plastic Avantajele:materialele vitrajelor • Cele mai rezistente la foc de plastic materialele• Rezistentă la UV vitrajelor• Foarte puternic • Rezistentă la UV• Uşoare • Foarte puternic• Uşor de tăiat şi a instala • Uşoare• Oferă performanţă bună pentru 7-10 ani • Uşor de tăiat şi a instala • Oferă performanţă bună pentru 7-10 aniDezavantaje:• Pot fi scumpe Dezavantaje:• Nu clar, translucide • Pot fi scumpe • Nu clar, translucideSurse: (2, 6, 7, 13, 14)* Notă că schelet scade cantitatea de lumină care pot trece printr- şi fi disponibil ca energiesolară** Bolizi este o măsură de comune de izolare (hr°Fsq.ft/BTU)
  41. 41. Aveţi nevoie pentru a înţelege patru numere în selectarea geamuri pentru serele solare. Două numere descrie randamentul termica geamului, şi alte două numere sunt importante pentru creșterea plantei productiv. Materialele pentru geamurile multe includ unautocolant de Consiliul Naţional de evaluare a Fenestration, care listează următorii factori:• SHGC sau energie termică solară obţine coeficientul este o măsură a cantității prezente de lumină solară care trece printr-ungeam de material. Un număr de 0,60 sau mai mare este de dorit.• Factorul de u este o măsură de căldură care este pierdut în afara printr-un geam de material. Un număr mai mare sau egală cu0.39 BTU/hr-ft2-F este de dorit.• VT sau vizibil factor de transmisie se referă la cantitatea de lumină vizibilă care introduce printr-un geam de material. Un numărde 0.70 sau mai mare este de dorit.• PAR sau radiații photosynthetically activă este cantitatea de lumina soarelui în lungimi de undă critice pentru fotosinteză şicreşterea plante sănătoase. Gama de lungime de undă PAR este între 400-700 Nano-metri (o măsură de lungime de undă).Notă: Când alegerea geamuri, uita la transmisia vizual totală, nu PAR transmisia, pentru a vedea dacă materialul permite spectrude lumină necesare pentru creșterea plantei sănătos.În plus faţă de eficienţei energetice și transmisie a luminii, ar trebui să luaţi următoarele atunci când alegeţi materialele pentrudumneavoastră cu efect de seră geamurile:• Durată de viaţă• Rezistenţă la deteriorări cauzate de grindină și pietre• Abilitatea de a sprijini snowload• Rezistenţă la condensare• Foaie dimensiunea și distanța necesar între sprijină• Rezistenţă la foc• Ușor de instalat(Bazat pe 6, 9, 10, 11, 12, 13, 14)Back to topSolare de stocare de căldurăPentru serele solare pentru a rămâne cald în timpul nopţi rece sau zilele tulbure, căldura solară care introduce pe zileinsorite trebuie depozitate în seră pentru o utilizare ulterioară. Metoda cea mai comună pentru stocarea energieisolare este să plasaţi roci, beton, sau apă în linie directă cu lumina soarelui să absoarbă sale de căldură.(1)Cărămidă sau pereții umplute cu beton cinder bloc la partea din spate (partea de Nord) de seră poate oferi, deasemenea, depozitare de căldură. Cu toate acestea, numai exterioară patru centimetri de grosime de acest materialde stocare efectiv absoarbe energie termică. Mediu şi întuneric colorate dale ceramice pardoseală poate oferi, deasemenea, unele stocare de căldură.Pereţi (15) nu sunt utilizate de absorbție de energie termică trebuie luminacolorate sau reflectorizant de căldură directe și lumina înapoi în seră și pentru a asigura o distribuție mai chiar aluminii plantelor.Materiale de stocareCantitatea de material de stocare de căldură necesare depinde de locaţia dumneavoastră. Dacă locuiţi în sudul saumid-latitude locuri, veţi avea nevoie de cel puțin 2 galoane de apă sau în 80 de livre de roci pentru a stoca călduratransmisă prin fiecare pătrat picior de geam.(16) În cazul în care locuiţi în statele nordice, veti avea nevoie 5 galoane

×