Mixing of Solid-Liquid Systems

3,561 views

Published on

Mixing of Solid-Liquid Systems

0 INTRODUCTION/PURPOSE
1 SCOPE
2 FIELD OF APPLICATION
3 DEFINITIONS
4 TYPICAL APPLICATIONS
5 AGITATED VESSELS
5.1 Suspension of Heavier-than-Liquid Solids
5.1.1 Dispersion
5.1.2 Agitator Speed Correlation
5.2 Floating Solids
5.3 Mass Transfer

6 JET MIXING FOR SOLID LIQUID AGITATION
6.1 Flat Bottomed Vessel
6.2 Changes in the Shape of the Vessel Base

7 NOMENCLATURE

8 BIBLIOGRAPHY

APPENDICES

A WORKED EXAMPLE

TABLES

1 VALUES OF Po AND ZWIETERING CONSTANT "S"
FOR USE IN EQUATION 1

FIGURES

1 RECOMMENDED CONFIGURATION
2 RECOMMENDED CONFIGURATION FOR DRAW-DOWN OF FLOATING SOLIDS IN AGITATED VESSEL
3 ALTERNATIVE RECOMMENDED CONFIGURATION
FOR DRAW-DOWN OF FLOATING SOLIDS IN FOR
AGITATED VESSEL
4 JET MIXING FOR SOLIDS SUSPENSION
5 ESTIMATION OF S FROM KNOWN DATA

Published in: Technology, Business
0 Comments
3 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
3,561
On SlideShare
0
From Embeds
0
Number of Embeds
9
Actions
Shares
0
Downloads
371
Comments
0
Likes
3
Embeds 0
No embeds

No notes for slide

Mixing of Solid-Liquid Systems

  1. 1. GBH Enterprises, Ltd. Process Engineering Guide: GBHE-PEG-MIX-703 Mixing of Solid-Liquid Systems Information contained in this publication or as otherwise supplied to Users is believed to be accurate and correct at time of going to press, and is given in good faith, but it is for the User to satisfy itself of the suitability of the information for its own particular purpose. GBHE gives no warranty as to the fitness of this information for any particular purpose and any implied warranty or condition (statutory or otherwise) is excluded except to the extent that exclusion is prevented by law. GBHE accepts no liability resulting from reliance on this information. Freedom under Patent, Copyright and Designs cannot be assumed. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  2. 2. Process Engineering Guide: Mixing of Solid-Liquid Systems CONTENTS SECTION 0 INTRODUCTION/PURPOSE 2 1 SCOPE 2 2 FIELD OF APPLICATION 2 3 DEFINITIONS 2 4 TYPICAL APPLICATIONS 2 5 AGITATED VESSELS 2 5.1 5.2 5.3 Suspension of Heavier-than-Liquid Solids 5.1.1 Dispersion 5.1.2 Agitator Speed Correlation Floating Solids Mass Transfer 2 3 3 10 11 6 JET MIXING FOR SOLID LIQUID AGITATION 5 6.1 6.2 Flat Bottomed Vessel Changes in the Shape of the Vessel Base 11 12 Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  3. 3. 7 NOMENCLATURE 13 8 BIBLIOGRAPHY 14 APPENDICES A WORKED EXAMPLE 15 TABLES 1 VALUES OF Po AND ZWIETERING CONSTANT "S" FOR USE IN EQUATION 1 4 FIGURES 1 RECOMMENDED CONFIGURATION 4 2 RECOMMENDED CONFIGURATION FOR DRAW-DOWN OF FLOATING SOLIDS IN AGITATED VESSE 10 ALTERNATIVE RECOMMENDED CONFIGURATION FOR DRAW-DOWN OF FLOATING SOLIDS IN FOR AGITATED VESSEL 10 4 JET MIXING FOR SOLIDS SUSPENSION 12 5 ESTIMATION OF S FROM KNOWN DATA 16 3 DOCUMENTS REFERRED TO IN THIS PROCESS ENGINEERING GUIDE 18 Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  4. 4. 0 INTRODUCTION/PURPOSE This Process Engineering Guide (PEG) is one in a series of Mixing Guides and has been prepared for GBH Enterprises. 1 SCOPE This Guide covers the mixing of solid-liquid systems; it deals with suspending particulate solids in a liquid, but does not cover slurries and other non-Newtonian solid-liquid systems. The aim of this guide is to cater for the majority of mixing duties for particulate solids in liquids. For more specialized duties, reference should be made to the GBHE Mixing and Agitation Manual and, if appropriate, to one of the experts. 2 FIELD OF APPLICATION This Guide applies to Process Engineers in GBH Enterprises worldwide. 3 DEFINITIONS No specific definitions apply to this Guide. 4 TYPICAL APPLICATIONS Typical reasons for suspending particulate solids in a liquid are: (a) Dissolving solids. (b) Contacting liquids with a solid catalyst. (c) Producing solid/liquid mixtures (e.g. paints). (d) Crystallization. (e) Wet blending of solids. Two basic methods are recommended, using either a stirred vessel or a jetmixed vessel. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  5. 5. 5 AGITATED VESSELS 5.1 Suspension of Heavier-than-Liquid Solids For solid suspension duties it is recommended that: (a) The vessel is fully baffled. (b) The agitator is a marine propeller or an axial flow "hydrofoil" impeller. Pitched blade turbines with a blade angle of 45° are acceptable but require greater power. (c) The agitator pumps downwards (or upwards if the clearance is low, Z<T/4). (d) The liquid depth should be roughly equal to the tank diameter. For greater liquid depths multiple agitators will be required. (e) The agitator diameter should be in the range T/3 to T/2: larger agitators interfere with the circulation pattern. (f) The clearance between the agitator and the base of the tank should preferably be in the range T/8 to T/4. (g) The vessel bottom should preferably be dished. Fillets will build up in "square" bottom tanks. (h) Data from large scales is sparse. In critical cases it is common practice to design a hypothetical small scale vessel and then scale it up on a constant power per unit volume (PoNJS3 D5ρL /V) basis to the size required, using the power numbers (Po) from Table 1 and the method described in GBHE-PEG-MIX-701. Thus: (1) Assume T = 0.61m. Choose D, Z and agitator type. (2) Select most appropriate values of S and Po from Table 1. (3) Calculate NJS from Equation (1). (4) Calculate corresponding power per unit volume from: P/V = PoNJS3 D5ρL /V Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  6. 6. (5) Calculate plant agitator diameter Dplant from required plant volume using the same H/T, D/T and Z/T. (6) Calculate plant agitator speed Nplant from: (Nplant) 3 = (P/V)Vplant /PoD5 plant ρL This is a conservative method for scale-up. If the resulting P/V is greater than 0.5kW/m3 it may be over-safe. (j) If the vessel is gassed do not use down flow impellers. Refer to GBHEPEG-MIX-706, and scaleup using the gassed power Pg. Note that NJS will be higher than for ungassed systems. (k) The correlation does not work with fluid viscosities above about 200cP; but once suspended, high viscosity duties should be easier. (l) For very small particles the correlation will be very conservative and suspension will be dominated by viscous, not inertial forces. See Appendix A for an example. The recommended configuration for agitated vessels is shown in Figure 1. 5.1.1 Dispersion If the solids are finely divided then the problem may be breaking down aggregates and not the suspension of the particles. If this is the case then refer to GBHE-PEG-MIX-709. Dense suspensions of fine particles such as paint should be treated as single phase for power and mixing calculations. 5.1.2 Agitator Speed Correlation The agitator speed which is just sufficient to suspend all the solid particles is known as NJS: this is the speed given by the correlations below. The solid concentration will normally decrease with height and could fall to zero near the surface. At speeds two or three times NJS the solid distribution will begin to look uniform. At speeds below NJS fillets of stationary solid will build up in areas of low flow. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  7. 7. Where X = 100 x weight of solid/weight of liquid: Note: X is not %Solid per Total Slurry Recommended values of S for use in the correlation are shown in Table 1. For particles greater than 0.5 mm the value of the index on d p in equation 1 increases, tending to 0.4. If the suspension is Newtonian, equation 1 can be used for values of X up to 50%. For very small particles in the micron and sub-micron range, the sedimentation will be controlled by viscous forces (Stokes' Law) rather than inertial forces (as implicitly assumed in equation 1). The calculated NJS should be adjusted in the ratio of the inertial to viscous sedimentation velocities; see the worked example in Appendix A. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  8. 8. FIGURE 1 RECOMMENDED CONFIGURATION Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  9. 9. TABLE 1 VALUES OF Po AND ZWIETERING CONSTANT "S" FOR USE IN EQUATION 1 Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  10. 10. TABLE 1 Continued Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  11. 11. TABLE 1 Continued Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  12. 12. TABLE 1 Continued Notes: *1 The shaft rests in a bottom steady bearing which gives enhanced fluid flow for solids in suspension, like a "Bourne" bottom (for more information see GBHE Mixing and Agitation Manual). *2 There is a gas ring-sparger (Ds = 0.41T ) sited a distance T/6 below the impeller. *3 This vessel is fitted with 2 Beaver-tail baffles; these are equivalent to 4 × 0.1T flat wall baffles. *4 These data are for two impeller configurations, "b" refers to the bottom one, "t" to the upper one. Twin impellers have no advantage over a single impeller for NJS, but give better concentration profiles up the vessel. *5 The power numbers, Po, are for the twin configuration (hence no value for the bottom impeller only). *6 D/W = 4. *7 Ref 12 gives: Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  13. 13. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  14. 14. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  15. 15. 5.2 Floating Solids Incorporating low density solids and solids which are not easily wetted can sometimes be a problem. The preferred designs of agitator and baffles are shown in Figures 2 and 3. Calculation of impeller speed is based on semitechnical scale trials using constant power input/unit mass of liquid as the criterion for scale-up. Other systems have been used by Shell and Exxon on large particles and coal slurries and are discussed in the GBHE Mixing and Agitation Manual. They have not been found satisfactory for general use in GBHE. FIGURE 2 RECOMMENDED CONFIGURATION FOR DRAW-DOWN OF FLOATING SOLIDS IN AGITATED VESSEL Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  16. 16. FIGURE 3 ALTERNATIVE RECOMMENDED CONFIGURATION FOR DRAW-DOWN OF FLOATING SOLIDS IN AGITATED VESSEL Where an existing disc turbine in a fully baffled vessel is to be reused, the required speed can be estimated from: Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  17. 17. 5.3 Mass Transfer The recommended correlation for the mass transfer coefficient between the solid and the liquid is: Sherwood Number = Where DL is the diffusivity in the liquid. 6 JET MIXING FOR SOLID LIQUID AGITATION A jet directed perpendicularly to the base of a cylindrical vessel is essential for this application and axial location of the jet is preferable. The general arrangement of vessel and jet is shown in Figure 4. 6.1 Flat Bottomed Vessel A flat bottomed vessel then presents the most difficult suspension duty and the velocity of liquid in the jet feed pipe, VL, is given by: The equation is semi-empirical and not dimensionless, but has a good experimental and theoretical backing, being based on work in vessels from 0.15 to 0.6 m in diameter. X is the overall concentration of solids in the vessel as %w/w; all other parameters are in SI units. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  18. 18. If H/T is greater than 1, then X must be set to X.H/T since the solid is concentrated to the lower part of the tank. The equation should be used with caution outside the recommended ranges. If the particle diameter, dp , is less than 200 microns the system should be designed for a particle size of 200 microns. For particles greater than 1 mm the theoretical index on T is 1.4 and this should be used to give a conservative design. This index of 1.4 should be used to give a safe design in vessel where T is greater than 2 m. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  19. 19. FIGURE 4 6.2 JET MIXING FOR SOLIDS SUSPENSION Changes in the Shape of the Vessel Base Hemispherical base Velocity 50% of that calculated above. Non Central jet Set T in equation to 2.L where L is the distance from the impingement point to the most remote wall. Continuous flow operation The concentration of solid in the vessel will be higher than the inlet stream because the off-take will not remove solid isokinetically. Increase X by a factor of 3. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  20. 20. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  21. 21. 8 BIBLIOGRAPHY Ref Source (Table 1) [1] Chem. Eng. Sci., vol.8, pp 244-253, 1958. ”Suspending solid particles in liquid by agitators”. Th.N.Zwietering. [2] 6th European Conference on Mixing, Pavia, Italy. May 1988. ”Scale-up of 45 pitched blade agitators for gas dispersion and solid suspension”. W. Bujalski, M.Konno, A. W. Nienow. [3] FMP 032, April 1988. ”Research review; the measurement of power, solids suspension and distribution in a 0.61 m diameter stirred vessel. A. T. C. Mak. [5] FMP Interim Report 1049, Feb. 1990. ”The effects of impeller pitch angle and clearance on Power Number and NJS”. A. T. C. Mak. [6] FMP Interim Report 1041, Sept. 1989. ”Measurement of NJS, solids distribution and power for a pitched blade turbine”. A. T. C. Mak. [7] FMP steering committee, Sept. 1989. A. T. C. Mak. [8] Chem. Eng. Res. Des. Vol. 61, March 1983. ”Particle-gas-liquid mixing in stirred vessels, Part 1: Particle-liquid mixing”. C. M. Chapman, M. Cooke, J. C. Middleton, A.!W. Nienow. [9] Chem. Eng. Sci., 1968, Vol. 23, pp 1453-59, ”Suspension of solid particles in turbine agitated baffled vessels”. A. W. Nienow. [10] University of Birmingham PhD Thesis. 1991, S. Ibrahim. [11] FMP Interim Report 1063, Sept. 1991. ”A study of the effectiveness of solid liquid mixing with twin-impeller agitators". A. T. C. Mak & S. W. Ruszkowski. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  22. 22. APPENDIX A WORKED EXAMPLE (SMALL PARTICLES) A latex stock tank for emulsion PVC is 7.6m diameter with H/T = 0.5 and Z/T = 1/6. It was originally agitated with a 3.79m diameter 2-bladed turbine, this has been replaced by a 1.68m diameter Lightning A310 agitator. The latex consists of 40% by weight of solids with a median diameter of 1 micron. It also contains around 1% by weight of 1 mm coagulated particles. What is the recommended speed for each agitator to suspend both the median and coagulated particles? The density of PVC is 1400 kg/m3, the viscosity of the latex is 10 mN/s (cP). A.1 SOLUTION The minimum speed for suspension can be calculated from equation 1. The density of the latex is obtained by addition of the volumes of each components as follows: Basis: 1000 kg latex 400 kg PVC at ρ = 1400 kg/m3 = 0.286 m3 600 kg water at ρ = 1000 kg/m3 = 0.600 m3 Total volume Density of Latex = 0.886 m3 = 1000/0.886 = 1.129 kg/m3 All the data required are given and S can be estimated from Table 1. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  23. 23. A.1.1 Original Agitator For the 2-bladed, 90° turbine, the parameters D/T=0.5 and Z/T = 1/4 are closest, giving a value of S!=!4*. From the Table it is apparent that the effect of Z/T is small† . Thus, S = 4 is used in equation 1 for the 1 mm coagulated particles: Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  24. 24. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  25. 25. Plotting data d, e & f in Figure 5 and extrapolating gives a value of S at D/T = 4.5 of about 10.3. Scaling this by the ratio of S for flat to dished vessels, from a & c, we get: To cater for uncertainty, we will assume a value of 10. Substituting in equation 1, for the 1 mm particles, A.1.3 Actual Results and their Interpretation The agitator was in fact run at 15 rpm, about 34% of the design speed compared with about 22% of design speed for the 2-bladed turbine agitator. Less sedimentation was reported. The agitators could not be run at the design speeds as this caused further coagulation of the latex. Note: If equation 1 is used to calculated NJS for the 1 micron particles it gives a value of 18 rpm for the A310 agitator. This is greatly in error as the particles do not measurably sediment over long periods even with no agitation. For such small particles sedimentation is controlled by viscous forces (Stokes' Law) and not inertial forces as is implicitly assumed in equation 1. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  26. 26. Viscous sedimentation velocity is given by: Inertial sedimentation velocity is given by: Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  27. 27. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  28. 28. DOCUMENTS REFERRED TO IN THIS PROCESS ENGINEERING GUIDE This Process Engineering Guide makes reference to the following documents: ENGINEERING GUIDES GBHE-PEG-MIX-701 Mixing of Miscible Liquids (referred to in 5.1 (h)) GBHE-PEG-MIX-706 Gas-Solid-Liquid Mixing Systems (referred to in 5.1 (j)) GBHE-PEG-MIX-709 'High Shear' Mixers (referred to in 5.1.1) OTHER GBHE DOCUMENTS GBH ENTERPRISES Mixing and Agitation Manual (referred to in Clause 1, 5.2 and Table 1). Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  29. 29. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com

×